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Chapter 1

Introduction

1.1 Problem Setting

Fuzzy logic, among other new methods, is becoming popular in tra�c signal control.
Most of the fuzzy tra�c signal controllers are not adjustable, that is, the parameters
of the fuzzy controller remain the same in changing tra�c situations. In this thesis,
an existing fuzzy tra�c signal controller is enhanced with a neural learning scheme.
The resulting adjustable controller can modify its parameters in di�erent tra�c en-
vironments. It is examined whether this adjustable controller performs better than
the initial non-adjustable controller. The performance measure of the controller is
the delay of the vehicles in the system.

A fuzzy control system uses a rule base of simple �if-then� rules to calculate the
control action based on the current tra�c situation. For example, �if the approaching
tra�c is large and the queuing tra�c is small, then the green signal is long�. The
concepts large, small and long are fuzzy sets. That is, they are not precise, and
elements belonging to one set may partially belong to some other set, too. For
example, a measurement of 5 vehicles is small to some degree and also large to some
other degree.

Neural networks form a wide class of nonlinear regression models and dynamical
systems. They consist of a large number of simple computing elements, neurons,
which are interconnected and organized in layers [61]. The network is able to �learn�
or adapt to the data observed by changing the strengths of the network intercon-
nections. The most widely used neural learning algorithms are based on the output
error, that is, the di�erence between the output of the neural network and a �desired�
output. In this sense, neural networks are surface-�tting algorithms quite similar to
regression models.

Combinations of neural and fuzzy systems have become popular in the last few years.
A fuzzy system can be represented in the form of a neural network, resulting in a
neurofuzzy system. The parameters of the neurofuzzy system can be updated using
the same methods as in neural learning.

Applying neural learning to fuzzy tra�c signal control involves problems that are not
encountered in most neurofuzzy control systems. The output of the signal controller

1



1.2. Aims of the Thesis 2

is the length of the green signal, and the �desired� length of the green signal is not
known. Thus the learning cannot be based on the di�erence between the output of
the network and the desired output, and the most usual neural learning algorithms
cannot be used. The objective of the signal controller is to minimize the delay and
not to reach a �desired� length of the green signal � actually, the desired length
would be the one which minimizes the delay! In this thesis, a learning algorithm
called reinforcement learning is used in neurofuzzy tra�c signal control. This type
of learning uses a criterion other than the di�erence of the network output and the
desired output; in this thesis, the criterion is the delay of vehicles.

Enhancing tra�c signal control has a potential of signi�cant savings in national
economy, if the time spent in tra�c is reduced. Modern tra�c signal controllers
base the signal timings on the information about the current tra�c situation they
receive through tra�c detectors. A suitable mathematical representation of tra�c
signal control is not easy to �nd, as there are many variables and restrictions. The
complexity of the control procedure is sometimes restricted by the limited capacity
of the actual signal controller; on the other hand, safety regulations prevent the use
of some control solutions. That is why classical mathematical optimization in the
actual sense of the word is not always used, but simpler sub-optimal procedures are
sought.

Fuzzy control is suitable for tra�c signal control because expert knowledge can be
easily exploited with linguistic concepts and rules. A fuzzy signal controller is easier
to design and maintain than a traditional one. Fuzzy signal control is also simple in
the sense that the basic calculations are quite easy and the number of parameters is
smaller.

In this thesis, the word �adjustable� is used to refer to a control system whose pa-
rameters are modi�ed using a neural or some other learning method. The word
�adaptive� is often used in literature in place of �adjustable�. The word �adjustable�
is chosen here because in tra�c control engineering, the word �adaptive� refers to a
tra�c signal controller which gives a di�erent control output in di�erent situations,
but whose parameters are not necessarily modi�ed. The word �adaptive� is used
in this thesis only in the literature review where the interpretation of the word is
obvious.

1.2 Aims of the Thesis

The main objective of the thesis is to create an adjustable fuzzy control system for
tra�c signal control. The fuzzy tra�c signal controller is already available, and the
current objective is to make it adjustable. The adjustable fuzzy controller should
perform better than the non-adjustable controller, as it can change its parameters as
the surrounding tra�c situation changes. In practice, the fuzzy controller is tuned
by updating the parameters of the fuzzy membership functions. The objective is to
construct a neural learning algorithm which modi�es the parameters. It is examined
whether the algorithm modi�es the parameters in a di�erent way at di�erent (but
constant) tra�c volumes. It is also tested whether the algorithm can keep up with
a changing tra�c volume and update its parameters continuously.
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If di�erent membership function parameters are found for di�erent tra�c volumes,
the tra�c signal controller can �rst identify the tra�c situation and then choose
a proper parameter set for the fuzzy control process. On the other hand, if the
algorithm is able to keep up with a changing tra�c volume, it is possible to use the
algorithm in the �eld: the signal controller updates its parameters all the time as the
tra�c volume changes. The practical implementation of the algorithm on a tra�c
signal controller in the �eld is not aimed to discuss in this thesis.

Fuzzy tra�c signal control has earlier [46] been superior to traditional tra�c signal
control only at large tra�c volumes. It is hoped that fuzzy signal control could
achieve better results at low tra�c volumes, too.

The location of the tra�c detector determines the number of vehicles the fuzzy con-
troller can observe, and therefore a�ects the output of the controller. It is compared
whether the learning algorithm results in di�erent kinds of membership functions at
di�erent detector locations.

An additional aim is to study neurofuzzy systems in terms of a literature review and
discuss their applicability to tra�c signal control.

1.3 Structure of the Thesis

A literature review covering fuzzy systems, neural networks, neurofuzzy systems and
reinforcement learning, respectively, is presented in Chapters 2, 3, 4 and 5.

Chapter 6 discusses tra�c signal control and the application of the reinforcement
learning algorithm (presented in Section 5.3) to tra�c signal control.

The results of the learning are presented and discussed in Chapter 7 together with
results of some other experiments. Sections 8.1 and 8.2 also discuss possible reasons
for the results obtained.

Suggestions for future research and the development of the simulation system are
given in Section 8.3.

1.4 Contributions of the Thesis

In the literature review, the nature of di�erent union, intersection and defuzzi�cation
operations on fuzzy sets are discussed in Sections 2.3 and 2.5. The choice of these
operations a�ects the learning in the fuzzy tra�c signal controller. The drawbacks
and advantages of these operations in the context of the reinforcement learning algo-
rithm are considered in detail in Section 5.3.7. In this section, suggestions are given
for the choice of the operations, based on theoretical considerations.

An existing fuzzy tra�c signal controller is made adjustable by enhancing the system
with a learning algorithm. The algorithm found in the literature is interpreted and
applied in the context of tra�c signal control. The practical limitations in the
application of the algorithm are discussed and some of the limitations are overcome,
as discussed in Section 6.2.3.
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A large series of experiments on the adjustable neurofuzzy tra�c signal controller is
done. The experiments are realized on the tra�c simulation system in which fuzzy
control is already implemented. The simulation system interacts with a Matlab [43]
program especially designed for this purpose. The membership function parameters
of the fuzzy controller are modi�ed using the reinforcement learning algorithm in
several di�erent cases, covering di�erent tra�c detector locations and both constant
and increasing tra�c volumes.

The learning algorithm is found successful at constant tra�c volumes. New mem-
bership function parameters are found in four di�erent cases out of a total of six
di�erent cases of constant tra�c volumes. These new parameters produce a smaller
vehicular delay than the initial parameters. The algorithm modi�es the parameters
in di�erent ways in di�erent tra�c situations. This means that the set of member-
ship functions should be chosen according to the tra�c volume and the location of
the tra�c detectors.

The learning algorithm is not found successful at increasing tra�c volumes. The
algorithm cannot keep up with a changing tra�c, at least if the change in the tra�c
volume is fast.

In addition, the rule base itself is slightly modi�ed by manually changing some of
the conditions in the if-parts in the rules. This results in a substantial decrease in
the vehicular delay at low tra�c volumes, and the aim of reducing delays especially
at low tra�c volumes is thus ful�lled.



Chapter 2

Fuzzy Systems

2.1 Introduction

The concepts and terminology of fuzzy logic were brought to public attention by
Lot� A. Zadeh in 1965 [68]. In his article he introduced fuzzy sets and membership
functions and extended several de�nitions on set-theoretic operations on fuzzy sets.
Nonetheless, the underlying ideas of imprecise reasoning date back to logicians and
philosophers of the late nineteenth and early twentieth century: for example, to
Charles Sanders Peirce, Bertrand Russell and Jan Lukasiewicz. For an overview of
the history of fuzzy or vague logic, refer to Kosko [33].

In two-valued or bivalent logic, truth value of a statement is either 0 (�false�) or 1

(�true�). In multi-valued logic, truth values of statements may assume more values,
for example, 0; 1

2 and 1. In fuzzy logic, a truth value can assume any real value
between 0 and 1. In a narrow sense, fuzzy logic is multi-valued logic. In broader
sense, fuzzy logic is an extension of multi-valued logic and refers to various methods
modelling vague concepts.

Fuzzy sets provide a speci�c, mathematical interpretation for vague, natural language
terms [7]. A fuzzy set is a generalization of a classical or crisp set in the sense that
a fuzzy set may contain its elements partially, too, whereas an element x of a crisp
set either belongs to the set or does not. The characteristic function

�A : U ! f0; 1g (2.1)

of a crisp set A maps the elements x of a given universal set U to 0 or 1 and is
de�ned as

�A(x) =

(
0; x =2 A

1; x 2 A:
(2.2)

Thus the characteristic function of a crisp set discriminates between members and
non-members of the crisp set A � U [27]. In a fuzzy set S, de�ned as

S = f(x; �S(x)) jx 2 Ug; (2.3)

each element x 2 U is assigned with a degree of membership in S, which is measured
by a membership function [68]

�S : U ! [0; 1]: (2.4)

5



2.1. Introduction 6

U is always a crisp set, and here the attention is restricted to U � R. The membership
function �S(x) is zero when x does not belong to S at all, one when x belongs to
S totally and 0 < �S(x) < 1 when x belongs to S partially. Zadeh [68] notes that
in a more general setting, the range of the membership function can be a suitable
partially ordered set, but it is convenient and su�cient to restrict the range to the
unit interval [0; 1].

The degree of vagueness in a fuzzy set S is precisely represented by �S . Note the word
precisely : the membership function actually de�nes the impreciseness inherent in S.
The more the membership function �S resembles the characteristic function (2.2),
the less fuzzy S is. Similarly, the set S is considered the fuzzier the more �S(x)

di�ers from 0 or 1.

Various forms of membership functions are discussed in Section 2.2.2.

Fuzzy inference deals with propositions �if X is S, then Y is T �. Here X and Y

are linguistic variables and S and T are linguistic values. A linguistic variable is
a variable which assumes linguistic values. For example, �age� can be a linguistic
variable which assumes linguistic values �young�, �middle-aged� and �old�. Each of
these linguistic values can be represented as a fuzzy set which has its own membership
function �. A person may partially belong to one or several of these sets at the same
time: a 25-year-old is still young to some degree but also middle-aged to some degree,
and so on. Splitting the universe of �age� into non-overlapping sections, that is, into
crisp sets, would be both di�cult and impractical.

The main idea underlying fuzzy reasoning is that many everyday concepts are vague
and imprecise. For example, a phrase such as �The sky is blue� may be true to only
some extent. As the sky turns more and more grey, the truth value of this sentence
decreases, but it is hard to �nd a speci�c instant when the colour ceases to be blue.
Also, sometimes it is unnecessary to use precise statements. Bedzek [4] gave a nice
example on this: �Suppose, as you approach a red light, you must advise a driving
student when to apply the brakes. Would you say 'Begin braking 74 feet from the
crosswalk'? Or would your advice be more like 'Apply the brakes pretty soon'? The
latter, of course; the former instruction is too precise to be implemented.�

The literature on fuzziness is wide. See for example Jurva [21], Klir and Yuan [27],
Kosko [33], Lee [39], Mattila [44], Niskanen [48], Orlovski [51], Turunen [65], Yager
and Filev [67] or Zimmermann [69]. Unfortunately, many authors are over-optimistic
about the possibilities of fuzzy logic. Although the philosophy behind fuzzy systems
is �novel� and its application in computation di�ers from traditional computing sys-
tems, it is not self-evident that fuzzy systems yield better results in what they are
applied to. For example, the choice of a control system (fuzzy, neural, neurofuzzy or
mathematical optimization etc.) must be based on the performance of the system
and not just the philosophy that lies behind it.
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2.2 Membership Functions

2.2.1 De�nitions

The fuzzy set S (or, equivalently, the membership function �S) is normal if there
exists x 2 U such that �S(x) = 1. In the opposite case, S (or �S) is subnormal. In
this thesis it is assumed that all fuzzy sets are normal.

The support of S (or, of �S) is the set of x at which �S exceeds zero:

supp(S) = fx j�S(x) > 0; x 2 Ug: (2.5)

The core of S (or, of �S) is the set of x at which �S reaches a value of 1:

core(S) = fx j�S(x) = 1; x 2 Ug: (2.6)

The fuzzy set S (or, �S) is unimodal if the core of S consists of one point x only.

2.2.2 Types of Membership Functions

The most frequently used types of membership functions are triangular, trapezoidal,
Gaussian, generalized bell and sigmoidal membership functions.

The triangular membership function

�(x; p1; p2; p3) =

8><
>:

x�p1
p2�p1

; x 2 [p1; p2]

� x�p3
p3�p2

; x 2 (p2; p3]

0; else

(2.7)

or, equivalently, [20]

�(x; p1; p2; p3) = max

�
min

�
x� p1

p1 � p2
;
p3 � x

p3 � p2

�
; 0

�
; (2.8)

is seen in Figure 2.1 a. The parameters [p1; p2; p3] determine the x coordinates of
the three corners.

The trapezoidal membership function

�(x; p1; p2; p3; p4) =

8>>><
>>>:

x�p1
p2�p1

; x 2 [p1; p2]

1; x 2 (p2; p3]

� x�p4
p4�p3

; x 2 (p3; p4]

0; else

(2.9)

or, equivalently, [20]

�(x; p1; p2; p3; p4) = max

�
min

�
x� p1

p1 � p2
; 1;

p4 � x

p4 � p3

�
; 0

�
; (2.10)

is seen in Figure 2.1 b. The parameters [p1; p2; p3; p4] determine the x coordinates
of the four corners. A special case of a trapezoidal membership function is a rect-
angular membership function in which p1 = p2 and p3 = p4. It corresponds to the
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Figure 2.1: Membership functions and their parameters. a) Triangular
membership function (p1 = 2, p2 = 4, p3 = 8). b) Trapezoidal membership
function (p1 = 1, p2 = 2, p3 = 6, p4 = 9). c) Gaussian membership function
(c = 5, � = 1). d) Generalized bell membership function (a = 2, b = 4,
c = 5). e) Sigmoidal membership function (a = 3, c = 5).
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characteristic function � in Formula (2.2): the value of the membership function is
1 for those elements which belong to the set and 0 for the others. In other words, a
rectangular membership function is a membership function of crisp concepts.

Another special case of a trapezoidal membership function is a triangular mem-
bership function. A trapezoid is more �exible than a triangle because it has one
parameter more. Both membership functions are popular due to their computa-
tional simplicity. However, as triangular and trapezoidal membership functions are
composed of straight line segments, they are not smooth at the switching points
[p1; p2; p3; p4] [20]. Nonlinear and therefore less simple Gaussian, generalized bell
and sigmoidal membership functions are smooth.

The Gaussian membership function [7]

�(x; c; �) = e
�

(x�c)2

2�2 (2.11)

is seen in Figure 2.1 c. The parameters [c; �] determine the center and width of the
membership function.

The generalized bell membership function [20]

�(x; a; b; c) =
1

1 + jx�ca j2b (2.12)

is seen in Figure 2.1 d. The parameters [a; b; c] control the width, slope and center
of the membership function. Jang and Sun [20] note that this membership function
is a direct generalization of the Cauchy distribution used in probability theory.

The sigmoidal or logistic membership function [20]

�(x; a; c) =
1

1 + e�a(x�c)
(2.13)

is seen in Figure 2.1 e. Parameters [a; c] control the slope and x coordinate of the
cross-over point x = c. The sigmoidal membership function di�ers from above-
mentioned membership functions in that it is monotone. Depending on the sign of a,
a sigmoidal function is open left or right and is therefore appropriate for representing
concepts such as very large or very negative [20].

2.2.3 Construction of Membership Functions

The membership functions representing linguistic values of a linguistic variable should
describe the nature and properties of the linguistic variable. Methods of constructing
membership functions can be divided into direct and indirect methods [27]. They
both utilize expert knowledge of the linguistic variables and linguistic values in ques-
tion.

In direct methods, the expert or experts assign a membership degree �S(x) of a
linguistic value S for x 2 U . The expert may either give a mathematical formula
of a suitable membership function or, more often, give examples of the values �S(x)
for some x. In this case, the expert answers questions such as �What is the degree of
membership of x in S� or �Which elements x have the degree of membership �S(x)
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in S?� These questions result in a set of pairs fx; �S(x)g which are used for con-
structing the membership function using some curve-�tting method [27]. Sometimes
the type � one of those discussed in Section 2.2.2 � of the membership function
is decided in advance, and the pairs fx; �S(x)g are used to select the parameters of
the membership function.

In indirect methods, the expert makes pairwise comparisons between elements x1,
x2, : : : , xn of the universal set U with respect to how much they belong in S.
Sometimes it is easier to compare the degrees to which elements belong to S than
give the actual degree of membership for each element as in direct methods. The
result of the comparisons is a matrix whose element pij = �S(xi)=�S(xj) speci�es
how much more xi belongs to S than xj . For example, if pij is 2, then xi belongs
to S twice as much as xj does. The expert does not have to give actual values of
�S(xi) or �S(xj). The actual values of the membership function are calculated by
�nding the eigenvalues and eigenvectors of the matrix [27]. Again we result in pairs
fx; �S(x)g which are used to construct the membership function as a whole.

In both direct and indirect methods, the answers of a pool of experts must be com-
bined in some way. Klir and Yuan [27] discuss these issues.

2.3 Operations on Fuzzy Sets

Well known operations on fuzzy sets are the complement, intersection and union
operations. They all have several mathematical interpretations, some of which are
discussed in the following. More operations are presented in Klir and Yuan [27], in
Yager and Filev [67] and in Zimmermann [69].

Complement. The complement Sc of a fuzzy set S has a membership function

�Sc(x) = 1� �S(x): (2.14)

This de�nition is equivalent to the complement of a classical set. Klir and Yuan [27]
note that �Sc(x) may be interpreted not only as the degree to which x belongs to
Sc, but also as the degree to which x does not belong to S. Similarly, �S(x) may also
be interpreted as the degree to which x does not belong to Sc.

In Section 2.1 the degree of fuzziness in set S was based on the membership func-
tion �S . The concept of complement gives us a precise way of measuring fuzziness.
Kosko [32] notes that a set S is fuzzy if and only if the intersection of a set S and
its complement Sc is nonempty. For crisp sets, the intersection is empty. In terms
of membership functions, a set S is fuzzy if the minimum of �S(x) and �Sc(x) is
nonzero on all x. Using Formula (2.14), the minimum of �S(x) and 1� �S(x) must
be nonzero if S is fuzzy.

Above the intersection of fuzzy sets was interpreted as the minimum of membership
function values. In the following, the intersection is further discussed.
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Figure 2.2: Intersection operators. a) Two Gaussian membership functions
�1 and �2 of a linguistic variable S. b) Minimum of �1 and �2. c) Soft
minimum of �1 and �2 with k = 10. d) Product of �1 and �2.

Intersection Operators. There are various mathematical formulae for the inter-
section of fuzzy sets, some of which are compared in Figure 2.2 and in the following.
(Note that if the membership functions are plotted on the same axis as in Figure 2.2,
they all must be functions of the same linguistic variable S. The formulae presented
here are directly applicable also to membership functions of di�erent linguistic vari-
ables S1, S2, : : : , Sn.)

Using the traditional fuzzy intersection operator, minimum [68], the intersection
S =

Tn
i=1 Si of fuzzy sets Si, i = 1; : : : ; n, has a membership function

�S = minf�S1 ; : : : ; �Sng (2.15)

where �Si is the membership function of the set Si, i = 1; : : : ; n. Minimum is seen
in Figure 2.2 b. Minimum is also the intersection operator for classical sets. It is
not smooth, and it is sometimes replaced by its di�erentiable counterpart, the soft
minimum:

�S = softminf�S1 ; : : : ; �Sng =
Pn

i=1 �Sie
�k�SiPn

i=1 e
�k�Si

(2.16)

where k is a parameter. The soft minimum approaches the minimum asymptotically
as k ! 1. If k is small, the soft minimum gives unexpected results at small mem-
bership function values. Figure 2.2 c shows the �tails� of the soft minimum of two
Gaussian membership functions. Obviously the value of k = 10 is too small.
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The product combiner

�S =
nY
i

�Si (2.17)

is smooth, and it is sometimes preferred in literature because of its conceptual sim-
plicity. The product combiner takes all the membership function values into account,
whereas the minimum and soft minimum ignore information. This becomes more im-
portant if there are more than just two membership function values. For example,
consider two sets of membership function values (�1; �2; �3), namely, (0:1; 0:9; 0:9)
and (0:1; 0:2; 0:2). The minimum combiner gives 0:1 for both of these. The soft
minimum with k = 10 gives 0:1003 for the �rst one and 0:1269 (!) for the second
one and the soft minimum with k = 100 gives 0:1000 and 0:1000, respectively. The
product combiner gives 0:081 for the �rst one and 0:04 for the second one. Thus only
the product combiner takes into account that the membership function values in the
�rst set are on the average larger than the values in the second set. Soft minimum
with k = 10 gives the opposite result, and we conclude that a value of k = 10 is
too small. Depending on the application, the overall minimum might be crucial, or
values of the other membership functions should be taken into account, too.

Union Operators. Fuzzy union operations again have several mathematical in-
terpretations. They are compared in Figure 2.3.

Traditionally [68], the union was interpreted as the maximum. Using the maximum
combiner, the membership function for the union set S =

Sn
i=1 Si is

�S = maxf�S1 ; : : : ; �Sng (2.18)

where �Si is the membership function of the set Si, i = 1; : : : ; n. This is also the
union operator for classical sets. Another alternative is the sum combiner

�S =
nX
i

�Si : (2.19)

Again, the sum does not lose any information, whereas the maximum does � re-
member the example comparing the minimum and the product. As the sum of
membership functions may exceed one, the summation operator is usually restricted
to lie between zero and one by using the bounded sum [67], [69] whose membership
function is

�S = minf1;
nX
i=1

�Sig; (2.20)

or the probabilistic sum [20], [69] whose membership function for two sets is

�S = �S1 + �S2 � �S1�S2 (2.21)

and in general

�S = 1�
nY
i=1

(1� �Si): (2.22)
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Figure 2.3: Union operators. a) Two Gaussian membership functions �1
and �2 of a linguistic variable S. b) Maximum of �1 and �2. c) Sum of �1
and �2. d) Bounded sum (upper curve) and probabilistic sum (lower curve)
of �1 and �2.

2.4 Di�erent Types of Uncertainty

2.4.1 Fuzziness Versus Probability

There has been a lot of discussion about di�erences between fuzziness and probabil-
ity. First of all, a distinction should be made between di�erent types of uncertainty.
It may be of probabilistic, fuzzy or some other nature. The terminology varies in the
literature, and in some texts, the word uncertain refers only to probabilistic uncer-
tainty; the words imprecise or vague usually refer to fuzziness. Niskanen [49], [50]
gives one explanation of the terminology, and many authors prefer to explain the
words in their own way.

Consider a proposition �X is S�. If there is probabilistic uncertainty inherent, X
may assume other values than S, too, but our de�nition of S is clear. If we have
evidence that X is actually S, we then know that X cannot be S0 at the same
time, if S and S0 are mutually exclusive values of X. On the other hand, in fuzzy
uncertainty, we cannot de�ne S clearly and X may be S0 at the same time, too.
For example, a proposition �It will rain tomorrow� may be uncertain in both senses
of the word. In the probabilistic sense, we do not know yet whether it will rain or
not, but we know the changes are �rain� and �no rain� and the right answer will be
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revealed the following day. The situation is uncertain only because our perception
of the following day's weather is restricted. In fuzzy uncertainty, we cannot clearly
de�ne the concept of rain � if it drizzles slightly from time to time, we would say it
both is raining and is not. The uncertainty is still present the following day, because
the uncertainty is associated with the concept.

Zadeh [68] already pointed out that �the notion of a fuzzy set is completely non-
statistical in nature�. Since then, a lively and often disagreeing discussion of the
di�erences and similarities of fuzziness and probability has been going on. Bedzek [4]
has collected a series of papers where various points of view are discussed [10], [16],
[25], [31], [38], [66].

Bedzek [3], [5] summarizes the di�erence between fuzziness and probability in an
example. Let L be a linguistic value potable. Suppose that you have been in the
desert for a week without drink and you are given two bottles, A and B. For bottle A,
the degree of membership in L is �L(A) = 0:91, whereas for bottle B, the probability
of belonging to L is pL(B) = 0:91. Which bottle would you choose? The membership
function value of 0:91 means that the contents of A are fairly similar to potable
liquids (for example, water). The probability of 0.91 means that over a long run
of experiments, the contents of B are perfectly potable in 91 per cent of the cases,
but in the other 9 per cent, the contents of B will not be potable (for example, B
may contain hydrochloride acid). Thus to be on the safe side, you should choose A,
because it may contain swamp water but it will not contain hydrochloride acid.

The example of Bedzek [3], [5] continues. Suppose that we examine the contents of
A and B and discover that A contains beer and B contains hydrochloride acid. Now
the membership function value of A is still 0:91, but the probability value of B drops
from 0:91 to 0 after this observation.

Bedzek summarizes his example with the philosophical di�erence between fuzziness
and probability [5]: A membership function represents the similarity of an object
(liquid) to an imprecisely de�ned property (potable). A probability density function
contains information about relative frequencies. Stating this, Bedzek obviously sup-
ports a frequentistic view of probability. With a subjective view of probability the
di�erence would be summarized in another way, but we do not discuss this further
here.

2.4.2 Ambiguity

One aspect of uncertainty is ambiguity, which is presented in Klir and Folger [26] and
in Klir and Yuan [27] and further discussed in Kikuchi and Pursula [24]. Ambiguity
of the proposition �X is S� means that our information about X is incomplete, but
S itself is clearly de�ned. The same de�nition applies to probabilistic uncertainty,
as discussed in Section 2.4.1, and according to [24], probabilistic uncertainty is one
type of ambiguity. Other types of ambiguity are possibilistic uncertainty and a
combination of probabilistic and possibilistic uncertainty.

A mathematical framework for ambiguity is evidence theory. The information about
X is the evidence. In an uncertain situation, the evidence partially supports the
proposition, and three situations can arise [24]:
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1. Given many pieces of evidence (e.g., experimental results), each piece of ev-
idence points to only one subset. This kind of uncertainty is measured by a
probability measure.

2. The body of evidence points to nested sets, so that one piece of evidence
supports all the subsets of the proposition. This uncertainty is measured by
a possibility measure. The possibility distribution assumes the same numerical
value as the membership function of fuzzy set S.

3. A combination of 1 and 2, in which the uncertainty is measured by a belief

measure. The measures are found in Dempster-Schafer theory [26]. This theory
subsumes probability and possibility theories.

These situations are compared in Figure 2.4.
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Figure 2.4: Relationships between evidence and propositions in an uncertain
situation [24].

Kikuchi and Pursula [24] give examples of uncertainty measures in transportation
problems, where uncertainty is associated with human judgement and behaviour.
In real-world situations, the data observed may have a probabilistic character, but
people often process them as a possibility distribution. For example, consider a
phrase �Travel time is less than T �. The evidence consists of observations of travel
time, which are of the form �travel time is in the range [T1; T2]�. In possibility theory,
a piece of evidence that supports an interval also supports all intervals that are inside
it. If it is possible that the travel time is in the range [T1; T2], then it is also possible
that the travel time is in a wider range [T1 � �1; T2 + �2] where �1 > 0 and �2 > 0.

2.5 Fuzzy Control

2.5.1 Introduction

The most practical and successful application of fuzzy systems is fuzzy control. A
clear advantage of fuzzy control systems over traditional ones is their ability to use
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Figure 2.5: A fuzzy controller.

expert knowledge as such. The knowledge can be expressed as a rule base where the
rules are propositions of the form �if X is S, then Y is T �; here S and T are fuzzy
sets.

A fuzzy controller consists of fuzzi�cation, fuzzy inference and defuzzi�cation mod-
ules, as seen in Figure 2.5. The fuzzi�cation module obtains measurements of con-
troller input variables from the system under control. The measurements are con-
verted to values of input membership functions. Depending on the context, the word
�fuzzi�cation� may include the construction of the membership functions used in the
fuzzy control process as discussed in Section 2.2.3. In an ongoing control process, the
membership functions are already constructed, and at most some �ne-tuning of the
functions is done during the control process. The fuzzy inference engine evaluates
the control rules stored in the fuzzy rule base. Fuzzy inference includes rule �ring
strength calculation, fuzzy implication, and rule aggregation, which are discussed in
the following sections. The result of the fuzzy inference is one or several output fuzzy
sets, whose membership functions are defuzzi�ed for obtaining the control action.

The rule base consists of N rules:

if X1 is S11 and/or : : : and/or Xn is Sn1, then Y1 is T11 and : : : and Yp
is Tp1
...
if X1 is S1N and/or : : : and/or Xn is SnN , then Y1 is T1N and : : : and
Yp is TpN

Each input variable Xj , j = 1; : : : ; n, assumes linguistic values or fuzzy sets Sji,
i = 1; : : : ; N , and each output variable Yk assumes linguistic values Tki, k = 1; : : : ; p.
The membership functions for these fuzzy sets are �Sji(xj) and �Tki(yk), respectively.
Note that the same linguistic values Sji of the variable Xj may appear in several
rules, making Sji = Sji0 for rules i and i0. The actual number of linguistic values
may thus be smaller than N . The same applies for the linguistic values Tki of Yk.
Also note that each input variable Xj need not have the same number of linguistic
values.

Each rule in the rule base consists of an �if� part, called antecedent, and a �then�
part, called consequent. One can also attach a rule importance weight mi to each
rule i. In this way, some rules can be considered more important than others.
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Figure 2.6: Fuzzy inference in a rule base of two rules. Rule 1: �if APP is
zero and QUE is a few, then EXT is zero�. Rule 2: �if APP is medium and
QUE is long, then EXT is short �.

Both in the antecedent and the consequent part of a rule, several fuzzy sets may be
combined using �and� (intersection) or �or� (union) operators. In this work, an �and�
operator is used in the antecedent, and there is only one output variable Y . The
extension to more output variables is straightforward.

Figure 2.6 gives an example of the steps involved in a fuzzy control system of two
input variables, one output variable and two rules. Each of the steps may be realized
in several di�erent ways, as discussed in the following sections. The system under
consideration is a fuzzy tra�c signal controller. The input variables are APP, the
approaching tra�c from the green direction, and QUE, the queue in the red direction.
The output variable is EXT, the green signal extension. In this example, the following
two rules are used:

if APP is zero and QUE is a few, then EXT is zero
if APP is medium and QUE is long, then EXT is short.

In Figure 2.6, membership functions for linguistic values used in each rule are drawn
with a thick line. An input measurement pair (x1; x2) of the approaching tra�c and
the queue is obtained. Dotted horizontal lines show the membership function values:
�zero(x1) and �afew(x2) in rule 1, and �medium(x1) and �long(x2) in rule 2. The rule
�ring strengths of each rule depend on these membership function values. Outputs
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of two rules are combined and defuzzi�ed to produce a numerical output value of the
system. The details of these steps are discussed in Sections 2.5.2 and 2.5.3.

It should be pointed out that fuzzy control is completely non-statistical in nature. A
given input always results in the same output if the control system is kept constant.
An exception are those adjustable controllers whose learning algorithm employs some
kind of stochastic exploration. In these algorithms, the output of the controller is
deviated by a random amount. This stochastic exploration may lead to a better
control performance. One of these learning algorithms is reinforcement learning,
which is used in this thesis and will be discussed in detail.

2.5.2 Steps Involved in Fuzzy Inference

Rule Firing Strength. The rule �ring strength w indicates how well the condi-
tions in the antecedent part of the rule are satis�ed: an input x ��res� a rule to a
degree w 2 [0; 1]. It determines the degree to which conclusions drawn in the conse-
quent part apply. Rule �ring strength is calculated using the membership function
values for fuzzy sets used in the rule antecedent, and the formula depends on whether
an �and� or an �or� combiner was used.

Modern fuzzy literature chooses the product combiner (2.17) for �and� (intersection),
because it is smooth and avoids wasting information. Hence, the rule �ring strength
w is the product of the membership function values in the rule antecedent. The
minimum combiner (2.15) is a traditional choice.

An �or� (union) combiner is not so often used in the rule antecedent of a control
process, but when it is, one of the sum variants (2.19), (2.20) and (2.21) is preferred
over the maximum operator, and w is a sum of the membership function values in
the rule antecedent.

As an example, consider Figure 2.6. Rules 1 and 2 use the �and� combiner in com-
bining the conditions in the rule antecedents. The rule �ring strength w1 of Rule 1 is
the minimum of �zero(x1) and �afew(x2) and the rule �ring strength w2 of Rule 2 is
the minimum of �medium(x1) and �long(x2). If the product combiner is used, the rule
�ring strengths are the products of the membership function values, respectively.

Fuzzy Implication. After the rule �ring strength w is calculated, the fuzzy set T
in the rule consequent part is now either clipped or scaled at a level speci�ed by the
rule �ring strength. Comparing Figures 2.7 a and b shows the di�erence between
clipping and scaling. Clipping or correlation-minimum inference means that the
membership function �T 0 of the resulting set T 0 is a minimum of �T and w:

�T 0 = minfw; �T g: (2.23)

Clipping does not preserve the original shape of the fuzzy set, and therefore it is
usually not preferred in modern literature. It is also troublesome in calculations, as
the minimum function is not di�erentiable, and the derivative of � is needed later.

Scaling or correlation-product inference means that the membership function �T is
multiplied by the rule �ring strength w:

�T 0 = w�T : (2.24)
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Figure 2.7: A membership function � and its a) clipped version b) scaled
version (w = 0:8).

Scaling produces a set T 0 which is of the same shape as the original set T . Scaling
is functionally more feasible, as product is a di�erentiable function.

Consider again the example in Figure 2.6. In this case, correlation-minimum in-
ference is used. In Rule 1, the membership function �zero of EXT is cut at level
w1, and the membership function of the remaining set is �zero0 = minfw1; �zerog.
Correspondingly, the remaining set in Rule 2 has membership function �short0 =

minfw2; �shortg.

Rule Aggregation. A collection ofN scaled or clipped fuzzy sets T 0
i , i = 1; : : : ; N ,

obtained through one of the procedures described above now represents the total
output of the rule base. Each T 0

i has its own membership function �T 0

i
. This section

describes how the T 0
i are combined together to form a union T 0 = [Ni=1T 0

i which is
later used in the defuzzi�cation phase. However, some defuzzi�cation procedures use
the sets T 0

i as such, and the union is not needed, depending on the algorithm.

As discussed earlier, union aggregation can be realized in several di�erent ways. The
maximum combiner (2.18) does not take into account the overlapping of the sets
and therefore ignores information. If several output sets overlap in some region, this
region obviously describes the rule set output best, and overlapping values should
be given more emphasis. The sum combiner (2.19) simply adds up all membership
functions. The resulting set's membership function may assume values greater than
1, as seen in Figure 2.3. This is not a problem in practical applications, although
it is usually assumed that membership function values are restricted between 0 and
1. The bounded sum (2.20) or the probabilistic sum (2.21) are restricted to be less
than or equal to 1, but they fail to reveal output values concentrated on the same
area. In this respect, the sum combiner (2.19) maintains the most information.

Various ways of rule aggregation are presented in Figure 2.8. In Figure 2.8 a, three
Gaussian membership functions �1, �2 and �3 for an output linguistic variable Y are
shown, together with rule �ring strengths w1, w2 and w3. In Figure 2.8 b, these mem-
bership functions are �rst cut at levels wi, resulting in a minimum (2.15) of �i and
wi, i = 1; 2; 3, and the union is then formed by taking a maximum (2.18). This min-
max decomposition is the traditional choice in fuzzy literature. Figure 2.8 c shows
the prod-sum decomposition, where membership functions �i are �rst multiplied (see
Formula (2.24)) with wi and the remaining sets are summed (see Formula (2.19)) to-
gether. In Figure 2.8 d, the same is done using the bounded sum and the probabilistic
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Figure 2.8: a) Membership functions �T1 , �T2 and �T3 and rule �ring
strengths w1 = 0:6, w2 = 0:7 and w3 = 0:9. b) Themin-max decomposition.
c) The prod-sum decomposition. d) Upper curve: the prod-sum decomposi-
tion using the bounded sum (Formula (2.20)). Lower curve: the prod-sum
decomposition using the probabilistic sum (Formula (2.21)).

sum, whose formulae for scaled membership functions are

�T 0 = minf1;
NX
i=1

wi�Tig (bounded sum) (2.25)

�T 0 = 1�
NY
i=1

(1� wi�Ti) (probabilistic sum) (2.26)

Note that in this case, the bounded sum in Figure 2.8 d is the same as the sum in
Figure 2.8 c, as the sum of the membership functions does not exceed 1.

If rule importance weights mi are used, each membership function �T 0

i
must �rst be

scaled by mi and the result normalized:

�T 0

i
new =

mi�T 0

iPN
i=1mi

: (2.27)

This scaling can also take place in the defuzzi�cation phase, the weights mi being
used in the process of combining the output sets Ti or T

0
i , depending on the algorithm.
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Going back to our example in Figure 2.6, the scaled fuzzy sets zero0 and short0 of
EXT are not combined but are presented separately, so that the sets can be used as
such in the defuzzi�cation phase.

2.5.3 Defuzzi�cation

After the union T 0 has been de�ned using one of the procedures described above,
it must be defuzzi�ed to obtain a numerical value for the output control variable
Y . Methods for the defuzzi�cation of a union T 0 of several membership functions
are the center of area (COA) and the mean of maxima (MOM) methods and their
variations, which are explained in the sequel. The variations of COA and MOM
discussed here are local applications in the sense that instead of forming a union
T 0, each output fuzzy set Ti is defuzzi�ed separately and the output crisp values are
averaged in some way. Di�erent defuzzi�cation methods are compared in Figure 2.9.

One should keep in mind that defuzzi�cation methods usually lack logical justi�ca-
tion; mostly they are technical in nature. However, the methods di�er in such ways
that the choice between them can be made based on practical considerations, as is
discussed in the sequel.

Center of Area (COA) Defuzzi�cation. The center of area defuzzi�cation
method calculates the centroid of the fuzzy set T 0:

y� =

R
U y �(y) dyR
U �(y) dy

: (2.28)

Here �(y) is used instead of �T 0(y), for simplicity. An example of COA applied to a
union of fuzzy sets is seen in Figure 2.9 a. In the discrete case, in which � is de�ned
on a �nite universal set fy1; : : : ; ykg, the formula is

y� =

Pk
i=1 yi �(yi)Pk
i=1 �(yi)

: (2.29)

Note that the fractions

�(y)R
U �(y) dy

(2.30)

or

�(yi)Pk
i=1 �(yi)

; i = 1; : : : ; k (2.31)

form a probability distribution, as they are in the interval [0; 1] and they sum to
unity. Therefore the defuzzi�ed value obtained by COA can be interpreted as the
expected value of the output variable Y [27].
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Figure 2.9: Defuzzi�cation of membership functions �1, �2 and �3 (cf. Fig-
ure 2.8). Rule �ring strengths are w1 = 0:6, w2 = 0:7 and w3 = 0:9. a) The
COA (y� = 4:95, dashed line on the left) and MOM (y� = 6:00, dashed line
on the right) methods applied to a union of membership functions. The
solid vertical lines show the in�mum and supremum ofM (Formula (2.35)).
b) The LCOA method in which wi and Vi are used as weights. The dashed
line shows y� = 4:73. c) The LMOM method in which wi are used as
weights. The solid vertical lines show the in�ma and suprema of the Mwi

(Formula (2.39)). The dashed line shows y� = 4:11.
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Local Center of Area (LCOA) Defuzzi�cation. A �local� and additive ap-
proach of the COA method is proposed by Kosko [33] and also mentioned in Jang
and Sun [20] and Zimmermann [69]. In this approach, the centroid of T 0 is expressed
as a convex sum of the centroids of the consequent sets. The total output fuzzy set T 0

is not actually needed � instead, each rule is defuzzi�ed separately. The defuzzi�ed
output is

y� =

PN
i=1mi wi Vi yiPN
i=1mi wi Vi

(2.32)

where N is the number of rules in the rule base, mi is the weight of rule i (if rule
importance weights are used), wi is the �ring strength of rule i, Vi is the volume of
the (unscaled and unclipped) consequent set Ti and yi is the centroid of Ti, calculated
using the common formula (2.28) of a centroid. Hence a weighted average of the then-
part set centroids is computed, each weight being the product of the rule importance,
the rule �ring strength and the then-part set volume.

This is equivalent to taking the centroid of T 0, where T 0 was obtained using the
prod-sum decomposition (see section 2.5.2), but this way of calculating the centroid
is faster to implement: output set volumes and set centroids can be calculated in
advance and stored in a look-up table.

Note that the LCOA formula (2.32) is equivalent to the COA formula (2.28) if and
only if in (2.28) the area of the output fuzzy set is formed using the sum com-
biner (2.19). The centroid formula (2.28) could of course be used for areas formed
using the maximum (2.18), the bounded sum (2.20) or the probabilistic sum (2.21),
too, but another problem would then be faced: the overlapping of sets would be
partly or totally ignored. In (2.32), this problem is avoided, as overlapping areas are
added as many times as they overlap.

A drawback of the LCOA defuzzi�cation is that then-part set volumes are used as
averaging weights in (2.32). Large sets are thus given more emphasis than small
sets. The wider the fuzzy set is, the more uncertainty it often possesses. Thin sets
represent more certain information and they should be given more weight than wide
sets. For example, inverses of set volumes could be used as weights. In the LCOA,
the situation is the other way round.

The objective would thus be to avoid giving emphasis to large and uncertain rules
and, on the other hand, to take into account overlapping areas. One solution for this
is to defuzzify each output set without any scaling or clipping and then calculate
a weighted average of these defuzzi�ed values yi, using rule �ring strengths wi as
weights:

y� =

PN
i=1miwi yiPN
i=1miwi

: (2.33)

This leads to simple calculations, as the set volumes Vi need not be calculated. The
rule importance weights mi are optional. Note that this is not anymore equivalent
to centroid calculation (2.32), as the set volumes Vi are not used.

In Figure 2.9 b, three membership functions and their centroids together with the
weighted average (2.32) are shown. The rule importances mi were not used in this
example. The membership functions are the same as in Figure 2.9 a, but now they



2.5. Fuzzy Control 24

are not clipped at levels wi, i = 1; 2; 3. Instead, the wi are used as weights together
with the set volumes Vi.

Mean of Maxima (MOM) Defuzzi�cation In the mean of maxima defuzzi-
�cation method, also called the center of maxima method, the defuzzi�ed value is
de�ned as the average of the smallest value and the largest value of y for which �(y)

reaches its maximum. That is,

y� =
infM + supM

2
(2.34)

for continuous �, where

M = fy 2 U j�(y) = max
y
f�(y)gg: (2.35)

An example of MOM applied to a union of fuzzy sets is presented in Figure 2.9 a. In
the discrete case, y� is the mean of all values of the universe of discourse U having
maximal membership grades [67]:

y� =
1

jM j
X
yi2M

yi (2.36)

where jM j is the number of elements in M .

The MOM method is suitable for output fuzzy sets Ti clipped at level wi or at level
1, because they have a plateau M of maximal values as in Figure 2.8 b. Instead,
if the fuzzy set T 0 is unimodal as in Figure 2.8 c, the maximum is unique and M

consists of one point only. In this case, the MOM method is also called the mode

defuzzi�cation method, as the defuzzi�ed value y� is the one at which �(y) reaches
its maximum:

y� = argmax�(y): (2.37)

Klir and Yuan [27] note that if M is not connected, (that is, M consists of several
intervals [y1; y2]), y

� may be de�ned as the arithmetic average of mean values of all
intervals contained in M , including intervals of length zero. Alternatively, y� may be
de�ned as a weighted average of mean values of the intervals, in which the weights
are interpreted as the relative lengths of the intervals.

The mean of maxima method has a drawback of ignoring the shape of �(y) outside
M . Only the output values with maximal degree of membership are taken into
account.

Local Mean of Maxima (LMOM) Defuzzi�cation Berenji and Khedkar [6]
propose a local mean of maxima (LMOM) defuzzi�cation method, where each output
fuzzy set is defuzzi�ed using an adaptation of the MOM method instead of applying
MOM to the union of the output sets. Let w be the rule �ring strength. If the
membership function � for the output fuzzy set is strictly monotone, the defuzzi�ed
output y� is simply ��1(w), the inverse of �. As membership functions are seldom
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monotone, a mathematical inverse may not exist. In this case, y� is de�ned as the
centroid of the set of those y for which �(y) exceeds w as in Figure 2.10:

y�i =
infMw + supMw

2
(2.38)

where

Mw = fy 2 U j�(y) � wg: (2.39)

Note that � does not have to be symmetric. If it is, the centroid of the set Mw is
the same as the centroid (2.28) of the original set.

w

Mwinf Mwsup

M

y

w

Figure 2.10: The LMOM method.

The output of the fuzzy system is a weighted average of the individual rule outputs,
the weights being the rule �ring strengths wi and rule importance weights mi just
as in (2.33):

y� =

PN
i=1miwi y

�
iPN

i=1miwi

: (2.40)

Again, the rule importance weights mi are optional. The LMOM defuzzi�cation is
presented in Figure 2.9 c, which shows the in�ma and suprema ofMw (Formula (2.39)
and the weighted average y�.

The LMOM defuzzi�cation method ignores the shape of the membership function
outside Mw, just as MOM does, but as LMOM is applied to each rule, all rules are
taken into account. MOM notices only those rules whose w is maximal. LMOM has
other advantages, too. As mentioned earlier, overlapping output fuzzy sets should
not be ignored. In LMOM, each rule consequent set is defuzzi�ed separately, and
centroids concentrated near each other are taken into account, too. Also, the de-
fuzzi�ed values are averaged using the rule �rings w, not the rule consequent set
volumes V , as weights.



Chapter 3

Neural Networks

3.1 Introduction

An arti�cial neural network, henceforth a neural network (NN), consists of simple
processing elements called neurons or cells interconnected as a structured network.
Each connection has a strength that is expressed as a network parameter, a weight.
Neural networks are a wide class of nonlinear regression models and dynamical sys-
tems [61]. They adapt themselves to observed data by changing the strengths of the
interconnections of the network. In this sense, neural networks are surface-�tting
algorithms quite similar to regression models. As the structure of the network is
complex, it is often di�cult to interpret the knowledge it has acquired. For example,
the signi�cances and contributions of di�erent input variables cannot be compared in
the same way as in regression models. The name �neural network� stems from NNs'
parallel data processing similar to biological neural networks, although the research
on NN systems has later clearly departed from neurobiology. For an overview of the
history of neural networks, see [15] and [57].

Neural networks are, at their best, able to model a system without a rule base or
analytical knowledge about the system. Using a large data set, a network which can
predict the behaviour of the system can be constructed. The success of the modelling
depends largely on the quality of the data � whether it represents the true behaviour
of the system � and the structure of the network.

The learning in a neural network may be supervised or unsupervised. In supervised
learning, the network is presented both an input value and a desired output value.
A learning algorithm compares the NN's output with this target output and alters
the network weight parameters in a direction which decreases the output error.

A special type of supervised learning is reinforcement learning, which is an important
learning scheme in this work. Reinforcement learning is treated in Chapter 5.

In unsupervised learning, no target output is used. Instead, the neural network
classi�es inputs according to some common features which they share. The network's
output signal should correspond to the category of the input. In other words, the
network should display some self-organization. An important NN architecture of this
kind is Kohonen's self-organizing map. This thesis will not deal with unsupervised

26
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learning, and the reader is referred to [28], [29] or [30] or to literature listed at the
end of this section.

Neural networks have become widespread as the performance of computers has in-
creased. Traditional statistical methods do not utilize the full abilities of modern
computing anymore. NN science did not originate from statistics and these two
branches of science have not developed hand in hand. Anyway, most of the NN
methods have already been used in statistics to one degree or another, and equiva-
lent statistical methods can often be found. For example, the most widespread NN
system, the multilayer perceptron, is nothing more than a general nonlinear regressor.
Non-parametric regression, discriminant analysis and principal component analysis
also �nd their equivalents in NN literature [61]. Unfortunately, the terminologies
in these two schools are di�erent and may cause misunderstandings. Sarle [60], [61]
has listed several terms used in neural network science and gives their equivalents in
statistical terminology. For example,

� independent variable is input in the NN terminology

� predicted value is output

� dependent value is target value or training value

� residual is error

� estimation is training, learning, adaptation or self-organization

� estimation criterion is error function or cost function

� observation is pattern or training pair

� parameter estimate is (synaptic) weight

� regression and discriminant analysis are supervised learning or
heteroassociation

� data reduction is unsupervised learning or autoassociation

� interpolation and extrapolation are generalization.

In this thesis, mainly neural network terminology is used.

There have been various over-optimistic claims about the intelligence and abilities
of neural networks. NNs' brain-like structure does not make them intelligent, and
if learning and generalization are symptoms of intelligence, then many statistical
methods are intelligent, too. If the training data do not include enough information
of the system, you cannot assume the network to �gure out the information you
desire. The same problem goes with statistical learning methods.

The literature on neural networks is wide. Refer to e.g. Cichocki and Unbehauen [9],
Hecht-Nielsen [14], Hertz et al. [15], Holmström and Kohonen [17], Klir and Yuan [27]
and Rumelhart and McClelland [57]. Comparisons between statistical and neural
methods are treated in Sarle [61].
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Figure 3.1: A feedforward neural network with one hidden layer. aij and
cjk are the network weight parameters.

3.2 Feedforward Neural Networks

The most often used neural networks are feedforward networks (Figure 3.1). A
feedforward neural network consists of an input layer, zero or more hidden layers
and an output layer. Types of feedforward networks are a multilayer perceptron

(MLP) network and a radial basis function (RBF) network, of which a MLP network
is used in this work.

The input layer contains the input variables x1; : : : ; xn of the system. This layer does
not compute anything � it is just a habit in the NN literature to draw networks
with this �rst layer.

In the hidden layer, each cell j receives weighted input variables (a1jx1; : : : ; anjxn).
In addition, each cell j may receive a constant input �j. If this constant input is used,
it is usually included as an additional input xn+1 = �1 with a weight an+1;j = �j
for the ease of notation. The hidden layer output z = (z1; : : : ; zh) is computed using
the hidden layer activation function, which is by default the same in every cell of the
layer. In an MLP, the activation function f may be, for example [61]

� identity: f(x) = x

� hyperbolic: f(x) = tanh(x)

� sigmoidal or logistic: f(x) = (1 + e�x)�1

� threshold: f(x) =

(
0; x < 0

1; x � 0

� Gaussian: f(x) = e�x
2=2.

Usually the activation function must be di�erentiable and it must saturate at both
extremes. Of the above functions only the hyperbolic and sigmoidal (also called
logistic) functions ful�ll the requirements of di�erentiability and saturation at both



3.2. Feedforward Neural Networks 29

a)

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

b)

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Figure 3.2: a) Hyperbolic activation function squashes from �1 to 1. b) Sig-
moidal (or logistic) activation function squashes from 0 to 1.

extremes, and that is why they are the most usual activation functions. Hyperbolic
and sigmoidal activation functions are seen in Figure 3.2.

In an MLP network, the activation function operates on a linear combination of
inputs:

zj = f

 
�j +

nX
i=1

aijxi

!
: (3.1)

In a RBF network, the hidden layer activation function operates on the distance
between the input vector and the weight vector:

zj = f

0
@
"

nX
i=1

(aij � xi)
2

2�j

#1=21A : (3.2)

Here the weights aij are often considered as centers of Gaussian curves, and there
is a width �j associated with each hidden node. The activation function in a RBF
network may be any function f(x) which operates on x � 0; x 2 R and which reaches
a maximum at zero and approaches zero at in�nity, such as the Gaussian function

f(x) = e�x
2=2: (3.3)

In both MLP and RBF networks, the size h of the hidden layer may vary, and there
are no precise rules for determining how many cells it should contain. The more
cells there are, the more complex systems the network can model, but the computa-
tion may become burdensome. Too complex models result in overparametrization:
random perturbations in the data set are also modelled even if they should not be.

There may be several hidden layers, although one is usually enough. Each layer
can have a di�erent activation function. Adding more hidden layers increases the
network's ability to model complex systems. One can never be sure if the model is
complex enough, and trial and error are needed in the network construction phase.

Input layer cells i may also be connected straight to output layer cells k with weights
bik.
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Each hidden layer cell j (in the last hidden layer, if there are several) is connected
to each output layer cell k with a weight cjk. In addition, output layer cell k may
receive a constant input ��k, which is again often included as zh+1 = �1 with a
weight ch+1;k = �k for ease of notation. The size p of the output layer is the same as
the number of output variables in the system under consideration. The output layer
activation function is often linear both in an MLP and in an RBF:

vk = �k +
hX

j=1

cjkzj : (3.4)

3.3 Surface Fitting in Neural Networks

Neural networks are surface �tting algorithms. That is, they construct a surface
which best �ts in the observations. The surface consists of small �bumps�. The form
of the bumps depends on the choice of the activation function. Hyperbolic and sig-
moidal activation functions produce smooth �thresholds�, as seen in Figure 3.2; Gaus-
sian activation function produces bell-shaped hills and threshold activation function
builds surfaces using rectangular �bricks�.

The number of connections in the network determines the complexity of the surface.
Each weight parameter produces one �bump�, as the shape of the activation function
is di�erent at di�erent weight parameters. In the learning phase, the parameters
are altered so that the surface would better �t in the observations. Modifying the
parameters in turn modi�es the shape and location of the �bump�. The more bumps
there are, the more complex surface the network can construct.

Roughly speaking, the �bumps� are centered in the region of the observations. As
seen in Figure 3.2, the activation function gives non-constant outputs on a restricted
area, and outside that, the output of the activation function is nearly constant. In
the surface-�tting process, the areas where there are no or only little observations,
the surface remains �at and obviously the network cannot model the system in these
areas. That is why extrapolation of the data is not possible using neural networks.

3.4 Backpropagation Algorithm

An MLP is often trained using the so-called backpropagation algorithm or the gen-
eralized delta rule which was presented by Rumelhart et al. [56]. The weights of the
network are altered in such a way that the error function is minimized. Minimiza-
tion is done using the gradient descent technique. The error function E measures the
di�erence between the network output v and the desired value d at each observation
as a Euclidean distance:

E =
1

2
kv� dk2 (3.5)

where v = (v1; : : : ; vp) and d = (d1; : : : ; dp). In gradient descent, each weight
parameter ! is updated as

!(t+ 1) = !(t)� �
@E

@!
(3.6)
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where � is a learning parameter, and the partial derivative is computed using the
chain rule.

The rules for updating the weight parameters cjk for connections between the hidden
layer and the output layer can be derived as follows. The error function E is

E =
1

2
kv� dk2 (3.7)

=
1

2

pX
k=1

(vk � dk)
2 (3.8)

=
1

2

pX
k=1

(
hX

j=1

cjk zj � dk)
2: (3.9)

The gradient descent algorithm (3.6) gives now

cjk(t+ 1) = cjk(t)� �
@E(t)

@cjk
(3.10)

= cjk(t)� �
@E(t)

@vk

@vk

@cjk
(3.11)

= cjk(t)� � (vk(t)� dk) zj(t): (3.12)

When updating aij , the error function is

E =
1

2
kv� dk2 (3.13)

=
1

2

pX
k=1

(vk � dk)
2 (3.14)

=
1

2

pX
k=1

(
hX

j=1

cjk zj � dk)
2 (3.15)

=
1

2

pX
k=1

(
hX

j=1

cjk f(
nX
i=1

aijxi)� dk)
2 (3.16)

where f is the activation function. The derivative of the activation function used in
this work, the sigmoidal function f(x) = (1 + e�x)�1, is f 0(x) = f(x)[1 � f(x)]. In
the gradient descent formula (3.6), a few more passes of the derivative chain rule for
E are needed, and the update formula gives

aij(t+ 1) = aij(t)� �
@E(t)

@aij
(3.17)

= aij(t)� �

 
pX

k=1

@E(t)

@vk(t)

@vk(t)

@zj(t)

!
@zj(t)

@aij
(3.18)

= aij(t)� �

 
pX

k=1

(vk(t)� dk)cjk(t)

!
zj(t) (1 � zj(t))xi(t):

(3.19)

To avoid getting stuck in a local minimum in the error surface, the learning rate �
must be su�ciently large. On the other hand, too large � may cause oscillations
when the minimum lies in a narrow ravine and the algorithm jumps from one side
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of the valley to another. One simple way of enhancing the algorithm is to include a
momentum term in the update formula (3.6):

!(t+ 1) = !(t)� �
@E

@!
+ �(!(t) � !(t� 1)) (3.20)

where the momentum parameter � lies between 0 and 1 and a value of � = 0:9 is
often chosen [15]. The momentum term gives a contribution from the previous time
step t � 1, as the value of !(t � 1) is included. Using the momentum, the learning
rate � can be increased without resulting in oscillations.



Chapter 4

Neurofuzzy Systems

4.1 Introduction

In this chapter, combinations of fuzzy and neural approaches are presented. Some
texts make a di�erence between fuzzy neural and neural fuzzy. A fuzzy neural net-
work refers to a neural network in which some of the properties have been �fuzzi�ed�.
In adjacent layers, every cell of one layer is connected to every cell of the other
layer, just as in Figure 3.1. A neural fuzzy system is a fuzzy system presented as a
neural net, and not all network connections are present. Neural fuzzy systems are
discussed more in the following. In this text, the word �neurofuzzy� is used for both
fuzzy neural and neural fuzzy, as it is often di�cult to judge whether the system is
initially a neural network or a fuzzy inference engine. Besides, the terminology used
in literature is somewhat ambiguous.

A neurofuzzy network, be it fuzzy neural or neural fuzzy, di�ers from a traditional
neural network in one or several of the following respects [27]:

1. Inputs are fuzzy numbers

2. Outputs are fuzzy numbers

3. Weights are fuzzy numbers

4. Activation functions do not use a weighted sum of inputs; instead, fuzzy logical
operations are used to combine the inputs

Here a fuzzy number is a fuzzy set which presents a classical number. For example,
�fuzzy 5� can be presented with a fuzzy set whose membership function reaches a
maximum at 5. For an extensive treatment of calculus on fuzzy numbers, see for
example Kaufmann and Gupta [22], Klir and Yuan [27], or Turunen [65].

In neural fuzzy systems, the parameters of the fuzzy reasoning are expressed as the
network connection weights. These systems are surface �tting algorithms, just as
neural networks are, but their structure can be interpreted as a fuzzy algorithm. In
a typical neural network, the amount of connections between the cells is vast, and
in each layer, every input cell is linked to every output cell. This means that the
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connections cannot often be given any logical interpretation. On the other hand,
in a neural fuzzy network, the number of connections is smaller, and one can �nd
out the rule base by following the connections. Only those cells that form a rule are
connected to each other.

Brown and Harris [7] note that a neurofuzzy system should only be used if its mod-
elling and learning abilities are superior to a more conventional nonlinear model.
The linguistic interface is useful for incorporating expert knowledge or for validating
system behaviour, but a neurofuzzy system is better than a conventional model only
if its numerical input-output behaviour is more appropriate.

4.2 Advantages of Neurofuzzy Systems

Combining fuzzy and neural systems may give several advantages over traditional
systems especially for control purposes. Fuzzy systems are transparent and lend
themselves easily to human-like reasoning. On the other hand, few modelling and
learning theories exist for fuzzy systems. A neural network is able to learn from
data and to perform massive parallel processing, but as a black-box approach a NN
system is not easy to interpret. A combination of these systems may have both a
qualitative and a quantitative interpretation and may avoid drawbacks of a solely
fuzzy or neural approach.

For example, fuzzy controllers are sometimes required to process a large number of
rules simultaneously. Enhancing the fuzzy rule processing with the parallel process-
ing abilities of neural networks gives high computational e�ciency.

A neural network can be used to �nd a feasible structure for a fuzzy controller. The
number of rules, the formulation of the rules and the shapes of the membership
functions a�ect the control performance of the system � all of these can be tuned
using a neural learning scheme. Learning in a neural net means updating the network
weight parameters. In a neurofuzzy system, these weights are just the parameters of
the fuzzy system.

Although the fuzzy linguistic representation adds nothing to the modelling abilities
of the network, it is a signi�cant contribution because it allows the designer to
initialize the system (that is, include expert knowledge) or validate it (check if an
automatically generated system structure is feasible) [7]. Thus expert knowledge can
be easily incorporated in a fuzzy system. In a neural network, expert knowledge can
usually be used only in choosing the initial values of the network parameters.

4.3 Structure of a Fuzzy System in Neural Network Form

The structure of a fuzzy control system used in this thesis is presented in Figure 4.1 in
neural network form. This is a common architecture for a neurofuzzy (more precisely,
neural fuzzy) system, although other structures are also used. The architecture was
presented by Berenji and Khedkar [6].

The �rst layer of a neurofuzzy network consists of measurements xj of input variables
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Figure 4.1: Structure of a fuzzy system in neural network form. The output
of the second layer is the membership function value �Sji(xj), the output
of the third layer is the rule �ring strength wi and the output of the fourth
layer is the output yi of Rule i. The weight parameters of this neural
network are the shape parameters of the membership functions in layers 2
and 4. The weight parameters are not shown in the �gure.

Xj , j = 1; : : : ; n. The second layer computes membership function values �Sji
for input linguistic values Sji; for example, �S1i(x1) and �S2i(x2). Each �rst layer
cell is connected only to those second layer cells which represent linguistic values
for this particular input variable: X1 is connected to S1i, X2 is connected to S2i,
and so on. Thus each second layer cell receives input only from one �rst layer
cell, and the network weight parameters between the �rst and the second layer are
not of the form aij , as in a typical neural network, but rather pji, where pji is a
parameter vector for the i:th membership function of the j:th linguistic variable, as
membership functions usually require more parameters than just one. For example,
a triangular membership function requires three parameters which correspond to the
x coordinates of the corners of the triangle. Also note that the weight vector now
a�ects the form of the membership function � � in a neural network, the form of
the activation function f (see Formula (3.1)) was �xed and the parameters aij were
parameters of the argument of f .

Another thing to point out is that as mentioned in Section 2.5.1, the same linguistic
values Sji of a linguistic variable Xj may appear in several rules, making Sji = Sji0

for rules i and i0. An example of this is seen in Figure 4.2. For notational purposes
rule i; i = 1; : : : ; N , seems to use linguistic values S1i; S2i; : : : ; Sni in Figure 4.1,
although the same linguistic values may be used in another rule.

The third layer corresponds to a fuzzy rule base. A cell i in the third layer combines
all the conditions �if X1 is S1i and X2 is S2i and : : : � in the antecedent of rule i
by using �and� and �or� operators (see section 2.3) on corresponding membership
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Figure 4.2: Example of a fuzzy system in neural network form. The same
linguistic values appear in several rules.

function values. The output of cell i is wi, the �ring strength of rule i. No network
weight parameters are used in third layer.

The fourth layer corresponds to rule consequents �then Y is Ti�. Each cell repre-
sents a linguistic value for the output variable. As several rules may use the same
linguistic values in their consequents, cells in layer 4 can have more than one in-
put. In other words, the same linguistic value Ti may appear in several rules as
in Figure 4.2. Again for notational purposes in Figure 4.1 each rule i has its own
consequent linguistic value Ti. The fourth layer computes a defuzzi�ed output of
each rule. (Defuzzi�cation is treated in Section 2.5.3.) The network parameters in
this layer are membership function parameters p for output fuzzy sets.

The �fth layer combines the outputs of each rule and gives the system output value.
Rule outputs are usually combined using some averaging method. No modi�able
weights are used in the �fth layer.

4.4 Examples of Neurofuzzy Systems

In this section, examples of neurofuzzy systems are presented. The learning in these
systems is supervised in the sense that a training data set of known input-output
observations is always needed.

Lin and Lee [40] propose a general neurofuzzy system which combines unsupervised
and supervised learning. An unsupervised learning algorithm is used to �nd clusters
of data indicating the presence of fuzzy rules, as seen in Figure 4.3 a. Supervised
learning is then used for the �ne-tuning of the membership functions. As the training
data is a priori classi�ed, supervised learning performs better than without classi�ca-
tion. Kosko [33] presents a product space clustering method with vector quantization,
in which the input-output space is partitioned with a grid as in Figure 4.3 b. If sev-
eral observations fall in a cell, a rule is placed in that cell. The grid can also be
modi�ed. The situation is quite similar to Lin and Lee's method in Figure 4.3 a,
except that in Figure 4.3 a, a grid is not used.
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Figure 4.3: a) Clusters of data in the system input-output space indicate
the presence of fuzzy rules. b) Product space clustering method.

Keller and Hunt [23] describe how a fuzzy neural network using fuzzy membership
functions can distinguish linearly separable data sets. Data sets are linearly separable
if they can be separated with a straight line such as in Figure 4.4, or, more generally, if
points in n-dimensional space can be separated by a (n�1)-dimensional hyperplane.

Figure 4.4: Linearly separable data sets can be separated by a straight line.

Hayashi et al. [12] present a fuzzy neural network where a classical feedforward
neural network is equipped with fuzzy features. All real numbers that characterize a
classical neural network (the inputs and outputs of each cell, and the weights in each
layer) become fuzzy numbers in its fuzzi�ed counterpart. The activation functions
of each layer are the same as the ones used in the original neural network, but the
weighted sum of inputs in Formula 3.1 must be calculated using fuzzy arithmetic.
The error function and the backpropagation learning algorithm (Section 3.4) must
be fuzzi�ed, too. One way of fuzzifying the backpropagation algorithm is to replace
real numbers with fuzzy numbers and apply fuzzy arithmetic.

Horikawa et al. [18] present di�erent neurofuzzy network structures especially for
modelling purposes. The network structures are categorized with respect to the type
of the consequent of the fuzzy inference system. The consequent may either be a
non-fuzzy constant: �if X1 is S1 and : : : and Xn is Sn, then Y is c�, a �rst order
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linear equation: �if X1 is S1 and : : : and Xn is Sn, then Y = a0+a1X1+ : : :+anXn�,
or a fuzzy variable: �if X1 is S1 and : : : and Xn is Sn, then Y is T �. The authors
propose a method for determining the network structure, that is, the combination of
input variables and the number of membership functions in the antecedents and con-
sequents. This is done using a backpropagation learning algorithm on the connection
weights. After the learning, only the relevant connections between input and out-
put variables are present. The network structure determines the rules of the fuzzy
inference system. After the network structure has been selected, the membership
function parameters can be modi�ed using the backpropagation algorithm.

Jang [19] proposes an ANFIS (Adaptive-Network-based Fuzzy Inference System)
architecture which uses both expert knowledge and input-output data pairs to �ne-
tune the membership functions. In this system, a hybrid learning scheme is used that
combines the gradient descent technique (Section 3.4) and the least squares estimate
to identify the parameters. The result is an input-output mapping which models the
behaviour of the system. The ANFIS is more �fuzzy neural� than �neural fuzzy� as
all possible connections in the network are used, and the network structure cannot
be interpreted as a fuzzy rule base.

Klir and Yuan [27], Kosko [33] and Yager and Filev [67] also present methods for
the construction and adaptation of the membership functions. All these methods
require a training data set of known input-output observations. The situation is
more cumbersome if observations of input-output pairs are not available. In this
case, the learning must be based on some other criteria. This situation is treated in
Chapter 5.

Extensive discussion about neurofuzzy systems can be found e.g. in Brown and Har-
ris [7], Jang [19], Jang and Sun [20], Kosko [33] and Lin and Lee [40], [41].



Chapter 5

Reinforcement Learning

5.1 Introduction

Most neurofuzzy and other control systems require training data in the learning
phase. The system learns to give a desired output if it has been presented with
a lot of known input-output pairs. In this case, the control process is based on
tracking : the objective is to follow a desired trajectory in the input-output space.
When input-output data are not available and only some performance index is at
hand, the control system must be based on other methods than tracking. Sutton
et al. [63] divide control problems into two classes: 1) tracking problems and 2)
optimal control problems. In the latter, the objective is to minimize or maximize
a functional of system behaviour, and the functional is not de�ned in terms of a
reference trajectory.

Sutton et al. [63] note that tracking problems assume prior knowledge of a reference
trajectory, but in many problems, the determination of a reference trajectory is an
important part � if not the most important part � of the overall problem. Sutton
et al. also distinguish between indirect and direct adaptive control methods both for
tracking and optimal control problems. An indirect method estimates an explicit
model of the system at each step and determines the control rule from the model.
Direct methods determine the control action without system modelling.

In reinforcement learning, the controller receives a signal of whether the previous
control action was good or not. This signal may be available right after the action, or
several time steps later, which makes the learning more challenging. Reinforcement
learning methods are suitable for optimal control problems where input-output data
is not available. They are direct methods: they do not identify a model of the system.

Reinforcement learning is based on the idea that if an action has good consequences,
then the tendency to produce that action is strengthened, i.e., reinforced. If the con-
sequences are not revealed until several time steps later, the system must �predict�
the goodness of the consequences. The theory of reinforcement learning originates
from the studies on animal learning but it also has strong connections to adaptive
optimal control theory. Lin and Lee [41] divide the history of reinforcement learning
into two stages. In the �rst stage in the 1950's, computational models of human and
animal learning were developed. The learning was seen as a kind of a stochastic pro-
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cess. The second stage in the 1980's brought the concept of associative reinforcement
learning, where an input pattern was associated with output patterns according to
a reinforcement signal.

There are two types of reinforcement learning systems [63]: actor-critic learning

and Q-learning. An actor-critic system contains two subsystems, one for choosing
the optimal control action at each state (an actor) and another for estimating the
long-term utility of each state (a critic). If a neurofuzzy system uses reinforcement
learning, actor-critic learning is often chosen. A fuzzy control system is the actor
who chooses the control action, and another system (usually a neural network) is the
critic who evaluates the success of the control action chosen by the fuzzy system; this
critic is used in the learning. A Q-learning system estimates utilities for all state-
action pairs in the current state x. The evaluation of the utilities is based on the
assumption that the system performs optimally in the future: �What is the utility of
choosing action a in state x and performing optimally thereafter?� The system has to
make some assumption about its future performance, and the optimality assumption
is the most natural one.

Barto and Sutton have written many good introductions to reinforcement learning.
See [2], [62] and [63].

5.2 Reinforcement Learning Versus Supervised and Un-

supervised Learning

At �rst sight, reinforcement learning may sound similar to supervised or unsuper-
vised learning algorithms (see Chapter 3) used in neural networks. Reinforcement
learning can be categorized as one type of supervised learning. Nevertheless, there
are substantial di�erences between reinforcement learning and both supervised and
unsupervised learning.

In supervised learning, a �teacher� is able to provide the system with a desired output
at each input pattern in the training sequence. After the system has given its output,
the output and this desired response are compared and the di�erence is used when
updating the parameters of the system. The contribution of individual elements to
the output of the system is known, and parameters of each element are updated
according to how much the element contributed to the output. On the contrast,
reinforcement learning is used in problems where certain consequences of the control
action are known, but no teacher can provide the desired responses of the individual
elements.

Unsupervised learning systems do not need a �teacher� to tell the right output. They
cluster information by giving a certain output at inputs belonging to a certain subset
in the input space. Reinforcement learning algorithms are used in problems where
the system must not just cluster information but must �nd the right actions at inputs
belonging to di�erent subsets in the input space.

An additional di�erence between reinforcement learning and both supervised and
unsupervised learning is the stochastic search for the best output. As the environ-
ment is unable to provide desired outputs, the reinforcement learning system must
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discover by itself which responses lead to improvements in performance [2]. The
system calculates its output as a function of network weight parameters and input
measurements, just as in a typical neural network, but this output is later deviated
or �shaken� by a random amount. In this way, the system is able to try di�erent
kinds of outputs to see which ones are successful at which inputs. To summarize,
the reinforcement learning system learns in a way human beings and animals do: by
trial and error.

5.3 A Reinforcement Learning Algorithm for a Neuro-

fuzzy Controller: GARIC

5.3.1 Introduction

In the following, a reinforcement learning algorithm for a neurofuzzy control system
is presented. This algorithm, proposed by Berenji and Khedkar [6], is capable of
minimizing an objective function using the reinforcement learning technique.

Berenji and Khedkar's GARIC (Generalized Approximate Reasoning -based Intel-
ligent Control) system consists of two neural networks. One is a fuzzy controller
and the other a neural predictor. Thus the reinforcement learning technique is of
actor-critic type. Figure 5.1 describes the structure of the system.

Action Selection
Network ,
a fuzzy controller

Action Evaluation
Network ,
a neural predictor

Stochastic
Action 
Modifier

Action

PHYSICAL SYSTEM

Parameter updating

Reinforce-
ment
signal Stochastic

action

State

Failure signal

Figure 5.1: The architecture of GARIC. The Action Selection Network
includes all the steps of fuzzy control discussed in Section 2.5.2 and in
Figure 2.5.

The fuzzy controller or actor (Action Selection Network) chooses a suitable action
based on the state of the system. The neural predictor or critic (Action Evaluation

Network) produces an evaluation of the state and a prediction of a future reinforce-
ment. In the learning phase, parameters of both networks are updated using the
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information provided by the neural predictor.

Berenji and Khedkar implement their algorithm on a cart-pole balancing problem,
also called an inverted pendulum problem. In this problem, an upright pole must be
balanced by moving the cart on which the bottom of the pole is hinged. The cart
may move along a �nite-length track to its right or to its left. Both the pole and
the cart may move only in the vertical plane [41]. The situation is depicted in Fig-
ure 5.2 [42]. This problem is used as an example of the application of various control
algorithms, especially reinforcement learning algorithms [2], [6], [11], [41], [42]. The
cart-pole balancing problem is a good example of a problem where reinforcement
learning might be successful. The failure (the falling of the pole) occurs only after
a long sequence of individual control decisions, and it is di�cult to determine which
decisions were responsible for the failure [2]. This problem of choosing which part of
the system (for example, which parameters) should be updated in the learning phase
is called a credit assignment problem [2]. It is a major problem in reinforcement
learning.

f

x

θ

Figure 5.2: The cart-pole balancing problem [42]. The system tries to
minimize the angle � by applying a force f to the cart, whose displacement
from the center of the track is x.

5.3.2 Action Evaluation Network, a Learning Network

The Action Evaluation Network (AEN) in Figure 5.3 is a neural predictor. It receives
the state x = (x1; : : : ; xn) of the physical system as an input. The AEN produces
a prediction of the state �goodness� v which is then coupled with the external error
signal r to produce an internal reinforcement r̂. The AEN is needed in order that
the fuzzy controller can learn.

The Action Evaluation Network is a feedforward, multilayer perceptron -type network
whose input layer and hidden layer are as presented in Section 3.2. The hidden layer
activation function is chosen in [6] to be a sigmoidal function:

zj(t; t+ 1) =
1

1 + exp(
Pn

i=1 aij(t)xi(t+ 1))
; j = 1; : : : ; h: (5.1)

The output layer receives input values both from the input layer (xi; i = 1; : : : ; n)
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Figure 5.3: The Action Evaluation Network, a neural predictor [6].

and the hidden layer (zj ; j = 1; : : : ; h). The network output v is a measure of state
goodness, a prediction of future reinforcement :

v(t� 1; t) =
nX
i=1

bi(t� 1)xi(t) +
hX

j=1

cj(t� 1)zj(t� 1; t): (5.2)

The prediction of future reinforcement is utilized in the learning phase of the mem-
bership functions. This learning cannot be based on the di�erence between the actual
and desired outputs as a desired output is not available, and therefore the learning
is based on the control performance of the system. Again, the success of a control
action is not revealed at the moment of action but one step later, and that is why a
prediction of future reinforcement or a prediction of state goodness is needed.

The predicting capability of this neural network is based on adjusting the parameters
aij , bi and cj , i = 1; : : : ; n; j = 1; : : : ; h. These are network weight parameters
which do not have any physical interpretation.

Note that v depends on both t and t�1. The �rst time index refers to the parameters
aij , bi and cj and the second to the state x of the system. When computing v, new
inputs xi(t) have been obtained, but the network parameters aij(t � 1), bj(t � 1)

and ci(t � 1) have not yet been updated. The updating may only take place after
an evaluation of the network performance is obtained. A change in v may result
either from a change in the network parameters or from a change in the state of the
system, and thus both time indexes are needed. Writing v with double time indices
as in (5.2) allows us to compare di�erent v's over time and notice whether the system
has moved to a better state or to a worse state [6]. Similarly to Formula (5.2), v(t; t)
is computed using parameter values aij , bi and cj from time step t and also the state
x of the system at time step t.

The internal reinforcement r̂ rewards the system of successful behaviour. Let the
system move from a state with a low v (prediction of low reinforcement) to a state
with a higher v (prediction of higher reinforcement). In other words, the state
of the system improves. This positive change or internal reinforcement is used to
reinforce the selection of the action which caused this move. The formula for internal
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reinforcement is

r̂(t) =

8><
>:

0; start state
r(t)� v(t� 1; t� 1); failure state
r(t) + 
v(t� 1; t)� v(t� 1; t� 1); else

(5.3)

where r(t) is an external performance measure caused by the parameters and input
measurements at time t� 1 but revealed at time t. Note that the internal reinforce-
ment r̂ is the larger the better the performance of the system. If r(t) measures error
(for example, delay) instead of performance, it must be included with a negative

sign, whence a large error r causes a small value of r̂.

In (5.3), future values of v are given less emphasis than the current v by using a
discount rate 0 � 
 � 1. A failure state is such a state that the system needs to be
rebooted after facing this state. In Berenji and Khedkar's example [6] � cart-pole
balancing � the failure state is a state in which the pole falls down.

5.3.3 Action Selection Network, a Fuzzy Controller

The Action Selection Network is a fuzzy controller. Its structure is similar to a
neurofuzzy network presented in Section 4.3 and in Figure 4.1. The steps involved
in fuzzy inference were discussed in Section 2.5.2. Many of the steps may be realized
in several di�erent ways. In their article [6], Berenji and Khedkar use triangular
membership functions (2.7). The rule �ring strength w is the soft minimum 2.16
of membership function values, and the LMOM defuzzi�cation (Formula (2.38)) is
used. Thus the output y�(t) of the Action Selection Network is a weighted average
of individual rule outputs y�i :

y� =

PN
i=1wi y

�
iPN

i=1 wi

: (5.4)

5.3.4 Stochastic Action Modi�er

Berenji and Khedkar [6] propose a stochastic deviation to the output of the neuro-
fuzzy controller Action Selection Network. This deviation is said to lead to a better
exploration of the state space and a better generalization ability. Instead of the
actual output y�(t), the control action applied to the system is y�0(t), a Gaussian
random variable with mean y�(t) and standard deviation e�r̂(t�1). The di�erence
jy�0(t) � y�(t)j is large when the internal reinforcement r̂(t) (5.3) is low, and small
when r̂(t) is high. It means that when the last action taken by the controller was
bad, the control action is deviated more, and when the previous action was good,
only a small deviation is given. The numerical amount of deviation is

s(t) =
y�0(t)� y�(t)

e�r̂(t�1)
(5.5)

and it is used as a learning factor when updating the parameters of the Action
Selection Network.
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5.3.5 Learning in the Action Evaluation Network

Learning in the Action Evaluation Network utilizes the value of the internal reinforce-
ment r̂. If a positive internal reinforcement signal is received, the network weights
are rewarded by being changed in the direction which increases their contribution
to the total sum. If a negative signal is received, the weights are punished by being
changed in the direction which decreases their contribution [6].

The backpropagation algorithm (Section 3.4) is used in the learning. The intent is
to maximize v, so the change in each parameter is proportional to the derivative of
v with respect to this parameter. Internal reinforcement r̂ (Formula (5.3)) is used
as a learning factor.

The change in the weight parameters bi between the input layer and the output layer
is proportional to @v

@bi
= xi. Thus the bi are updated as

bi(t) = bi(t� 1) + �r̂(t)xi(t� 1); i = 1; : : : ; n (5.6)

where � > 0 is a constant.

The change in the parameters cj between the hidden layer and the output layer is
proportional to @v

@cj
= zj . The update formula is

cj(t) = cj(t� 1) + �r̂(t)zj(t� 1; t� 1); j = 1; : : : ; h: (5.7)

The weight parameters aij between the input layer and the hidden layer are updated
using @v

@aij
= cjzj(1� zj)xi, resulting in

aij(t) = aij(t� 1)

+ �0 r̂(t) zj(t� 1; t� 1)
�
1� zj(t� 1; t� 1)

�
sgn(cj(t� 1))xi(t� 1);

i = 1; : : : ; n; j = 1; : : : ; h (5.8)

where �0 > 0 is a constant, and the signum function is de�ned as

sgn(x) =

(
0; x � 0

1; x > 0:
(5.9)

In [6], the hidden layer activation function z is a sigmoidal function (5.1) and its
derivative is z (1 � z) as seen in (5.8). The sign of cj rather than its value is used,
as the algorithm is thus more robust [6].

5.3.6 Learning in the Action Selection Network

The Action Selection Network produces a control action y�. The objective of this
action is to maximize v (the prediction of future reinforcement, Formula (5.2)) as
a function of the parameters of the ASN. The gradient descent algorithm (see Sec-
tion 3.4) is used in the learning.

The ASN has modi�able weights in the second layer (in the membership functions of
the antecedent linguistic values) and in the fourth layer (in the membership functions
of the consequent linguistic values). Let pV be one of the parameters of the linguistic
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value V . For example, if triangular membership functions are used, the parameters
are pV 1, pV 2 and pV 3 which are the x coordinates of the corners of the triangle. For
linguistic values in the antecedent of rule i, a notation V 2 Ant(Ri) is used, where
Ant(Ri) is the set of all linguistic values used in the antecedent of rule i. Similarly,
for linguistic values in the consequent of rule i, V 2 Con(Ri).

Learning in the Consequent Linguistic Values. Because we are maximizing
v, the change in parameter pV is proportional to @v

@pV
[6]:

�pV / @v

@pV
=

@v

@y�
@y�

@pV
; V 2 Con(Ri): (5.10)

Here the consequent linguistic value V appears in rule i. The derivative @v
@y�

is
approximated as

@v

@y�
� sgn

�
v(t; t)� v(t; t� 1)

y�(t)� y�(t� 1)

�
(5.11)

and if y�(t) = y�(t� 1), @v
@y�

= 0.

Note that y�(t) must be di�erent from y�(t�1) in order that any learning could take
place. If the input x is the same at time instants t and t� 1, the controller output
y is the same, too, and no learning occurs, unless the Stochastic Action Modi�er is
used. As discussed in Section 5.3.4, the Stochastic Action Modi�er helps learning
by �shaking� the controller output y a bit, so that similar inputs x yield di�erent
outputs y.

Going back to Formula (5.10), in @y�

@pV
, all rules i which use V in their consequent

part have to be taken into account, so a summation over V 2 Con(Ri) is done.
(As discussed in Sections 2.5.1 and 4.3 and in Figure 4.2, several rules may use the
same linguistic value in their consequents.) Furthermore, y� is a weighted average of
individual rule outputs yi as in Formula (5.4), so we get

@y�

@pV
=

X
V 2Con(Ri)

@y�

@yi

@yi

@pV
(5.12)

=
1PN

j=1wj

X
V 2Con(Ri)

wi
@yi

@pV
(5.13)

where the summation of wj in the denominator goes through all rules in the rule base,

and @yi
@pV

depends on the choice of the membership function and the defuzzi�cation
method. These issues are discussed in Section 5.3.7.

Learning in the Antecedent Linguistic Values. The change in the parameter
pV in antecedent V in rule i requires a few more passes of the derivative chain rule:

�pV / @v

@pV
(5.14)

=
@v

@y�
@y�

@�V

@�V

@pV
(5.15)

=
@v

@y�

0
@ X
V 2Ant(Ri)

@y�

@wi

@wi

@�V

1
A @�V

@pV
; V 2 Ant(Ri): (5.16)
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Here @v
@y�

is again approximated as in (5.11). In @y�

@�V
on line (5.15), all rules i in

which V appears must again be summed. Remember again that the same linguistic
values may appear in several rule antecedents, as discussed in Sections 2.5.1 and 4.3
and in Figure 4.2. In the summation on line (5.16),

@y�

@wi
=

yi + wi
@yi
@wi

� y�PN
j=1wj

(5.17)

where the summation of wj in the denominator again goes through all rules in the
rule base. (In this formula there is an error in the article of Berenji and Khedkar [6],
and this is the correct form.) The term @yi

@�i
depends on the defuzzi�cation formula

and is discussed in Section 5.3.7.

Going back to (5.16), the term @wi

@�i
depends on how the membership function values

in rule i are combined, and the last term @�V
@pV

again depends on the choice of the
membership function.

The learning rate depends on r̂(t) and s(t) in addition to a small constant � >

0. A multiplicative learning factor r̂(t)s(t) is interpreted as follows: [6] If a large
perturbation s(t) results in a good action (that is, in a large internal reinforcement
r̂(t)), then the weights should receive a large reward, since the probabilistic search
has really helped the system in this case. Conversely, if a large random deviation
s(t) is not bene�cial (a small or negative r̂(t) is observed), it should have minimal
e�ect on the weights [6]. As v is maximized, the total formula for parameter updates
for both consequent and antecedent linguistic values is

�p = � r̂(t)s(t)
@v

@p
(5.18)

where @v
@p

is computed using Formulae (5.11)�(5.17).

Note that if the input is outside the support (Formula (2.5)) of the membership func-
tion �V , no learning will occur for the parameters pV of this �V . That is reasonable,
since this V played no role in determining the control action for this particular in-
put. In other words, the system fails to learn in those parts of the input space where
there are not enough data available � a problem common in all neural and statis-
tical learning algorithms. The algorithm proposed by Berenji and Khedkar tries to
avoid this problem partially by using the stochastic action modi�er, which randomly
deviates the action chosen [6].

The gradient descent learning algorithm described here is often slow, but it can be
enhanced by using a momentum term [15] or a line-search technique for determining
the optimal step size at each point.

5.3.7 Notes on the Learning Algorithm

There are a few things worth mentioning concerning the learning formulae in Section
5.3.6. The form of the membership functions and the realization of the steps in fuzzy
inference discussed in Sections 2.5.2 and 2.5.3 a�ect the formulae. For example, the
formulae become di�erent if one uses the minimum combiner instead of the product
combiner in calculating the rule �ring strength. In some cases no learning or only
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very simple learning occurs. Attention should therefore be paid on the choice of the
functions and methods used in the fuzzy inference.

We consider here triangular and trapezoidal membership functions. Although a
triangle is simply a special case of a trapezoid, it is used in fuzzy control so often
that it deserves attention of its own.

Of the steps involved in fuzzy inference, the rule �ring strength is calculated here
either using the soft minimum combiner or the product combiner. The minimum
combiner is not discussed, because it is not di�erentiable. The defuzzi�cation meth-
ods considered here are the LMOM, LCOA and a �mixture� of the LMOM and
LCOA methods. These defuzzi�cation methods include the steps of fuzzy implication
and rule aggregation, so each step of the fuzzy inference presented in Sections 2.5.2
and 2.5.3 is discussed.

In this section we also discuss some details of the GARIC algorithm whose interpre-
tation on the basis of Berenji and Khedkar's article [6] is not obvious.

Learning in the Consequent Linguistic Values. In the original article of
Berenji and Khedkar [6], Formula (5.11) was presented in the form

@v

@y�
� sgn

�
v(t)� v(t� 1)

y�(t)� y�(t� 1)

�
: (5.19)

where v has single time indices. As discussed in Section 5.3.2, double time indices
are needed to distinguish the e�ect of state and the e�ect of network parameters.
In v(t; t), the �rst t refers to the parameters aij, bi and cj at time t and the second
t refers to the state of the system at time t. We choose to use the time indices
shown in Formula (5.11) for the following reasons: As the time indices of y�(t) and
y�(t�1) refer only to the change in the state of the system, the time indices referring
to the state of the system in v must also be t and t � 1, whence the numerator in
Formula (5.19) must be v(?; t) � v(?; t � 1). Now we must choose the time indices
of the parameters aij , bi and cj . Remember that we use the reinforcement r̂ in the
learning in Formula (5.18). The reinforcement was de�ned in Formula (5.3) which
shows that the reinforcement measures the change in v between successive states of
the system (the second time index) but the parameters (the �rst time index) are kept
�xed. We choose to follow this notation, and write the numerator as v(t; t)�v(t; t�1).

Now we turn our attention to the other learning formulae, and see how the choice of
the membership function and the defuzzi�cation method a�ect the formulae. When
updating the parameters in the membership functions of the consequent linguistic
values, the derivatives @y

@p
are needed in (5.13). For triangular membership func-

tions (2.7), the LMOM (2.38) defuzzi�cation method gives

y =
1

2
(1� w)(p1 + p3) + wp2 (5.20)
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and the derivatives @yi
@pV

for consequent linguistic values V in Formula (5.13) are

@y

@p1
=

1

2
(1� w) (5.21)

@y

@p3
=

1

2
(1� w) (5.22)

@y

@p2
= w: (5.23)

If the triangle is symmetric, its peak parameter p2 can be expressed using p1 and p3
as p2 = (p1 + p3)=2, and Formula (5.20) reduces to

y =
p1 + p3

2
(5.24)

and the derivatives in Formula (5.13) reduce to

@y

@p1
=

@y

@p2
=

@y

@p3
=

1

2
: (5.25)

If trapezoidal membership functions (2.9) are used, the LMOM method gives

y =
1

2
(1� w)(p1 + p4) +

1

2
w(p2 + p3) (5.26)

and the derivatives are

@y

@p1
=

@y

@p4
=

1

2
(1� w) (5.27)

@y

@p2
=

@y

@p3
= w: (5.28)

Again, if the trapezoid is symmetric, then p1 = p2 + p3 � p4 and Formula (5.26)
reduces to

y =
p2 + p3

2
=

p1 + p4

2
(5.29)

and the derivatives @yi
@pV

in Formula (5.13) reduce to

@y

@p1
=

@y

@p2
=

@y

@p3
=

@y

@p4
=

1

2
: (5.30)

Thus if the LMOM defuzzi�cation is used on symmetric triangles or trapezoids, the
x coordinates of the corners change in the same way, either both to the left or both
to the right by the same amount. A triangle or a trapezoid may move horizontally
but its size and shape remain constant. Hence symmetric triangular and trapezoidal
membership functions cannot utilize the full abilities of the learning algorithm.

If the LCOA (2.32) defuzzi�cation is used with triangular membership functions,
the crisp value of a triangle is its centroid (2.28), which is simply the average of the
parameters p1, p2 and p3:

y =
1

3
(p1 + p2 + p3) (5.31)
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and the derivative formulae @yi
@pV

are

@y

@p1
=

@y

@p2
=

@y

@p3
=

1

3
: (5.32)

From (5.32) we observe that the LCOA defuzzi�cation leads to a very simple �
if not too simple � learning rule on triangular membership functions in the rule
consequent. Even if the triangle was asymmetric, all of its parameters change by the
same amount, and the triangle cannot change in size or shape.

Moreover, if the triangle is symmetric, its centroid lies at the peak p2, and the crisp
value in (5.31) is always p2. Thus one did not achieve anything on introducing sym-
metric triangular membership functions on output linguistic values � crisp values
could have been used as well.

Using the LCOA method on trapezoids, the centroid (2.28) of a trapezoid is

y =
1

3

p21 + p22 + p1p2 � p23 � p24 � p3p4

p1 + p2 � p3 � p4
(5.33)

and the derivative formulae @yi
@pV

are

@y

@p1
=

1

3

2p1 + p2 � 3y

p1 + p2 � p3 � p4
(5.34)

@y

@p2
=

1

3

p1 + 2p2 � 3y

p1 + p2 � p3 � p4
(5.35)

@y

@p3
= �1

3

2p3 + p4 � 3y

p1 + p2 � p3 � p4
(5.36)

@y

@p4
= �1

3

p3 + 2p4 � 3y

p1 + p2 � p3 � p4
: (5.37)

Thus the LCOA defuzzi�cation does not lead to overly simple learning rules on
trapezoidal membership functions. An exception is a symmetric trapezoid, in which
p1 = p2 + p3 � p4. Its centroid is always as in Formula (5.29), and the derivative
formulae are as in Formula (5.30). We face the same problem as when using LMOM
on symmetric trapezoids. Thus asymmetric trapezoidal membership functions should
be preferred over any triangular membership functions, if the LCOA defuzzi�cation
is used.

A third defuzzi�cation approach is a mixture of LMOM and LCOA. This method
is discussed here because the fuzzy inference engine in our application uses it. The
membership function of the consequent linguistic value in rule i is cut at level wi, as
in LMOM, and a centroid (Formula (2.28)) of the remaining set is calculated. The
centroids are averaged using wi as weights as in Formula (5.4) to get the �nal output
y� of the rule base.

As a membership function is cut at level w, its parameters change. Both a triangle
and a trapezoid become trapezoids. Let [p1; p2; p3; p4] denote the old parameters of
a triangle or a trapezoid. Naturally, p2 = p3 for a triangle. The new parameters of
the trapezoid are

p01 = p1 (5.38)

p02 = (1� w)p1 + wp2 (5.39)

p03 = (1� w)p4 + wp3 (5.40)

p04 = p4: (5.41)
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Now the centroid of the trapezoid must be calculated using these new parameters,
and the result is slightly di�erent from (5.33):

y =
1

3

p01
2
+ p02

2
+ p01 p

0
2 � p03

2 � p04
2 � p03 p

0
4

p01 + p02 � p03 � p04
(5.42)

=
1

3

(w2 � 3w + 3) (p21 � p24) + w2 (p22 � p23) + (3w � 2w2) (p1 p2 � p3 p4)

(2� w) (p1 � p4) + w (p2 � p3)
:

The derivatives (5.34) to (5.37) change, too:

@y

@p1
=

1

3

(w2 � 3w + 3)2p1 + (3w � 2w2)p2 � 3y(2� w)

(2� w)(p1 � p4) + w(p2 � p3)
(5.43)

@y

@p2
=

1

3

(3w � 2w2)p1 + 2w2p2 � 3yw

(2� w)(p1 � p4) + w(p2 � p3)
(5.44)

@y

@p3
= �1

3

2w2p3 + (3w � 2w2)p4 � 3yw

(2� w)(p1 � p4) + w(p2 � p3)
(5.45)

@y

@p4
= �1

3

(3w � 2w2)p3 + (w2 � 3w + 3)2p4 � 3y(2� w)

(2� w)(p1 � p4) + w(p2 � p3)
: (5.46)

Again a symmetric triangle or trapezoid results in problems. The centroid is as in
Formula (5.29) and the derivative formulae @y

@pV
are as in Formula (5.30), and no

changes in the size or shape of the membership function can occur. Again we have
the same problem as we had with LMOM and LCOA using symmetric trapezoids or
triangles.

As a summary, symmetric triangular or trapezoidal membership functions should
not be used with the LMOM, LCOA or �LMOM plus LCOA� defuzzi�cation. (Other
defuzzi�cation methods have problems discussed in Section 2.5.3, and the methods
discussed here are considered as the best approaches.) Triangular membership func-
tions should not be used at all with the LCOA defuzzi�cation.

Learning in the Antecedent Linguistic Values. For antecedent linguistic val-
ues V , the derivative @yi

@wi
is needed in (5.17). It depends on the defuzzi�cation

formula. The LMOM defuzzi�cation formula for triangular membership functions
(5.20) gives

@yi

@wi
=

1

2
(�p1 + 2p2 � p3) (5.47)

and the LMOM defuzzi�cation formula for trapezoidal membership functions (5.26)
gives

@yi

@wi
=

1

2
(�p1 + p2 + p3 � p4): (5.48)

Note that in a symmetric triangle, p2 � p1 = p3 � p2 and Formula (5.47) gives 0.
Also in a symmetric trapezoid, p2 � p1 = p4 � p3, and again Formula (5.48) gives 0.
So for both symmetric triangles and symmetric trapezoids, @yi

@wi
= 0 if the LMOM

defuzzi�cation is used, and Formula (5.17) reduces to

@y�

@wi
=

yi � y�PN
j=1wj

: (5.49)
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If the LCOA defuzzi�cation is used, then @yi
@wi

= 0, too, on both triangular and trape-
zoidal membership functions (symmetric or not), as the centroids (5.31) and (5.33)
do not depend on wi. Again Formula (5.17) reduces to (5.49).

If a combination of LMOM and LCOA is used, the derivative @yi
@wi

in (5.17) is

@yi

@wi
=

1

3

(2w � 3)(p21 � p24) + 2w(p22 � p23)

(2� w)(p1 � p4) + w(p2 � p3)
(5.50)

+
1

3

(3� 4w)(p1p2 � p3p4) + 3y(p1 � p2 + p3 � p4)

(2� w)(p1 � p4) + w(p2 � p3)

where y is as in Formula (5.43). If the membership function is symmetric, the above
formula reduces to zero, and we result in Formula (5.49).

Now we have two cases in which @yi
@wi

= 0 and in which Formula (5.17) reduces
to (5.49):

1. The membership functions are symmetric triangles or trapezoids, and the
LMOM or �LMOM plus LCOA� defuzzi�cation is used.

2. The membership functions are any triangles or trapezoids, and the LCOA
defuzzi�cation is used.

Furthermore, if only one rule i �res at a time, the control action y� is just the output
yi of this particular rule i. The reason is that only one output set Ti is present in
Formula (2.32) in Case 2 and in Formula (2.38) in Case 1, and the formulae give
y� = yi. This results in

@y�

@wi
= 0. In this case, no learning occurs, as �pV in (5.16)

reduces to 0. The problem can be avoided using overlapping input fuzzy sets and
overlapping rules, as then several rules �re at the same time. Of course, during the
learning the membership functions may again slide farther away from each other
until they do not overlap any more.

In the learning formula (5.16) for antecedent linguistic values, other observations are
in order, too. The derivative @wi

@�V
depends on how the membership function values in

rule i are combined. If the �and� operation is interpreted as the soft minimum (2.16),
then

@wi

@�V
=

e�k�V (1� k �V + k wi)P
j e

�k�j
(5.51)

where the summation in the denominator goes through all membership function
values in rule i as in (2.16), and k is the steepness factor of the soft minimum. If
the �and� operation is calculated as the product (2.17) of the membership function
values, then

@wi

@�V
=
Y
j 6=V

�j (5.52)

where j runs through all membership function values in rule i.
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The last factor in (5.16), @�V
@pV

, is for a triangular membership function (2.7)

@�V (x)

@p1
=

8<
:

x�p2
(p2�p1)2

; x 2 [p1; p2]

0; else
(5.53)

@�V (x)

@p2
=

8<
:
� x�p1

(p2�p1)2
; x 2 [p1; p2]

� x�p3
(p3�p2)2

; x 2 (p2; p3]
(5.54)

@�V (x)

@p3
=

8<
:

x�p2
(p3�p2)2

; x 2 [p2; p3]

0; else
(5.55)

and for a trapezoidal membership function (2.9)

@�V (x)

@p1
=

8<
:

x�p2
(p2�p1)2

; x 2 [p1; p2]

0; else
(5.56)

@�V (x)

@p2
=

8<
:�

x�p1
(p2�p1)2

; x 2 [p1; p2]

0; else
(5.57)

@�V (x)

@p3
=

8<
:�

x�p4
(p4�p3)2

; x 2 [p3; p4]

0; else
(5.58)

@�V (x)

@p4
=

8<
:

x�p3
(p4�p3)2

; x 2 [p3; p4]

0; else.
(5.59)

Triangular or trapezoidal membership functions �(x) are not continuously di�eren-
tiable with respect to x, and the derivatives do not exist at p1, p2, p3 and p4, since
the two limiting values of � are not equal at these points. Berenji and Khedkar [6]
suggest a heuristic approach to solve the problem: an average of the two limiting
values for the derivative are used at the singular points.

5.4 Other Actor-Critic Type Reinforcement Learning Al-

gorithms

Barto et al. [2] introduced one of the �rst actual reinforcement learning algorithms.
Learning in the algorithm is actor-critic type learning. The controller is not a fuzzy
controller but a kind of a neural network. The article summarizes the properties of
reinforcement learning in comparison with other learning algorithms.

Lin and Lee [41] present a reinforcement learning algorithm which can learn both the
structure (that is, the rules) and the parameters (that is, the shape of the membership
functions) of the fuzzy controller simultaneously. The structure learning starts with
a network in which all possible connections between input and output linguistic
values are present. During the learning, some of the connections are deleted, and the
remaining ones constitute the rule base. The parameter learning is mainly the same
as in the GARIC algorithm.

Lin and Lee's reinforcement learning algorithm is of actor-critic type, too. The
structure of the control system is quite similar to GARIC: it consists of a fuzzy
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controller (actor) and a fuzzy predictor (critic). One di�erence is that the predictor
is now fuzzy in contrast to the neural predictor AEN in GARIC. Lin and Lee's
algorithm can be extended to problems where the result of choosing an action is not
revealed at the following time step but several time steps later, whereas in GARIC
it is assumed that the result is revealed at the following time step.

Esogbue and Murrell [11] present a fuzzy adaptive controller which uses reinforcement
learning neural networks. This algorithm partitions the state space into fuzzy sets
using a generalization of Kohonen's self-organizing map [28], [29], [30]. In addition,
the algorithm �nds the structure of the fuzzy controller, but it does not actually
tune the membership functions.

Other reinforcement learning algorithms of actor-critic type are found in [8] and
in [42].



Chapter 6

Neurofuzzy Tra�c Signal Control

6.1 Tra�c Signal Control

6.1.1 Objectives of Tra�c Signal Control

The main reason for introducing tra�c signals in an intersection is tra�c safety.
Tra�c signalization increases safety by keeping con�icting tra�c streams apart. Af-
ter the decision of the introduction of tra�c signalization in an intersection is made,
several goals can be set: minimization of vehicular and/or pedestrian delay and
stops, minimization of queue lengths, maximization of safety and/or comfort for
both vehicles and pedestrians, minimization of environmental impacts, and so on.
Traditionally, the main performance measure of signal control systems has been the
reduction of vehicular delay and stops [1], as the other objectives have been di�cult
to measure.

Concentrating on the delay minimization (which in our approach includes stop min-
imization) may in the long run impair safety and harm the environment. Each of
these three objectives reaches its optimum state on a di�erent signal cycle length,
and optimizing one of them may lead further away from the optima of the remaining
two. On the other hand, the delays and stops a�ect both safety and environmen-
tal aspects: braking and stopping increase the risk of rear-end collisions; the delay
increases the time spent in tra�c and thereby increases pollution; braking and ac-
celerating associated with stopping increase the fuel consumption and pollution.

A special performance index PI is used to measure the e�ectiveness of the tra�c
signal control. Delays and stops are combined as

PI = d+ �p (6.1)

where d is the average delay of vehicles, p is the probability (or frequency) of stops
and � is a scaling factor. Using di�erent �, di�erent goals can be set, as either delays
or stops can be emphasized. Using a large � the performance index emphasizes safety
and environmental aspects, as these are mainly associated with vehicular stopping.
Using a small �, the interest is placed on delay minimization.

In this thesis, the aim of the control system is delay minimization. We de�ne delay
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as the di�erence between a vehicle's real travel time and its desired travel time [34]:

d = ttr �
str

vdes
(6.2)

where d is the vehicular delay in seconds, ttr is the actual travel time of the vehicle,
str is the travel distance and vdes is the desired speed level. The desired travel time
is the travel distance divided by the desired speed. The desired travel time assumes
that other vehicles or signal controllers do not disturb the vehicle's travel. Thus the
delay consists partly of congestion and partly of extra waiting time at a signalized
intersection, but these are not separated.

6.1.2 Control Procedures

The tra�c environment used in this work is seen in Figure 6.1. It is an intersection
of two one-way streets. One of the oldest applications of fuzzy control was Pappis
and Mamdani's simulation [52], [53] in which the intersection con�guration was the
same as here.

signal
Traffic

controller

Direction of traffic

First traffic
detector

Signal

Figure 6.1: Intersection con�guration

In Figure 6.1, both streets have two lanes of equal tra�c volume. For example, a
tra�c volume of 300 vehicles per hour means that in both approaching directions, in
both lines approximately 150 vehicles are generated per hour, making a total of 300
vehicles per hour in each direction. In each approaching lane there are two tra�c
detectors, the �rst one is usually 100 metres before the stop line and the other is
always at the stop line. These detectors send measurements of tra�c to the signal
controller.

As only one intersection is studied, the tra�c control process is isolated signal control.
In isolated signal control, the signal timing is independent and does not co-operate
with any other intersection. A de�nition given by Tra�c Control Systems Handbook
[64] for isolated signal control is a �form of signal control for a single signalized inter-

section through which the �ow of tra�c is controlled without giving any consideration

to the operation of adjacent signalized intersections�.
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The tra�c at a given moment is either in longitudinal or in crosswise direction. Right-
or left-turning vehicles are not treated separately in signalization, nor is there any
pedestrian signal control. This means that the intersection is a two-phase controlled
intersection. Over 40 per cent of all tra�c signal controllers worldwide are two-phase
controllers.

As tra�c detectors are used to measure the tra�c in both directions, the control
process is called vehicle-actuated. This control system is feedback control, as real-
time information about the physical situation is used. The controller can use any
predetermined strategy based upon the tra�c situation when choosing the signal
timings.

Before tra�c detectors were used, the tra�c signal control systems have been pre-

timed, open-loop controllers. In those systems, the length of each phase is �xed: each
approaching direction receives its own, pre-speci�ed length of green, no matter how
many vehicles there are. Even if the approaching direction was empty, the control
system gives it the usual amount of green, and the vehicles in the queuing direction
have to wait. Fixed-time control performs optimally only if the tra�c volumes in
each direction are constant and do not display any random variation, which is seldom
the case.

Vehicle-actuated control is nowadays the most usual tra�c signal control procedure.
A type of vehicle-actuated control used in Finland is the extension principle, in which
a minimum green time is given �rst and the current green time is extended if needed.
The philosophy is to discharge the queue, to let the approaching vehicles pass the
intersection and avoid unnecessary stopping. An upper limit of maximum green time
ensures that vehicles queuing in the other direction do not have to wait intolerably
long. The extension principle is not mathematically the most optimal control strat-
egy. Optimization becomes tedious as several signal controllers are linked with each
other and the number of variables increases. There are also many practical restric-
tions on signal timings. Due to safety reasons, nearby intersections must have the
same signal control strategies, cycle lengths and phase ordering. As a result, signal
control planning is usually based on expert knowledge and tailor-made solutions.

Fuzzy tra�c signal control is one type of vehicle-actuated, extension-based control,
but it di�ers from the usual vehicle-actuated, extension-based control used in Fin-
land in a few major points. First, the number of parameters is much smaller in
fuzzy signal control than in traditional vehicle-actuated control. In a traditional
controller the number of parameters may be as much as 600, many of which are
on/o�-parameters. A tra�c control engineer can e�ectively handle only a portion of
them. In a fuzzy signal controller, the parameter set consists mainly of membership
function parameters. The number of parameters is smaller and they are easier to
comprehend, making the design process more suitable for human-like reasoning.

The second di�erence between fuzzy and traditional vehicle-actuated, extension-
based tra�c signal controllers is that a fuzzy controller uses the measurements of
incoming tra�c in both the green and the red direction, whereas a traditional con-
troller uses only the information about vehicles in the green direction when deciding
the green time extension. A problem with the extension principle is that when the
vehicles approach the intersection separately but within a few seconds from each
other, every vehicle is given a green light extension, and the total extension grows
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very large. Fuzzy control takes into account the length of the queue behind the
red signal, too, and if the queue is too long compared to the amount of vehicles
approaching from the green direction, no green extension is given anymore.

Fuzzy control is suitable for tra�c signal control systems, as the basic control rules
are quite intuitive and can be easily extracted from expert knowledge. In many other
control problems, for example in process industry, the control rules are more di�cult
to �nd as the physical process is not as intuitive.

6.1.3 FUSICO � a Fuzzy Tra�c Signal Controller

A tra�c simulation system HUTSIM [34], [36], [59] has been developed at Helsinki
University of Technology, Laboratory of Transportation Engineering. The HUTSIM
simulation system consists of a simulation software which runs on a PC and which
interacts with either a real tra�c signal control device or an internal signal control
program. The simulation program creates tra�c, propagates it through the intersec-
tion or road network in the simulation environment and generates detector inputs
for the signal controller. The controller reacts to the detector inputs according to
a user-designed control scheme and sends the tra�c signals to the simulator. The
vehicles react to these signals. Several measures of signal control e�ectiveness are
computed and stored in external �les.

In the HUTSIM system, various di�erent tra�c conditions and tra�c control strate-
gies can be simulated. A fuzzy controller FUSICO [46] is also available. It contains
the fuzzy rules and membership functions, and it evaluates the rules using fuzzy
set operations. In the FUSICO system, the tra�c detectors give the following in-
put variables to the fuzzy controller: APP, number of approaching vehicles (vehicles
between detectors of green phase) and QUE, number of queuing vehicles (vehicles
between detectors of red phase). Both input variables assume only nonnegative in-
teger values. Depending on the tra�c situation, the green phase can be extended
with one or several seconds, and the output of the fuzzy controller is EXT, green
time extension (in seconds). The rule base of FUSICO is as follows [46]:

after minimum green (5 s)

if APP is zero, then EXT is zero

if APP is a few and if QUE is a few, then EXT is short

if APP is more than a few, then EXT is medium

if APP is medium, then EXT is long

after the �rst extension

if APP is zero, then EXT is zero

if APP is a few and if QUE is a few, then EXT is short

if APP is medium, then EXT is medium

if APP is many, then EXT is long

after the second extension

if APP is zero, then EXT is zero

if APP is a few and if QUE is a few, then EXT is short

if APP is medium and if QUE is less than medium, then EXT is medium

if APP is many and if QUE is less than medium, then EXT is long

after the third extension
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if APP is zero, then EXT is zero

if QUE is too long, then EXT is zero

if APP is more than a few and if QUE is a few, then EXT is short

if APP is medium and if QUE is less than medium, then EXT is medium

if APP is many and if QUE is less than a few, then EXT is long

after the fourth extension

if APP is zero, then EXT is zero

if QUE is too long, then EXT is zero

if APP is more than a few and if QUE is a few, then EXT is short

if APP is medium and if QUE is less than a few, then EXT is medium

if APP is many and if QUE is less than a few, then EXT is long

In this thesis, the rule base is used �as is� and the intent is not to modify it system-
atically. The rule base consists of �ve rule sets. The choice of the rule set depends
on how many green extensions have already been given. Some of these rule sets do
not cover the whole input space, and for those inputs which do not �re any rule, the
output of the controller is 0.

6.2 Neural Learning in Fuzzy Tra�c Signal Control

6.2.1 Structure of the Neurofuzzy Control System

The structure of the neurofuzzy tra�c signal control system used in this work is
presented in Figure 6.2. This structure is quite similar to the fuzzy controller in
Figure 2.5 but it has a few additions: A tra�c situation model based on information
about the physical system is created in the simulation program, and the variables of

Traffic
situation
model

Signal
control
actions

PHYSICAL SYSTEM

Neural learning network

membership
functions

membership

Fuzzification Defuzzification

Input Output

functions

Fuzzy inference

Rule base

Figure 6.2: Fuzzy tra�c signal control system FUSICO enhanced with a
neural learning network
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this model are fed to the fuzzy controller. After the fuzzy inference process, the crisp
output of the fuzzy controller is converted to a �real� signal control action which is
applied to the physical system. A neural learning network uses the variables of the
tra�c situation model, and it suggests parameter updates in the input and output
membership functions of the fuzzy controller.

The original fuzzy controller is presented as a neural network, too, so that its param-
eters can be updated. The general structure of a fuzzy controller in neural network
form was seen in Figure 4.1 in Section 4.3. The network includes the fuzzi�cation,
fuzzy inference and defuzzi�cation parts of the fuzzy controller. It is now important
to note that the neurofuzzy tra�c signal control system used in this thesis contains
two neural networks: the controller network and the learning network. The reason
why a separate learning network is needed is that the most usual supervised neural
learning algorithms cannot be used in the current control problem. If they could be
used, it would su�ce to update the parameters of the controller network by itself.
In this thesis a more complex algorithm is needed, and the GARIC reinforcement
learning algorithm presented in Section 5.3 is used.

The FUSICO fuzzy tra�c signal controller has a rule base which contains �ve sepa-
rate rule sets, and the choice of the rule set depends on the situation. The structure
of the fuzzy controller in neural network form thus also varies, and there are �ve alter-
natives, seen in Figures 6.3 and 6.4. The alternatives are quite similar to each other.
The weight parameters of the network are the shape parameters of the membership
functions in layers 2 and 4, and these are not shown in Figures 6.3 and 6.4.

The linguistic variables in the neurofuzzy controller are the input variables APP and
QUE and the output variable EXT. The linguistic values or fuzzy sets for linguis-
tic variable APP are noted Azero, Aafew, Amedium and Amany ; the corresponding
membership functions are noted �Azero, �Aafew, �Amedium and �Amany. The linguistic
values for QUE are noted Qafew, Qmedium and Qtoolong ; the corresponding mem-
bership functions are �Qafew, �Qmedium and �Qtoolong. The linguistic values for EXT
are noted Ezero, Eshort, Emedium and Elong and their membership functions �Ezero,
�Eshort, �Emedium and �Elong. Observe that linguistic values zero, a few and medium

are used with more than one variable, but they are not the same linguistic values.
That is why the notation Azero, Ezero, and so on, is used.

Linguistic values of the form �more than V � and � less than V �, where V is a linguistic
value, are also used in the rule base. These are interpreted as functions of V , not as
independent values. The membership functions of more than V and less than V are

�morethan(V)(x) =

(
1� �V (x); x � supM

0; else
(6.3)

�lessthan(V)(x) =

(
1� �V (x); x � infM

0; else
(6.4)

where

M = fx 2 X j�V (x) = max
x
f�V (x)gg: (6.5)

Figure 6.5 shows a trapezoidal membership function �V together with M and the
membership functions for less than V and more than V.
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Figure 6.3: Fuzzy tra�c signal controller presented as a neural network.
The �rst three rule sets.
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6.2.2 Why Use the GARIC Algorithm?

In this work, a fuzzy tra�c signal controller is equipped with neural learning capa-
bilities. The aim is to minimize delays, and a way to achieve this is to �nd a proper
control action EXT. The control action is given as an output of the fuzzy control
network whose structure and parameters a�ect the output. Thus a way to minimize
the delays is to adjust the structure and/or membership function parameters of the
fuzzy control network. In this thesis, the structure of the fuzzy control network is
kept constant and only membership function parameters are adjusted.

The parameter updating or learning in neural networks is usually based on observing
the di�erence between the network output and the desired output. In this applica-
tion, no training data of proper control actions is available. That is, given an input
(APP, QUE ) of the fuzzy controller, one does not have a target EXT, a �best� pos-
sible control action for this particular input; the best one would be the one which
minimizes the delay, and that is what we are searching for. The control system is
not trying to follow any desired trajectory in the input-output space. Therefore the
learning must be based on some other criteria than an error in EXT, and standard
neural network supervised learning algorithms cannot be used.

A simple measure of error in the tra�c control system is delay. How could it be used
in the parameter updating? We do not construct a neural network whose output is
the delay, because we do not know which input variables contribute to it � there
must be many more than just APP and QUE. Also, we do not have any desired delay,
as a zero delay is often physically impossible. Instead, we construct a neural network
which uses the delay in addition to APP and QUE and produces information on how
the parameters of the controller network should be modi�ed. This is what Berenji
and Khedkar's [6] GARIC algorithm in Section 5.3 and other reinforcement learning
algorithms do. They combine two neural networks, a fuzzy control network and a
learning network. This learning network evaluates the state of the system and uses
delay as a performance measure. It produces a measure of how the parameters of the
control network, that is, the membership functions of the fuzzy controllers, should
be modi�ed.

The reason for using the GARIC algorithm is thus the nature of the information
available in the control problem. Other reinforcement learning algorithms could
be used, too, but GARIC was one of the �rst of its kind. Some algorithms [41]
present methods for constructing the rule base, but in our approach the rule base is
already available and the learning algorithm does not modify it. Some reinforcement
algorithms [41] are capable of constructing a multi-step prediction of the future
reinforcement v which is used in the situations when the success of a control action is
not revealed until several time steps later. In the tra�c control problem, the success
of a control action (the delay) is revealed right after the action, so a multi-step
prediction is not needed, and a single-step prediction v (Formula (5.2) is enough.

6.2.3 Realization of the GARIC Algorithm

Berenji and Khedkar's reinforcement learning algorithm GARIC (see Section 5.3) is
used to adjust the membership functions of the fuzzy tra�c signal controller. The ar-
chitecture of GARIC was shown in Figure 5.1. As the GARIC algorithm is applied to
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tra�c signal control, the Action Selection network is the fuzzy tra�c signal controller
and the Action Evaluation Network is the neural learning network. The Stochastic
Action Modi�er is not used due to reasons explained later. The architecture cor-
responds to the architecture of a neurofuzzy tra�c signal controller in Figure 6.2
because the Action Selection Network comprises all the steps of fuzzi�cation, fuzzy
inference and defuzzi�cation.

The GARIC algorithm is implemented as a Matlab program which interacts with the
HUTSIM simulation system. The HUTSIM system simulates the tra�c and fuzzy
signal control for a period of time, using membership functions stored in an input
�le presented in Appendix A.1. During the simulation, the fuzzy controller is used
continuously, so each simulation run contains several control actions. The results
of the simulation are written to an output �le that can be seen in Appendix A.2.
The Matlab program reads the output �le and performs one step of neural network
training using the GARIC reinforcement learning algorithm. New membership func-
tion parameters are computed and values of membership functions are stored in the
input �le seen in Appendix A.1. HUTSIM uses this �le during a new simulation
period. This two-stage loop is repeated a few hundred times. The experimental set-
ting is further discussed in Section 7.5. Figure 6.6 describes the interaction between
HUTSIM and Matlab.

HUTSIM Matlab
- parameter updating

APP, QUE, delay

Membership function parameters
- simulation
- fuzzy inference

Figure 6.6: Interaction between HUTSIM and Matlab.

In practice, the fuzzy inference process of HUTSIM must be imitated in Matlab in
order to be able to update the parameters according to the GARIC algorithm. The
output �le of the simulation run (see Appendix A.2) contains observations of the
input values APP and QUE used in each signal control decision, the number the
extension (this determines the rule set used), the actual value of extension EXT

given and the amount of delay for each particular vehicle. The Matlab program
goes through every observation of signal control action and runs the reinforcement
learning algorithm at each observation. The amount of update of the parameter
set is calculated for each observation. After computing the amount of update for
all observations, the actual update is the average of the individual updates. Note
that the parameters are updated only after all observations of the simulation run are
processed � we must use the same parameters that were used in HUTSIM, and in
HUTSIM the parameters were �xed during the whole simulation run.

In the following, the realization of the subsystems of the GARIC algorithm is dis-
cussed.

Action Evaluation Network. The Action Evaluation Network, the learning net-
work, is used as was presented in Section 5.3.2. The input of the network is the
di�erence of the state (APP, QUE ) of the system and a reference state. The ref-
erence value of APP is the average of APP values observed in the �rst simulation
run, and correspondingly for QUE. This kind of input assumes both negative and
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positive values.

The values of v and r̂ in Formulae (5.2) and (5.3) are computed at each observation.
The state evaluation v in Formula (5.2) corresponds to how well the system has
avoided delays. If the delays are avoided successfully, v is large. The external
performance measure r in the formula for internal reinforcement (5.3) is the change
in the delay between successive simulation runs. Since the internal reinforcement
increases as r increases, r must measure the �success� and not the �error�; therefore,
r is computed as the di�erence of delay between the previous run and the current
run. If the delay is decreased, r is positive and if it is increased, r is negative. A
failure state in (5.3) is not encountered in tra�c signal control.

It is important to note that delays cannot be assigned to individual signal control
actions, as the delay is measured after the vehicle exits the model and not at the
moment of the control action. The input variables APP and QUE of the control
action are measured at that moment, but we do not know which particular vehicles
they consist of, and we cannot assign the delay of these vehicles to the control action.
Appendix A.2 shows an output �le of the HUTSIM simulation system. This �le lists
the time instants when vehicles enter and exit the model, the delays of these vehicles
and the times of signal control actions together with the input and output variables
APP, QUE and EXT of each signal control decision. We can only assign a �pooled�
delay to each action: the delay caused by a control action is the average of the delays
of those vehicles which, according to their enter and exit times, have any possibility
of belonging to the APP or QUE of this control action.

In the learning phase of the Action Evaluation Network, formulae presented in
Section 5.3.5 are used. The momentum method presented in Section 3.4 in For-
mula (3.20) is used in the learning formula of the parameters bi between the input
layer and the output layer. Thus Formula (5.6) changes to

bi(t) = bi(t� 1) + �r̂(t)xi(t� 1)� �(bi(t� 1)� bi(t� 2)); i = 1; : : : ; n

(6.6)

and the momentum parameter � = 0:9 is used. The parameters � and �0 have values
� = 0:1 and �0 = 0:3.

Action Selection Network. The Action Selection Network (Section 5.3.3) is the
fuzzy tra�c signal controller. In practice, the fuzzy inference is done in the HUTSIM
simulation system and our algorithm just reproduces it for learning purposes. The
controller processes rules of the form �if APP is a few and QUE is a few, then EXT

is short�. Berenji and Khedkar [6] proposed the soft minimum (2.16) combiner with
the steepness parameter k = 10 for the �and� operator. Thus they computed the rule
�ring strength w as the soft minimum of the membership function values in each rule.
Although the product operator (2.24) would be better than the soft minimum because
it does not lose any information, as discussed in Section 2.3, the soft minimum
combiner is used in this work, too. The reason is that the HUTSIM simulation
system uses the minimum operator (2.15), and the fuzzy inference used in HUTSIM
cannot be changed. As the minimum function is not continuously di�erentiable and
we need di�erentiability in the learning phase in Formula (5.16), we approximate
minimum by the soft minimum using k = 100. (This value of k is better than
Berenji and Khedkar's [6] k = 10, as was discussed in Section 2.3.)
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In each rule, the membership function of the output variable EXT is cut at level w
as in Formula (2.23) and in Figure 2.7 a, and the center of area of the remaining set
is calculated using Formula (2.28). A weighted average of the centers of area of each
rule is calculated, the weights being the rule �ring strengths w. Thus the defuzzi�-
cation is a �mixture� of the LCOA and LMOM defuzzi�cation methods presented in
Section 2.5.3. Again, this defuzzi�cation procedure is implemented in the HUTSIM
simulation system and our algorithm must follow the steps involved in HUTSIM.

In the learning phase of the Action Selection Network in Formula (5.11), the values of
v(t�1) and y�(t�1) from the previous time step are needed. The values of v(t) and
y�(t) are computed for each observation in the current simulation run, but v(t � 1)

and y�(t� 1) are the average values from the previous simulation run. Actually we
would need values of v and y� of the previous control action, computed using the
previous values of network parameters, but in our application, the parameters are
updated only after the whole simulation run and not between each control action as
in [6]. That is why we must resort to average values of v and y� from the previous
simulation run.

In our rule base, a linguistic value V may also appear in the form �more than V � or
� less than V �. This must be taken into account in the learning phase of the Action
Selection Network, especially in Formula (5.16). Let f(�V ) denote a function of
�V , where f is either �more than� (Formula (6.4)) or � less than� (Formula (6.4)).
Formula (5.16) is now

�pV = �
@v

@y�

0
@ X
V 2Ant(Ri)

@y�

@wi

@wi

@f(�V )

@f(�V )

@�V

1
A @�V

@pV
(6.7)

where @wi

@f(�V )
is the same as @wi

@�V
earlier in Formula (5.16), and @f(�V )

@�V
is

@f(�V )

@�V
=

(
�1; x � supM

0; else
(�more than V�) (6.8)

@f(�V )

@�V
=

(
�1; x � infM

0; else
(�less than V�) (6.9)

where M is as in Formula (6.5).

Formula (5.18) reduces to

�p = � r̂(t)
@v

@p
(6.10)

because the stochastic deviation is not used, as discussed in the following.

Stochastic Action Modi�er. Berenji and Khedkar also proposed a Stochastic
Action Modi�er (see Section 5.3.4) which deviates the control signal randomly. The
stochastic action modi�er cannot be used in the tra�c signal control problem at
hand. The reason is that the fuzzy inference takes place in the HUTSIM system,
and this re�nement cannot be incorporated in HUTSIM. Thus the controller output
is not deviated, and s(t) in Formula 5.5 is not used as a learning factor. Note that
HUTSIM uses integer outputs for the control action EXT , so a small perturbation
s(t) would not make any change even if a stochastic modi�cation could be done.
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Some kind of stochastic search is implemented in our algorithm anyway. During
the learning, the internal reinforcement r̂ in Formula (5.3) sometimes falls near zero.
According to Formula (5.18), the magnitude of r̂ a�ects the change in the parameters
of the membership functions. If the absolute value of r̂ is very small at each control
action in the simulation run, the change in the parameters becomes so small that it
does not a�ect the output of the fuzzy controller, and the learning stops. In this case,
we deviate the parameters of the membership functions by a small random amount.
This deviation is done after each observation of signal control action is processed and
the actual amount of update is calculated. Only those parameters that contribute to
the output of the controller are deviated. In this way, the learning starts again, as
the parameters result in a di�erent control output than before the deviation, and r̂

starts to increase again. Thus in our application, the output of the controller is not
randomly deviated, but the parameters of the membership functions are deviated if
the learning slows down too much.



Chapter 7

Experimental Results

7.1 Earlier Results

Niittymäki [46], [47] has compared fuzzy tra�c signal control with other tra�c con-
trol methods. Figure 7.1 shows the vehicular delays using a traditional vehicle-
actuated control with the extension principle and the FUSICO fuzzy tra�c control.
Both control systems were simulated in the HUTSIM simulation environment using
a simulation period of two hours. The vehicle-actuated controller was the best of
those which are actually used in the �eld. The delays produced by these two control
procedures can be reliably compared because the vehicle sequences in the simulation
runs for both methods were identical.
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Figure 7.1: Vehicular delays using a traditional vehicle-actuated tra�c sig-
nal control (solid line) and the FUSICO fuzzy control (dashed line) [47].
The x axis is the tra�c volume (vehicles per hour) and the y axis is the
vehicular delay (seconds).
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Figure 7.1 reveals that the FUSICO fuzzy tra�c signal control was superior to tra-
ditional vehicle-actuated control in large tra�c volumes. At small tra�c volumes,
FUSICO produced larger delays than vehicle-actuated control.

The membership functions used in the FUSICO fuzzy tra�c signal controller are
presented in Figure 7.2. The functions were piecewise linear and they were adjusted
manually. The output variable EXT was not actually fuzzy in [46] and [47], and
the output of the fuzzy controller was a weighted average of the values of EXT in
di�erent rules. So no actual defuzzi�cation was done.
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Figure 7.2: Membership functions used in [46] and [47] to produce the
fuzzy control result of Figure 7.1. a) �Azero, �Aafew, �Amedium and �Amany.
b) �Qafew, �Qmedium and �Qtoolong. c) �Ezero, �Eshort, �Emedium and �Elong.

The initial membership functions used in this work are shown in Figure 7.3. They
di�er from the membership functions in Figure 7.2 in a few respects. The most
important di�erence is that the output variable EXT has now truly fuzzy mem-
bership functions. The membership functions are now trapezoids (although these
initial functions are reduced to triangles) and not piecewise linear functions as in
Figure 7.2. The initial membership functions used in this work produce delays dif-
ferent from those in Figure 7.1 which were produced by the FUSICO controller,
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Figure 7.3: The initial form of membership functions before learning.
a) �Azero, �Aafew, �Amedium and �Amany. b) �Qafew, �Qmedium and �Qtoolong.
c) �Ezero, �Eshort, �Emedium and �Elong.

even though the delays are produced by exactly the same vehicle sequences. One
reason for this is the di�erence in membership functions but the major reason must
be that the HUTSIM simulation system has also gone through some other changes
since the results [46], [47] in Figure 7.1 were obtained. The defuzzi�cation procedure
is now di�erent, as the output variables are presented as fuzzy sets. Some other
changes have taken place, too. Due to this, the results obtained in this thesis cannot
be directly compared to results in [46] and in [47]. Instead, the results of the FU-
SICO fuzzy controller are computed again using the initial membership functions in
Figure 7.3 and these results are used as reference values.

7.2 Statistical Signi�cance of the Results

The statistical signi�cance of the results obtained in this thesis was tested using
several two-hour simulation periods. In simulation tests, the tra�c situation in one
particular simulation run may � by coincidence � be extremely suitable for the
controller, and the control performance seems better than it actually is. To avoid
such coincidences several two-hour simulations were run.
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To compare two fuzzy controllers, identical simulations were run on both controllers.
The vehicles were generated at the same time instants at both simulation runs, and
any change in their behaviour resulted only from a change in the fuzzy controller.
Thus the observations of delay in these two simulation runs were paired, and a t test
on paired observations [37], [45], [55] was used to compare the means of the delays
in the simulation runs.

In a t test on paired observations the di�erence �D = �1��2 is tested, where �1 and
�2 are the expected values of observations in sets 1 and 2. In this thesis, set 1 is the
set of delays dini produced by the initial controller and set 2 is the set of delays dnew
produced by the �new� controller (for example, after the learning or after some other
modi�cation). The null hypothesis H0 states that �D = 0, no di�erence between the
sets exist. The research hypothesis H1 states that �D > 0, the initial delay is larger
than the new delay. As the aim is to decrease the delay, it is desirable to be able to
reject H0 in favor of H1.

The t test on paired observations assumes that the random variable D = dini� dnew
is at least approximately normally distributed. As the number of observations in this
work is always several thousands, one may use the central limit theorem [37], [45], [55]
and conclude that the use of the t test on paired observations is appropriate.

The test statistics for a t test on paired observations is

t0 =
�D

SD=
p
n
; df = n� 1 (7.1)

where �D is the sample mean, SD is the sample standard deviation and n is the
number of observations of D. The statistics follows a T distribution with n � 1

degrees of freedom if H0 is true [45]. The P value of the test is the probability that
a value T drawn from a Tn�1 distribution is larger than the test statistics t0. If the
P value is smaller than some pre-speci�ed con�dence level, one can reject H0 and
conclude that the delay is decreased.

7.3 Modi�cation of the Rule Base

By examining the output �le listings of the HUTSIM simulation system (see Ap-
pendix A.1) it was observed that there are many combinations of input variables
which do not �re any rule. In these cases, the output of the fuzzy controller is zero.
A frequently occurring example is a situation where the number of approaching ve-
hicles is one, two or three and the number of queuing vehicles is zero. An obvious
choice would be to give a green extension and let the approaching vehicles pass the
intersection, as the queue is empty. Anyway, the rule �if APP is a few and QUE is
a few, then EXT is short� or any other rule is not �red as the number of queuing
vehicles is zero.

Instead of introducing a new linguistic value zero for QUE, the linguistic value a

few of QUE can be replaced with less than medium which covers the support (For-
mula (2.5)) of a few, as seen in Figure 7.4. The construction of linguistic values less
than V was discussed in Section 6.2.1 and in Formula (6.4). The function less than

medium gives a membership function value of 1 for those small input measurements
for which a few gives 0.
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Figure 7.4: The membership function of less than medium (dotted line)
covers the support of a few (solid line) of QUE.

In the �rst four rule sets, the antecedent constraint �QUE is a few � is changed to
�QUE is less than medium�. This modi�cation of the rule base is simple in that
the number of rules remains the same, and the linguistic value less than medium is
already de�ned. At this stage, the parameters of the membership functions are not
modi�ed and the initial membership functions introduced in Figure 7.3 are used.
The rule base is now

after minimum green (5 s)

if APP is zero, then EXT is zero

if APP is a few and if QUE is less than medium, then EXT is short

if APP is more than a few, then EXT is medium

if APP is medium, then EXT is long

after the �rst extension

if APP is zero, then EXT is zero

if APP is a few and if QUE is less than medium, then EXT is short

if APP is medium, then EXT is medium

if APP is many, then EXT is long

after the second extension

if APP is zero, then EXT is zero

if APP is a few and if QUE is less than medium, then EXT is short

if APP is medium and if QUE is less than medium, then EXT is medium

if APP is many and if QUE is less than medium, then EXT is long

after the third extension

if APP is zero, then EXT is zero

if QUE is too long, then EXT is zero

if APP is more than a few and if QUE is less than medium, then EXT is

short

if APP is medium and if QUE is less than medium, then EXT is medium

if APP is many and if QUE is less than a few, then EXT is long

after the fourth extension

if APP is zero, then EXT is zero

if QUE is too long, then EXT is zero

if APP is more than a few and if QUE is a few, then EXT is short

if APP is medium and if QUE is less than a few, then EXT is medium

if APP is many and if QUE is less than a few, then EXT is long
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The modi�ed rule base leads to smaller delays than the original rule base, as seen
in Figure 7.5. The delays in this �gure result from �ve two-hour simulation periods.
The vehicle sequences in both cases (before and after the modi�cation) are identical,
and any di�erence between the behaviours of the vehicles results from the di�erences
between the fuzzy controllers. The di�erences in the delay are noteworthy especially
at low tra�c volumes, where the FUSICO fuzzy control has earlier performed worse
than traditional vehicle-actuated control (Figure 7.1). One explanation for the poor
earlier performance could be just this lack of rules in situations where the length of
the queue is zero, as is often the case at low tra�c volumes. At 100 vehicles per hour,
the delay decreases now 30 per cent, from 7.65 s per vehicle to 5.38 s per vehicle.
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Figure 7.5: Delays at di�erent tra�c volumes before (dashed line) and after
(solid line) the modi�cation of the rule base. In the �rst four rule sets,
the antecedent constraint �QUE is a few � is changed to �QUE is less than
medium�.

Volume �dini �dnew �D SD n P value Conclusion

100 7.65 5.38 2.27 7.66 2 260 0 Reject H0

300 8.53 7.26 1.28 8.86 6 075 0 Reject H0

500 9.79 9.11 0.69 10.64 10 136 4:5 � 10�11 Reject H0

1000 15.17 15.18 -0.01 13.93 20 016 0.53 Accept H0

1500 23.68 23.57 0.11 17.61 30 205 0.14 Accept H0

Table 7.1: Statistical signi�cance of the decrease in delay due to the mod-
i�cation of the rule base. Hypotheses H0 : �D = 0 (delay is not changed)
and H1 : �D > 0 (delay is decreased) are tested using a t test on paired
observations.

The statistical signi�cance of the results is seen in Table 7.1. A t test on paired
observations (Formula (7.1)) is conducted, and we test the hypotheses H0 : �D = 0
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(delay is not changed) and H1 : �D > 0 (delay is decreased) where D = dini � dnew
is the change in the delay of one vehicle due to the modi�cation of the rule base.

In Table 7.1, �dini is the average delay during �ve two-hour simulation runs using
the initial membership function parameters and �dnew is the average delay using the
parameters after the learning. �D is the average of D and SD is the sample standard
deviation of D. The number of observations n is larger at high tra�c volumes than
at low tra�c volumes, because at high volumes the number of vehicles is naturally
larger. If the P value is very small, we reject the null hypothesis H0. Here we could
have chosen any of the usual con�dence levels � (0.1, 0.05, 0.01, 0.005 or 0.0001) and
the conclusions would always be the same, as the P values are either very small or
very large.

It is observed that at volumes of 100, 300 and 500 vehicles per hour the delay is
decreased signi�cantly. At 1000 and 1500 vehicles per hour the modi�cation of the
rule base does not cause a signi�cant di�erence in delay, because there are very
seldom situations where the number of queuing vehicles in the red direction is 0.

From now on, in the tests and during the learning, the modi�ed rule base is always
used. One might ask whether the reinforcement learning algorithm could have �xed
this problem by modifying the membership functions suitably. The answer is no.
If the input is such that no rules �re, then no learning occurs, as the rule �ring
strengths of each rule are 0 and the output fuzzy sets are empty. Thus the algorithm
is not used at all in such a situation.

7.4 Di�erent Detector Locations

In the basic simulation setting, the tra�c detectors are located 100 metres before the
stop line and at the stop line. The location of the �rst detector a�ects the number
of vehicles the signal controller perceives at each signal control action. In practice,
the �rst detector cannot often be placed as far as 100 metres away from the stop line
� instead, distances of about 50 metres are usual.

It was now examined how the location of the �rst detector a�ects the control per-
formance. The delays of the vehicles were compared at �ve tra�c volumes: 100,
300, 500, 1000 and 1500 vehicles per hour. The location of the �rst detector was
50, 75, 100 or 150 metres from the stop line in both approaching directions. In one
experiment, the �rst detector was placed at 50 metres in one approaching direction
and at 100 metres in another approaching direction. The membership functions were
the initial ones as in Figure 7.3. The results are seen in Figure 7.6.

Figure 7.6 reveals that a distance of 100 metres from the stop line is the best in delay
minimization. If the vehicle is observed this early, its delay is minimized if the signal
controller takes it into account. In the optimal case the vehicle does not have to slow
down at all if the tra�c volume is very low and other vehicles are not present at the
moment. As the distance decreases to 50 or 75 metres, the vehicular delay increases
as the vehicles need to slow down when approaching the intersection.
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Figure 7.6: a) Vehicular delays when the �rst tra�c detector is in both
approaching directions at 100 m (�), 50 m (�), 75 m (+) and 150 m (�, the
last ones are too large to �t in this �gure). In the last case (�), the detector
is in one approaching direction at 50 m and in the other direction at 100
m. b) Magni�cation at lower tra�c volumes.

The delay increases also as the detector is moved further away to 150 metres. The
reason for this is that at low tra�c volumes (100 to 300 vehicles per hour) the
tra�c controller takes into account also those vehicles that are too far away from the
intersection to reach it during the green extension, and a green extension is given
unnecessarily. At a very large tra�c volume (1500 vehicles per hour) the delays
become unbearable, because now the observed queues in both the red direction and
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the green direction are outside the ranges of the fuzzy controller (maximum values
of APP and QUE are 12 and 16, respectively), and a zero extension is always given,
because no rules �re. At large tra�c volumes the best approach would be to have
as many green extensions as possible, as then the time needed for amber signal is
minimized. Now the situation is the opposite.

The results in this section were produced by one two-hour simulation run in each
case. The statistical signi�cance of the results is not tested, and the results are not
used in further experiments in this work.

7.5 Experimental Setting in Learning

In the learning phase of a neural network using supervised learning, it is usually
desirable to have variations in the input observations. If the observations are concen-
trated on a small area in the input-output space, the system will not learn outside
this area. Variations in the observations lead to a better exploration of the state
space. In this work it was anyway decided to teach the network �rst in a constant
simulation environment where the vehicles enter the model always at the same time
instants. Random variation in vehicle generation causes substantial di�erences in the
delays. The e�ect of the modi�cation of the membership function parameters can
not be observed if the e�ect of random variation in delays is larger than the e�ect
of parameter modi�cation. On the other hand, teaching in a constant environment
results in a network which is suitable for this particular environment only.

The HUTSIM simulation system has a pseudo-random generator which produces
vehicles at pseudo-random instants. The seed of the generator must be changed
between successive simulation runs if random variation between the runs is desired.
It was now decided not to change the generator seed between successive runs during
the network learning phase. The seed was changed only after every 30 simulation
runs. During each 30 simulation runs, the vehicle generation sequences were identical
and the changes in the vehicular delays were due to changes in the signal controller
only. In this way, quite a short simulation run was su�cient during the learning phase
of the neural network. The total time needed for the learning was not unbearable,
even though neural networks usually require a very large set of observations.

In this work, a simulation period of ten minutes was used during the learning, in
addition to margins of two minutes in both ends to ensure �normal� tra�c � in
the beginning of the simulation, the system was empty, and in the end it was again
emptied, and the vehicles entering the model near the beginning or the end did not
su�er from delays caused by other vehicles. These margins were excluded from the
observation set. The simulation was done using a 266 MHz Pentium with which 10
minutes of simulation time took approximately a minute of real time.

The reinforcement learning algorithm was used at three di�erent constant tra�c
volumes: 300, 500 and 1000 vehicles per hour. A tra�c volume of 300 vehicles
per hour was chosen as the smallest volume, because at volumes smaller than 300
vehicles per hour there was not much to learn. The controller used the fuzzy rule
base only after a minimum green of 5 seconds. At low tra�c volumes the vehicles
approached the intersection one at a time and this minimum green time often su�ced
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to discharge the queue in the green direction.

Each of these constant tra�c volumes was used in two di�erent situations: the
location of the �rst tra�c detector was either 100 or 50 metres from the stop line.
So the learning algorithm was tested in a total of six di�erent situations of constant
tra�c volumes. It was expected that each situation has its own membership function
parameters, as the physical conditions are very di�erent, too. In practice, if di�erent
membership function parameters are suitable for di�erent tra�c situations, the tra�c
signal controller could �rst identify the tra�c situation and then choose a proper
parameter set for the fuzzy control process.

In addition to constant tra�c volumes, the reinforcement learning algorithm was also
used in a changing tra�c situation, where the volume of the tra�c was increased step
by step. In practice, if the algorithm is able to follow and keep up with a changing
tra�c situation, the algorithm can be installed in the �eld. A tra�c signal controller
using the reinforcement learning algorithm could update its parameters all the time
as the tra�c volume changes. Of course, there are many practical limitations which
hinder this kind of on-line learning in the �eld: for example, the computations needed
by the learning algorithm can be burdensome.

The size of the hidden layer in the neural network AEN (Sections 5.3.2 and 6.2.3)
was in the �rst experiments 4 or 6 but �nally a size of 10 hidden layer cells was
selected. A larger hidden layer contributed to a better learning performance, but
also the number of observations needed for learning was larger, because there were
more adjustable parameters.

7.6 Learning with First Tra�c Detector at 100 Metres

In the HUTSIM simulation environment the location of the �rst tra�c detector is
usually 100 metres before the stop line, and the reinforcement learning algorithm
was �rst used in this kind of situation. The tra�c volumes were 300, 500 and 1000
vehicles per hour, and during the learning the volume was kept constant. The initial
membership functions are shown in Figure 7.3. Figure 7.7 compares the delays before
and after learning at tra�c volumes of 300, 500 and 1000 vehicles per hour. The
delays in this �gure are average delays of �ve two-hour simulation runs. The location
of the �rst tra�c detector is 100 metres before the stop line.

The statistical signi�cance of the results in Figure 7.7 is determined by a t test on
paired observations (Formula (7.1)). Hypotheses H0 : �D = 0 (delay is not changed)
and H1 : �D > 0 (delay is decreased) are tested, where D = dini�dnew is the change
in the delay of one vehicle due to the modi�cation of the rule base. The results of the
t tests on paired observations are seen in Table 7.2. In this table, �dini is the average
delay during �ve two-hour simulation runs using the initial membership function
parameters and �dnew is the average delay using the parameters after the learning. �D

is the average of D and SD is the sample standard deviation of D. The number of
observations is n. If the P value is very small, the null hypothesis H0 is rejected.
It is seen that the decrease in the delay is statistically signi�cant at tra�c volumes
of 500 and 1000 vehicles per hour but not at 300 vehicles per hour. The con�dence
level � may be any of 0.1, 0.05, 0.01 or 0.005.
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Figure 7.7: Average vehicular delays (in seconds) before (dashed line) and
after (solid line) the learning at tra�c volumes of 300, 500 and 1000 vehicles
per hour. The location of the �rst tra�c detector is 100 metres before the
stop line.

Volume �dini �dnew �D SD n P value Conclusion

300 7.26 7.57 -0.32 8.33 6 075 1.00 Accept H0

500 9.11 8.82 0.29 9.84 10 136 1:4 � 10�3 Reject H0

1000 15.18 14.52 0.66 14.35 20 016 5:1 � 10�11 Reject H0

Table 7.2: Statistical signi�cance of the decrease in delay due to the learn-
ing. The location of the �rst tra�c detector is 100 metres before the stop
line. Hypotheses H0 : �D = 0 (delay is not changed) and H1 : �D > 0

(delay is decreased) are tested using a t test on paired observations.

In the following, the learning at each tra�c volume is discussed separately.

Tra�c volume 300 vehicles per hour. Figure 7.8 shows the delay during the
learning phase. The delay does not decrease during the learning. The �gure also
shows the average results of �ve two-hour test simulation runs during the learning,
marked with small circles.

According to Figure 7.8, the best membership function parameter set during the
learning is the one obtained after 150 simulation periods, because the delay in the test
simulations is then smallest. This parameter set was used to compute the values in
Figure 7.7 and Table 7.2. Even this parameter set is inferior to the initial parameter
set.

The membership functions after the learning are not presented here, because the
learning was not successful and one cannot draw any conclusions about the shapes
of the membership functions.
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Figure 7.8: Delay during the learning at 300 vehicles per hour. Small circles
show the results of test simulation runs before the learning and after 50,
100, 150, 300, 450, 600, 750, 900 and 1050 learning loops. The location of
the �rst tra�c detector is 100 metres before the stop line.

Tra�c volume 500 vehicles per hour. The learning at a tra�c volume of 500
vehicles per hour di�ers from all other learning situations in Sections 7.6 and 7.7 in
the respect that the results were obtained with a neural network whose hidden layer
size is 6 instead of 10. The network used in all other situations, with 10 hidden layer
cells, gave a worse result in this case. Also, the seed of the pseudo-random generator
of the HUTSIM simulation system was changed at 40, 70, 130 and 150 simulation
runs instead of every 30 simulation runs. As seen in Figure 7.7 and Table 7.2, the
new membership functions produce smaller delays at 500 vehicles per hour than the
initial membership functions. The learning was continued for 200 simulation periods.

The membership functions before and after the learning are presented in Figure 7.9.
It is observed that the membership functions �Amany and �Qtoolong were not updated,
because at 500 vehicles per hour there were seldom observations in the support of
these functions. The other membership functions were modi�ed, and especially the
membership functions of EXT were changed substantially.

The function �Azero shrank a little. An explanation for this is that at reasonably
small tra�c volumes it makes a di�erence if the number of vehicles is 0 or 1. Only
a pure 0 is interpreted as a fuzzy zero.

Unfortunately, there is now a gap between �Azero and �Aafew so that an input mea-
surement of one approaching vehicle does not �re any membership function. The
delay using these membership functions is still smaller than the initial delay. The
result might be even better if the gap was �lled for example by extending �Aafew to
smaller values.

The membership functions �Qafew and �Qmedium were updated only by a small amount.
As the rule base was now modi�ed as explained in Section 7.3, the membership func-
tion �Qafew was seldom used and therefore its parameters were seldom modi�ed
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Figure 7.9: Membership functions before (dotted line) and after (solid line)
the learning at 500 vehicles per hour. The location of the �rst tra�c detector
is 100 metres before the stop line. a) �Azero, �Aafew, �Amedium and �Amany.
b) �Qafew, �Qmedium and �Qtoolong. c) �Ezero, �Eshort, �Emedium and �Elong.

during the learning. The membership function �Qmedium was also seldom modi�ed
even though it was often used in the form � less than medium�, because in the update
formula (5.16) the derivative term @�V

@pV
was zero. The derivatives of � with respect

to the parameters p1; p2; p3; p4 in Formulae (5.56)�(5.59) were zero because small
input values of QUE were outside the support of �Qmedium, and the derivative was
nonzero only if the input value was within [p1; p2] or [p3; p4].

In Section 5.3.7 it was concluded that if the membership function is originally a
symmetric trapezoid or a symmetric triangle, all its parameters change in the same
way and the shape and size of the membership function remain constant. Yet in Fig-
ure 7.9 it is seen that initially symmetric triangles �Aafew, �Amedium, �Qafew, �Qmedium,
�Eshort, �Emedium and �Elong have transformed to trapezoids or in some other way
lost their original shape. The reason is the stochastic deviation of the parameters
discussed in Section 6.2.3. Once the parameters receive a stochastic deviation � no
matter how small � the triangle becomes asymmetric. The same e�ect is caused by
small rounding errors in Matlab, which may also be present.
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Tra�c volume 1000 vehicles per hour. Learning at 1000 vehicles per hour
was successful, as was seen in Figure 7.7. The learning was continued for 600 loops.
Figure 7.10 shows the delay during the learning together with the average delays of
�ve test simulation runs after 0, 150, 300, 450 and 600 learning loops. It is interesting
to see that the delay in the test cases behaves in the same manner as the delay during
the learning: the delay is smallest after 300 learning loops and larger both before
and after that.
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Figure 7.10: Delay in the learning phase of a tra�c situation of 1000 vehicles
per hour. The location of the �rst tra�c detector is 100 metres before the
stop line. Small circles show the results of test simulation runs before the
learning and after 150, 300, 450 and 600 learning loops.

The membership functions before and after the learning are presented in Figure 7.11.
The function �Azero has grown wider than in the beginning. This re�ects the fact that
at large tra�c volumes, input measurements of 0, 1 or 2 vehicles are all fairly equal
to zero. The membership functions of QUE have changed only a little, the reasons
for which were discussed earlier in this section. The membership function �Ezero
has shrunk, meaning that the rule consequent �EXT is zero� is really defuzzi�ed to
0. The functions �Emedium and �Elong have shifted to larger values, meaning that
extensions at large tra�c volumes should be quite long � a fact acknowledged by
tra�c engineers.
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Figure 7.11: Membership functions before (dotted line) and after (solid
line) the learning at 1000 vehicles per hour. The location of the �rst tra�c
detector is 100 metres before the stop line. a) �Azero, �Aafew, �Amedium and
�Amany. b) �Qafew, �Qmedium and �Qtoolong. c) �Ezero, �Eshort, �Emedium and
�Elong.

7.7 Learning with First Tra�c Detector at 50 Metres

The membership functions of the fuzzy controller were also taught at a situation
where the �rst tra�c detector in both approaching directions was located 50 metres
before the stop line. The location of the �rst detector a�ects the number of vehicles
the controller observes at each signal control action. If the �rst detector is located
nearer the intersection than at 100 metres (which is the basic case), the input mea-
surements of APP and QUE are smaller. In practice the location of the �rst detector
is more often near 50 metres than 100 metres before the stop line. It is assumed that
the location a�ects the membership function parameters, too.

The results of the learning at constant tra�c volumes of 300, 500 and 1000 vehicles
per hour are seen in Figure 7.12. The delays in this �gure are average delays of �ve
two-hour simulation runs before and after the learning. The statistical signi�cance
of the results in Figure 7.12 is determined by a t test on paired observations (For-
mula (7.1)). Hypotheses H0 : �D = 0 (the delay is not changed) and H1 : �D > 0

(the delay is decreased) are tested, where D = dini � dnew is the change in the delay
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Figure 7.12: Average vehicular delays (in seconds) before (dashed line) and
after (solid line) learning at tra�c volumes of 300, 500 and 1000 vehicles
per hour. The location of the �rst tra�c detector is 50 metres before the
stop line.

Volume �dini �dnew �D SD n P value Conclusion

300 8.75 8.84 -0.09 8.33 6 075 0.80 Accept H0

500 9.99 9.42 0.57 9.01 10 136 9:1 � 10�11 Reject H0

1000 14.78 13.96 0.81 12.32 20 016 0 Reject H0

Table 7.3: Statistical signi�cance of the decrease in delay due to the learn-
ing. The location of the �rst tra�c detector is 50 metres before the stop
line. Hypotheses H0 : �D = 0 (the delay is not changed) and H1 : �D > 0

(the delay is decreased) are tested using a t test on paired observations.

of one vehicle due to the modi�cation of the rule base. The results of the t tests on
paired observations are seen in Table 7.3.

In Table 7.3, �dini is the average delay during �ve two-hour simulation runs using
the initial membership function parameters and �dnew is the average delay using the
parameters after the learning. �D is the average of D and SD is the sample standard
deviation of D. The number of observations is n. If the P value is very small, the null
hypothesis H0 is rejected. Here the choice of the con�dence level � (0.1, 0.05, 0.01,
0.005 or 0.0001) does not make any di�erence in the conclusion, as the P values are
either very small or very large. It is seen that the decrease in the delay is statistically
signi�cant at tra�c volumes of 500 and 1000 vehicles per hour.

In the following, the learning at each tra�c volume is discussed separately.

Tra�c volume 300 vehicles per hour. At 300 vehicles per hour, the delay after
the learning was a little larger than before the learning, but the di�erence is not
statistically signi�cant, as seen in Table 7.3. Testing a hypothesis H1 : �D < 0 (the
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delay has increased during the learning) would give a P value of 1 � 0:80 = 0:20

and again one must accept H0. So it cannot be concluded that the delay after the
learning is either smaller or larger than before the learning at 300 vehicles per hour.

The learning was stopped after 500 loops because the parameters at this stage gave
a smaller delay in a two-hour test simulation than the initial parameters. Unfortu-
nately the average delay in �ve two-hour test simulation runs was not smaller than
before the learning, as was seen in Table 7.3. Thus the �rst test simulation was
by coincidence more suitable for the new parameters than what the simulation runs
were on average.

Tra�c volume 500 vehicles per hour. The learning at 500 vehicles per hour
was successful, as seen in Figure 7.12 and in Table 7.3. The delay after the learning
was smaller than before the learning. Figure 7.13 shows the delay during the learning
together with the average delays of �ve test simulation runs after 0, 300, 450, 600
and 750 learning loops. The test result was the best with the parameter set obtained
after 450 learning loops, so this parameter set was chosen.
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Figure 7.13: Delay in the learning phase of a tra�c situation of 500 vehicles
per hour. The location of the �rst tra�c detector is 50 metres before the
stop line. Small circles show the results of test simulation runs before the
learning and after 300, 450, 600 and 750 learning loops.

The membership functions before and after the learning are presented in Figure 7.14.
It is observed that the membership functions �Amany, �Qmedium, �Qtoolong and �Elong
were not updated. At a tra�c volume of 500 vehicles per hour, there were seldom
observations for which these membership functions were needed, especially now when
the �rst tra�c detector was closer to the stop line and there were fewer vehicles
between the detectors.

The other membership functions were modi�ed, for example �Azero grew wider and
�Aafew turned to the right. There is actually a small gap between �Azero and �Aafew
now. The function �Azero ends at 1:870 and �Aafew begins at 1:999 but as the input
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Figure 7.14: Membership functions before (dotted line) and after (solid
line) the learning at 500 vehicles per hour. The location of the �rst tra�c
detector is 50 metres before the stop line. a) �Azero, �Aafew, �Amedium and
�Amany. b) �Qafew, �Qmedium and �Qtoolong. c) �Ezero, �Eshort, �Emedium and
�Elong.

measurements are always integers, this is not a problem. An input measurement of
2 approaching vehicles �res the membership function �Aafew to a non-zero degree.

Function �Ezero shrank and so did �Eshort and �Emedium, but they also came closer
to each other. The gap between �Eshort and �Emedium indicates that extensions of
two seconds are seldom given. As the �rst tra�c detector is located only 50 metres
before the stop line now, the tra�c signal controller cannot know if there are vehicles
behind the 50 m point. With a speed of 40 km/h a distance of 50 m takes 4.5 seconds,
so it is wise to give an extension of 4 to 5 seconds so that the vehicles between the
detectors can pass the stopline. A longer extension is unnecessary. Both �Eshort and
�Emedium are now concentrated around 5 seconds.

Tra�c volume 1000 vehicles per hour. Figure 7.15 shows the decrease in the
delay during the learning phase. The learning was continued for over 1050 loops, and
a decision to stop the learning was made based on two-hour simulation runs during
the learning. The best parameter set was the one obtained after 1050 learning loops.
After that, the delay increased again. The results of the learning were successful, as
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seen in Figure 7.12 and in Table 7.3.

Figure 7.16 shows the prediction of future reinforcement v (Formula (5.2)) and the
internal reinforcement r̂ (Formula (5.3)). It is seen that v increases during the
learning, as the delay decreases. This is in agreement with the nature of v. The
internal reinforcement r̂ does not have an increasing trend � instead, it oscillates
between �2 and 2. The reason for this is the de�nition of r̂ in Formula (5.3) where
it is seen that r̂ re�ects both the external error term (the delay) and the di�erence
of v between successive time steps.
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Figure 7.15: Delay in the learning phase of a tra�c situation of 1000 vehicles
per hour. The location of the �rst tra�c detector is 50 metres before the
stop line.
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Figure 7.16: a) The value of v, the prediction of future reinforcement during
the learning at a tra�c volume of 1000 vehicles per hour. The location of
the �rst tra�c detector is 50 metres before the stop line. b) The value of
r̂, the internal reinforcement during the learning.
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Figure 7.17: Membership functions before (dotted line) and after (solid
line) the learning at 1000 vehicles per hour. The location of the �rst tra�c
detector is 50 metres before the stop line. a) �Azero, �Aafew, �Amedium and
�Amany. b) �Qafew, �Qmedium and �Qtoolong. c) �Ezero, �Eshort, �Emedium and
�Elong.

The membership functions before and after the learning are presented in Figure 7.17.
Most of them changed signi�cantly during the learning, partly because the learning
was very long. Functions �Azero, �Aafew and �Amedium all grew wider and moved
rightward. This means that at large tra�c volumes the �mean� values of zero, a few

and medium are larger.

The growth of �Azero means that input measurements of 0, 1 or 2 approaching vehicles
are all interpreted as a fuzzy zero at a large tra�c volume. The same phenomenon
was seen in Figure 7.11 where the tra�c volume was also 1000 vehicles per hour and
the location of the �rst tra�c detector was 100 metres from the stop line.

The function �Ezero shrank almost to zero, and �Eshort and �Emedium turned to face
each other. These observations were already seen in Figure 7.14 and here they are
even more signi�cant.

Figure 7.18 shows how some of the membership function parameters changed during
the learning. Figure 7.18 a shows all the parameters of �Amedium. The other pa-
rameters except p3 changed very modestly, as was already seen in Figure 7.17 a. In
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Figure 7.18 b, the parameters p1 and p4 of both �Eshort and �Emedium are shown. The
parameters of �Eshort increased and the parameters of �Emedium decreased and they
actually crossed each other so that p1 of �Eshort passed over p1 of �Emedium and p4 of
�Eshort passed over p4 of �Emedium. The same phenomenon was seen in Figure 7.17 c.
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Figure 7.18: The change in some of the membership function parameters
during the learning at a tra�c volume of 1000 vehicles per hour. The �rst
tra�c detector is located 50 metres before the stop line. a) The parameters
p1, p2, p3 and p4 (from bottom to top) of �Amedium. b) The parameters p1
and p4 of �Eshort (dashed lines) and �Emedium (solid lines).

7.8 Learning at an Increasing Tra�c Volume

The reinforcement learning algorithm was tested in a changing environment where
the tra�c volume was increased step by step during the learning. In the beginning,
the tra�c volume was 300 vehicles per hour. This situation was taught during 100
simulation runs. After this, the volume increased to 350 vehicles per hour for another
100 simulation runs, and then to 400 vehicles per hour and so on. Finally, the tra�c
volume was 850 vehicles per hour.

The size of the hidden layer in the neural network AEN was 6 in this experiment.
The seed of the pseudo-random generator of HUTSIM was changed between every
20 simulation runs, unlike in the experiments in Sections 7.6 and 7.7 where the seed
was changed after every 30 simulation runs.

Figure 7.19 reveals that the learning was not very successful. The delay after the
learning drifts further and further away from the delay before the learning, as the
tra�c volume increases. The network had only learned 100 simulation runs per each
tra�c volume, which was quite a short learning period. It is possible that each tra�c
volume would have needed more simulation runs, say at least 200 or 300 runs for
each volume. In that case another problem might have been faced: continuing the
learning too long results in an increase in the delay, as was the case in Figure 7.10.

Increasing the learning time means that the algorithm adjusts the membership func-
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Figure 7.19: Delays before (dashed line) and after (solid line) the learning
at an increasing tra�c volume. The x axis is the tra�c volume.

tion parameters for each situation separately before moving to a new situation � the
algorithm does not actually keep up with its environment any more. One of the aims
in this thesis was to �nd out whether the GARIC algorithm can be implemented in
the �eld so that the parameters of the membership functions are adjusted all the
time in changing tra�c situations. The conclusion after this experiment is that this
is not possible.

In this experiment, the tra�c volume increased steadily. A more realistic situation
would have been the one in which the volume �rst increases and then decreases,
for example. In any case the result would have been the same: the reinforcement
learning algorithm cannot follow a changing tra�c situation.



Chapter 8

Discussion

8.1 Conclusions

The reinforcement learning algorithm adjusted the membership functions successfully
in some cases and unsuccessfully in other cases. The algorithm was used in six
di�erent cases of constant tra�c volume: the tra�c volumes were 300, 500 and 1000
vehicles per hour and the location of the �rst tra�c detector was either 50 or 100
metres before the stop line in all cases. In addition, the algorithm was used with
an increasing tra�c volume. Of these cases, new membership functions were found
for constant tra�c volumes of 500 and 1000 vehicles per hour and for both tra�c
detector locations, making a total of four di�erent successful cases. The case of an
increasing tra�c volume was not successful.

The initial membership functions were the best for a constant tra�c volume of 300
vehicles per hour. Comparing Figures 7.7 and 7.12 shows that at 500 and 1000
vehicles per hour, with both tra�c detector locations, the new membership functions
decrease the vehicular delay about 0.5 seconds. The new membership functions for
these four di�erent cases, shown in Figures 7.9, 7.11, 7.14 and 7.17, share only one
common property in which they di�er from the initial membership functions. In all
four cases, the membership function �Aafew now begins at 2 vehicles instead of 0.
There are other similarities, too, but they do not apply to all four cases, and they
were discussed in Sections 7.6 and 7.7.

The reinforcement learning algorithm faced many di�culties which may have a�ected
the performance of the algorithm. These di�culties are discussed in Section 8.2.
In the light of these problems and other observations made in this thesis it seems
that other reinforcement learning algorithms would not have performed signi�cantly
better than the GARIC algorithm used in this thesis.

The conclusion of the practical applicability of the reinforcement learning algorithm
is that di�erent membership functions are optimal at di�erent tra�c situations. The
fuzzy tra�c signal controller must identify the tra�c volume and choose the proper
membership functions accordingly. The algorithm in its current form cannot be used
in the �eld, because the time needed to adjust the membership functions is too long.
Also, one cannot know how long the learning should go on, as the learning times
at constant tra�c volumes were quite di�erent. The applicability of the algorithm

90
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remains a topic for further studies, especially if some of the problems presented in
Section 8.2 can be overcome.

The new membership functions do not always look very nice, and it is possible
that hand-tuning after the learning would give still better results. It was di�cult
to �nd membership function parameters which are de�nitely better than the initial
ones. Obviously the initial membership functions were already fairly good. The
modi�cation of the rule base discussed in Section 7.3 caused a larger decrease in
the delay than any modi�cations in the membership function parameters. The rules
are actually more important than the membership functions, and as long as the
membership functions do not produce any gaps in the rule base, the fuzzy tra�c
signal controller works fairly well. It is very important that there are no gaps in the
rule base, that is, every input must �re at least one rule. Moreover, the learning is
more e�ective if more than one rule is �red.

The membership function parameters or the delay did not converge to any certain
level. Usually in supervised learning in neural networks, the error during the learning
decreases to almost zero; that is, the output of the network becomes almost the same
as the desired output. The learning is continued until some pre-speci�ed error level
is reached. In this work one could not measure such an error in the output of the
controller network. Naturally, the delay cannot decrease to zero or to any other level,
as it is not known which level of delay is realistic. So one had to keep on teaching the
membership functions, and examine how they behaved in separate test cases during
the learning. If the delay in the test cases (one or several simulation runs of two
hours) was larger than in the beginning, the learning was continued. After the �rst
100 or 200 learning loops the delay was usually large, then it started decreasing, and
if the learning was continued for a very long time, say 1000 loops, the delay increased
again. The parameters of the membership functions were often either decreasing or
increasing slowly in time, and obviously after a very long learning time they had
moved too far away from the initial values, as the delay increased again. One had
to check the parameters from time to time and in the end choose those which gave
the smallest delay in the test case.

For practical reasons, the modi�cation of the membership function parameters dur-
ing the learning was restricted in a few ways. The parameters were restricted to
nonnegative values. Without this restriction, some of the parameters actually fell
below zero. The input measurements of the controller were always nonnegative, so
the membership functions were not needed on the negative side. Also among the pa-
rameters of each membership function a restriction p1 � p2 � p3 � p4 was used, so
that the membership functions remained trapezoids. This restriction did not hinder
the membership functions sliding over each other, however. This is seen for example
in Figure 7.17 c, where p1 of �Eshort has moved to the right and p1 of �Emedium has
moved to the left and they have actually passed over each other. Also, now it was
possible that the membership functions slided away from each other so much that
at some input, the values of all membership functions were zero. This means that
no rule was �red, and there was a gap in the rule base. This was a possible problem
with the membership functions of APP and QUE, but not with EXT, as the input
measurements were not fed into the membership functions of EXT. It would not
be simple to construct a restriction for this kind of gaps in the rule base, as the
parameters changed with respect to each other in many di�erent ways during the
learning.
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8.2 Reasons for the Poor Performance of the Reinforce-

ment Learning Algorithm

8.2.1 Robustness of the Fuzzy Controller

The fuzzy tra�c signal controller in the HUTSIM simulation system is quite insen-
sitive. The output of the controller (the extension of green time) is rounded to the
nearest integer. Also, input values of the controller are always integer-valued, as the
number of vehicles is naturally an integer. Due to these reasons, minor changes in
the membership function parameters have no e�ect on the output of the controller,
and thus on the delay in the system. It cannot be seen whether a minor adjustment
is a change for the better or for the worse.

The simulation system presents each membership function as a vector of values of
the function at integer points 0, 1, : : : , 12 or 0, 1, : : : , 16. Appendix A.1 shows an
input �le in which these function values are listed. The values are now presented
using two decimals but the user is free to choose the precision. Only the membership
function values at these integer points matter in the fuzzy inference. The form of
the membership function (triangular, trapezoidal, gaussian etc.) does not make a
substantial di�erence in the output of the fuzzy controller.

On the whole, fuzzy control is quite insensitive, too. Other control systems are often
more detailed. If the input �res only one rule in the fuzzy control system, the output
of the rule base is just the output of this particular rule. The degree to which the
rule was �red � the rule �ring strength w � does not matter. In our rule base, the
membership functions do not overlap largely, so the input is often in the range of only
one membership function, and only one rule is �red. The output of the controller
remains the same even if the inputs di�er slightly.

8.2.2 Lack of Stochastic Exploration

One reason why e�ective neural learning was not possible was the lack of stochastic
exploration. The Stochastic Action Modi�er (see Section 5.3.4) of the GARIC algo-
rithm could not be realized because the actual control signal was calculated in and
given by the HUTSIM simulation system.

It has been proposed [41] that if the control action is deviated by a random amount,
the system can �nd a better action and also discover which actions are not suitable.
In other words, the system �tests� di�erent control actions to see which lead to a
desired result.

The only part of our algorithm that resembles stochastic search in any way is the
deviation of the membership functions by a small random amount in the case when
the learning slows down too much. This was discussed in Section 6.2.3. Note that
the stochastic exploration in the Stochastic Action Modi�er deviates the output of
the fuzzy controller, whereas in our application the parameters of the fuzzy controller
are deviated.
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8.2.3 Credit Assignment Problem

The problem of credit assignment was brie�y discussed in Section 5.3.1. This is
the problem of determining which parts of the system (which actions, parameters
or decisions etc.) deserve credit for improvements in the overall performance of the
system [2]. The problem is more challenging if information on the performance of
the system is received a long time after the action. Reinforcement learning tries to
tackle this problem which many other learning algorithms leave without attention.

In the cart-pole balancing problem (see Section 5.3.1) the credit assignment problem
is present, as the pole falls down after a long sequence of cart movements and the
system does not know which movement caused the falling. A similar problem occurs
in tra�c signal control: the vehicular delay in the system is revealed after the simu-
lation run is completed, and we do not know which decisions of green time extension
were successful and which were not.

The reason why reinforcement learning could tackle the credit assignment problem
successfully in the cart-pole balancing system is that in cart-pole balancing, the neu-
ral networks were updated after each action, even if information of the success of the
action was not available. In tra�c signal control the networks are updated only after
the simulation run is completed. The simulation cannot be �frozen� for parameter
updating in the middle of the simulation run. In other words, the reinforcement
learning in cart-pole balancing is on-line learning whereas in tra�c signal control it
is o�-line learning.

To ease the problem of credit assignment in tra�c signal control, the learning sys-
tem would need information about the delays caused by individual signal control
decisions. In the current HUTSIM simulation system this information is not avail-
able. Instead, a �pooled� delay is used in the learning, as discussed in Section 6.2.3.
It would be bene�cial to know exactly which vehicles belong to the approaching
(APP) and queuing (QUE ) vehicles each time the fuzzy controller makes the deci-
sion of green time extension; the delays of these vehicles would then be assigned to
this particular control decision and parameters contributing to this decision could
be updated.

8.3 Suggestions for Future Work

8.3.1 Implementation in the Field

In this work, the neurofuzzy tra�c signal controller has only been used in a simulation
environment. Its applicability in the �eld was not tested. There are a few alternatives
for the implementation of the reinforcement learning algorithm in the �eld.

First, di�erent membership functions can be found for di�erent tra�c situations us-
ing a simulation system. In this thesis, a few di�erent situations were examined, but
many others still remain. It is an unsolved question how many di�erent member-
ship function sets should be used: in this work, even quite similar tra�c volumes of
300 and 500 vehicles per hour had di�erent membership functions. Another aspect is
whether di�erent directions should have di�erent membership functions, if the tra�c
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volumes di�er. The number of di�erent tra�c situations soon becomes burdensome.

A second alternative is to apply the algorithm on-line in the �eld so that the param-
eter set is modi�ed all the time. The reinforcement learning algorithm is then used
to modify the parameters at every signal control action. In the experiments this was
not possible, because the parameters could only be modi�ed after the simulation run
was completed and not during the simulation � the learning was o�-line instead of
on-line. The problem with o�-line learning was discussed in Section 8.2.3.

In the light of the experiments made in this thesis it is not known whether the on-
line learning is successful or not, as it could not be tested. Another problem is the
capacity of the signal controller. Computing one loop of the algorithm at each signal
control action requires an e�ective computer, for example a 266 MHz Pentium.

Observations of the behaviour of the tra�c from the previous hour or the previous
days etc. cannot be used in the learning, because the idea in the learning is just to
modify the parameters a little and see how it a�ects the delays, and then modify
again, and so on. During the learning the delays may �rst increase, and it is not
bene�cial in a real-world application to use membership functions whose performance
is inferior. The only way to utilize old observations is to compare the current tra�c
situation with the old situation and if they are similar, choose the same parameter
set as the one used in the old situation.

A third alternative of the implementation of the reinforcement learning algorithm is
to use the simulation system in the �eld, too. In this case, the real tra�c situation is
fed into the simulator from time to time, and the algorithm modi�es the parameters
in the simulator. In this way, the trial and error during the learning need not be
tested with real tra�c, and the new membership functions can be introduced after
they have proved successful in the simulation environment. The real tra�c volumes
must be quite stable so that the learning algorithm in the simulator can keep up with
the changes � in the experiments in this work, learning of the membership functions
for one tra�c volume took several hundred minutes using a 266 MHz Pentium. The
time needed to learn is impractical at the moment. Also, it is not known how long
the learning should go on � in this work, the user must decide when to stop the
learning.

8.3.2 Hand-Tuning the Membership Functions

The membership functions produced by the reinforcement learning algorithm do not
always look very nice. The algorithm cannot consider all membership functions
at the same time in the way a human can. A change in one function sometimes
needs a change in another function, too, to avoid gaps between the functions. For
example in Figures 7.9 and 7.14 there are gaps between the membership functions,
and hand-tuning them might result in a better control performance. Of course, such
modi�cations require testing before they can be accepted.
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8.3.3 Changes in the Fuzzy Inference System

The forms of the membership functions, the forms of the union and intersection
operators and the defuzzi�cation methods all a�ect the control performance of the
system. In this work, the membership functions were triangles or trapezoids. Other
membership functions remain to be investigated. Gaussian bell curves are considered
more �fuzzy� than triangles and trapezoids. However, the form of the membership
function may not a�ect the controller extensively, as was discussed in Section 8.2.1.

The intersection operator was interpreted as the soft minimum, although the prod-
uct combiner could have been used, too. The defuzzi�cation method used was a
combination of the center of area and mean of maximum methods applied locally to
each rule. Other defuzzi�cation methods might have yielded di�erent results. The
union and intersection operators and the defuzzi�cation method used in this work
were mainly dictated by the use of the HUTSIM simulation program � the fuzzy
inference in HUTSIM uses these operators and methods.

The rule base can be modi�ed, too, and di�erent rules can have di�erent importance
weight factors. Using rule importance weights the controller can be used in multi-
objective control. Di�erent � and often con�icting � objectives of signal control
include e.g. the minimization of delay, fuel consumption, pollution, noise, pedestrian
waiting time or delays of public transport, and maximization of safety. Di�erent
rules can emphasize di�erent objectives. Another aspect of multi-objectivity is how
di�erent antecedent constraints in one rule are combined. In the current fuzzy tra�c
signal controller, the minimum combiner is used, and the constraint which is ful�lled
to the lowest degree (the constraint whose membership function value at the current
input is the lowest) automatically determines the degree to which this rule is �red.
Using the product combiner would take into account other antecedent constraints,
too, as discussed in Section 2.3, and the controller would be more �multi-objective�
than it is at the moment.

It was found out that in the rule base used by HUTSIM, some input values do not
�re any rule, and the output of the fuzzy controller in this situation is zero. A
majority of these situations were now handled by making a small change in the rule
base as discussed in Section 7.3, but no systematic studies on �missing� rules were
done. This systematic study remains a topic for further work.

A simple extension to the fuzzy inference process would be the inclusion of fuzzy
complements or not V linguistic variables, whose membership functions are calcu-
lated using Formula 2.14. Another extension is the ability to use the �or� combiner
in addition to the �and� combiner in the rule antecedents. After these modi�cations
one could use rules such as "if APP is not zero and QUE is not too long, then EXT

is not zero" or "if APP is zero or QUE is too long, then EXT is zero".

Some algorithms [41] update the fuzzy rule base in addition to membership function
parameters using a reinforcement learning technique. This could be applied to the
rule base of the fuzzy tra�c signal controller. Moreover, di�erent rule sets could be
developed for di�erent tra�c situations.
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8.3.4 Additional Input Variables

The GARIC algorithm could be expanded for example by including the time of day
as an additional input. The system might be able to recognize the dependence of
tra�c situation on the time. A neural network could even be able to track a time
series in the tra�c situation. Time series data are di�cult to test in a simulation
environment, because the time series must �rst be created in the simulation system
itself. The data are no longer �real world� data but behave in a nice way which is of
course easy to detect. The identi�cation of this simulator-created time series data
gives no information on how well �real world� data would be identi�ed.

Some algorithms [8], [13] use the error signal and its derivative as inputs to a fuzzy
controller. An example of this kind of rule in tra�c signal control is �if delay is large
and change in delay is positive large, then change in parameter is large�.

8.3.5 Modelling

The current tra�c signal control system is not based on system modelling. As
discussed in Section 5.1, reinforcement learning algorithms do not estimate a model
of the system at each time step and use this model in choosing the control action.

A di�erent approach would be to build a model of the delay. Independent variables
of the model would be tra�c volume, APP, QUE, EXT and many other values
describing the tra�c situation. In this approach, delay minimization would be based
on the model of the tra�c situation.



Appendix A

HUTSIM �les

A.1 HUTSIM Input File twostg.fuz

The input �le twostg.fuz contains the values of the membership functions and the
rule base used in the HUTSIM simulation system. During the learning, parameters
of the membership functions are modi�ed, and the membership function values in
this �le are updated accordingly. The following �le contains the initial membership
function values before the learning.

The rule base was modi�ed from that used in [46], [47] as discussed in Section 7.3, and
the rule base in this �le is thus di�erent from the rule base introduced in Section 6.1.3:
the second rule in the �rst, second, third and fourth rule sets is changed from �if APP
is a few and if QUE is a few, then EXT is short� to �if APP is a few and if QUE is
less than medium, then EXT is short�.

2101 FUZZY INFERENCE INITIALIZATION FILE;

;

BLOCK 1, MEMBERSHIP FUNCTIONS;

;

Any Value: 11 0 16 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

;

App.veh.Memb.Func. A = 0 1 2 3 4 5 6 7 8 9

10 11 12;

A(zero): 11 1 12 1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00

A(a few): 11 2 12 0.00 0.33 0.67 1.00 0.67 0.33 -0.00 0.00 0.00 0.00

0.00 0.00 0.00

A(medium): 11 3 12 0.00 0.00 0.00 0.25 0.50 0.75 1.00 0.75 0.50 0.25

0.00 0.00 0.00

A(many): 11 4 12 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1.00

1.00 1.00 1.00

;

Q length. Memb.Func. Q = 0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16;

Q(a few): 11 5 16 0.00 0.20 0.40 0.60 0.80 1.00 0.80 0.60 0.40 0.20

-0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q(medium): 11 6 16 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.40 0.60 0.80

1.00 0.80 0.60 0.40 0.20 -0.00 0.00

97
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Q(too long): 11 7 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.33 0.67 1.00 1.00

;

mt(A) Memb.Func. mt(A) = 0 1 2 3 4 5 6 7 8 9

10 11 12;

mt(A)(a few): 11 8 12 0.00 0.00 0.00 0.00 0.33 0.67 1.00 1.00 1.00 1.00

1.00 1.00 1.00

mt(A)(medium): 11 9 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75

1.00 1.00 1.00

;

lt(Q) Memb.Func. lt(Q) = 0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16;

lt(Q)(a few): 11 10 16 1.00 0.80 0.60 0.40 0.20 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

lt(Q)(medium): 11 11 16 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.60 0.40 0.20

0.00 0.00 0.00 0.00 0.00 0.00 0.00

;

No Value: 11 12 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

;

BLOCK 2, FUZZY RULE SETS;

;

Extension Lengths 0 1 2 3 4 5 6 7 8 9

10 11 12;

Zero: 11 13 12 1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00

Short: 11 14 12 0.00 0.33 0.67 1.00 0.67 0.33 -0.00 0.00 0.00 0.00

0.00 0.00 0.00

Medium: 11 15 12 0.00 0.00 0.00 0.00 0.33 0.67 1.00 0.67 0.33 -0.00

0.00 0.00 0.00

Long: 11 16 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.67 1.00

0.67 0.33 -0.00

;

RULE SET 1, after min green, 5th second;

;

RULE1; IF A = zero THEN E1=zero;

RULE1: 21 1 3 13 1 0 0

RULE2; IF A =a few AND Q = lt(medium) THEN E1=short;

RULE2: 21 2 3 14 2 11 3

RULE3; IF A =mt(a few) AND Q = any THEN E1=medium;

RULE3: 21 3 3 15 8 0 6

RULE4; IF A =mt(medium)AND Q = any THEN E1=long;

RULE4: 21 4 3 16 9 0 9

RULE5; IF A =None AND Q = None THEN E1=None;

RULE5: 21 5 3 0 12 12 12

;

RULE SET 2, after the first extension, 5th + E1 seconds

;

RULE6; IF A = zero THEN E2=zero;

RULE6: 21 6 3 13 1 0 0

RULE7; IF A = a few AND Q = lt(medium) THEN E2=short;

RULE7: 21 7 3 14 2 11 3

RULE8; IF A = medium AND Q = any THEN E2=medium;

RULE8: 21 8 3 15 3 0 6

RULE9; IF A = many AND Q = any THEN E2=long;

RULE9: 21 9 3 16 4 0 9

RULE10; IF A =None AND Q = None THEN E1=None;

RULE10: 21 10 3 0 12 12 12

;

RULE SET 3, after the second extension, 5th + E1 + E2

;

RULE11;IF A = zero THEN E3=zero;
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RULE11: 21 11 3 13 1 0 0

RULE12;IF A = a few AND Q = lt(medium) THEN E3=short;

RULE12: 21 12 3 14 2 11 3

RULE13;IF A = medium AND Q = lt(medium) THEN E3=medium;

RULE13: 21 13 3 15 3 11 6

RULE14;IF A = many AND Q = lt(medium) THEN E3=long;

RULE14: 21 14 3 16 4 11 9

RULE15;IF A =None AND Q = None THEN E1=None;

RULE15: 21 15 3 0 12 12 12

;

RULE SET 4, after the third extension, 5th + E1 + E2 + E3

;

RULE16;IF A = zero THEN E4=zero;

RULE16: 21 16 3 13 1 0 0

RULE17;IF A =mt(a few) AND Q = lt(medium) THEN E4=short;

RULE17: 21 17 3 14 8 11 3

RULE18;IF A = medium AND Q = lt(medium) THEN E4=medium;

RULE18: 21 18 3 15 3 11 6

RULE19;IF A = many AND Q = lt(a few) THEN E4=long;

RULE19: 21 19 3 16 4 10 9

RULE20;IF Q = too long E4=zero;

RULE20: 21 20 3 0 0 7 0

;

RULE SET 5, after the fourth extension, 5th + E1 + E2 + E3 + E4

;

RULE21;IF A = zero THEN E5=zero;

RULE21: 21 21 3 13 1 0 0

RULE21;IF A = mt(a few) AND Q = a few THEN E5=short;

RULE21 :21 22 3 14 8 5 3

RULE22;IF A = medium AND Q = lt(a few) THEN E5=medium;

RULE22: 21 23 3 15 3 10 6

RULE23;IF A = many AND Q = lt(a few) THEN E5=long;

RULE23: 21 24 3 16 4 10 9

RULE24;IF Q = too long E4=zero;

RULE24: 21 25 3 0 0 7 0

;

GENERAL PARAMETERS

;

NUMBER OF RULE SETS: 101 5

OUTPUT RANGE: 110 0 12

OUTPUT SCALING: 111 1 0

DEFUZZIFICATION: 112 2

;

END OF FILE: 1000
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A.2 HUTSIM Output File hutsim.out

The following is an example of the output �le hutsim.out of the HUTSIM simulation
system. This �le lists the signal control actions and the time instants of vehicles
entering or exiting the model. The �le is read as follows. The �rst column lists the
time of the observation in seconds. The second column contains the row indicator: 1
corresponds to vehicle information, 2 to signal information and 102 to signal control
actions. In this work, the most important rows are vehicle information and signal
control action rows.

In vehicle information rows, the time in the �rst column is the time when the vehicle
exits the model. The vehicle enters the model at time shown in the eighth column
on the same row, and the delay of this vehicle is shown in the ninth column.

In signal control action rows, the third column shows the number of the signal con-
troller in question (in our example, this is always 53 or 54). The length of the green
extension EXT is shown in the fourth column and the control input variables APP
and QUE in the �fth and sixth columns. The eighth column shows the number of
this extension (�rst, second and so on), which determines the rule set used.

1344 HUTSIM Delay-File

17 102 54 0 1 0 0 1 0 0 0 0

28 102 53 0 1 1 0 1 0 0 0 0

40 102 54 0 1 0 0 1 0 0 0 0

44 1 0 0 1 21 1 4 5 0 497 0

45 1 0 2 1 21 1 6 5 0 496 0

51 1 0 3 1 21 1 13 -0 0 496 0

52 102 53 0 0 0 0 1 0 0 0 0

58 1 0 1 4 11 2 6 19 1 502 1

60 1 0 7 1 12 2 26 -0 0 502 0

63 102 54 0 1 0 0 1 0 0 0 0

69 1 0 5 1 21 1 22 11 1 497 0

70 1 0 4 1 22 1 21 9 1 495 0

70 1 0 6 1 21 1 24 15 1 497 1

75 102 53 0 1 0 0 1 0 0 0 0

85 1 0 11 1 12 2 47 -0 0 501 0

86 102 54 3 2 0 0 1 0 0 0 0

89 1 0 9 1 21 1 45 16 1 496 0

89 102 54 4 3 1 0 2 0 0 0 0

93 102 54 4 3 2 0 3 0 0 0 0

93 1 0 8 1 22 1 42 12 1 497 0

96 1 0 10 1 22 1 46 8 1 496 1

97 102 54 0 1 2 0 4 0 0 0 0

102 1 0 12 1 22 1 50 1 0 496 0

107 1 0 13 1 12 2 52 10 1 502 0

109 1 0 15 1 12 2 70 5 0 501 1

109 102 53 6 6 0 0 1 0 0 0 0

111 1 0 17 4 12 2 73 0 0 501 0

113 1 0 18 1 12 2 75 2 0 501 1

115 102 53 3 2 0 0 2 0 0 0 0

115 1 0 21 1 12 2 79 3 0 503 0

117 1 0 22 1 11 2 82 -0 0 502 0

118 102 53 0 1 1 0 3 0 0 0 0

128 1 0 19 4 21 1 77 14 1 497 0

130 102 54 3 2 1 0 1 0 0 0 0

131 1 0 23 1 21 1 86 7 0 495 1

132 1 0 14 1 22 1 60 21 1 495 0
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132 1 0 25 1 21 1 89 6 0 497 1

133 102 54 0 1 2 0 2 0 0 0 0

133 2 1 0 9 35 3 1 16 0 0 0

134 1 0 16 1 22 1 70 19 1 496 1

136 1 0 20 1 22 1 78 16 1 497 1

137 1 0 28 1 21 1 95 -0 0 496 0

137 1 0 26 1 22 1 89 4 0 496 1

139 1 0 31 4 21 1 103 0 0 495 0

139 1 0 27 1 22 1 93 2 0 495 0

144 102 53 0 1 0 0 1 0 0 0 0

145 2 2 0 6 26 3 1 18 0 0 0

149 1 0 29 2 12 2 97 13 1 502 0

152 1 0 24 1 11 2 88 15 1 501 0

152 1 0 36 4 12 2 116 1 0 503 0

153 1 0 30 1 11 2 100 21 1 500 1

155 1 0 35 1 11 2 110 16 0 500 1

156 102 54 0 1 2 0 1 0 0 0 0

156 2 1 0 6 23 1 0 0 0 0 0

160 1 0 33 1 21 1 108 18 1 496 0

164 1 0 32 1 22 1 107 15 1 496 0

167 102 53 3 2 0 0 1 0 0 0 0

168 1 0 34 1 22 1 109 12 1 497 0

170 102 53 0 1 1 0 2 0 0 0 0

171 2 2 0 9 26 3 0 22 0 0 0

171 1 0 37 1 12 2 125 14 1 501 0

174 1 0 40 4 12 2 136 3 0 501 1

182 102 54 3 3 0 0 1 0 0 0 0

185 102 54 4 3 0 0 2 0 0 0 0

185 1 0 38 1 21 1 129 18 1 498 1

187 1 0 42 1 22 1 140 2 0 495 0

188 1 0 39 1 21 1 133 15 1 496 1

189 1 0 44 1 22 1 145 4 0 497 1

189 102 54 3 2 0 0 3 0 0 0 0

189 1 0 41 1 21 1 139 10 1 495 1

191 1 0 45 1 22 1 151 -0 0 496 0

192 102 54 7 2 2 0 4 0 0 0 0

199 102 54 7 2 4 0 5 0 0 0 0

201 1 0 43 1 12 2 145 16 1 502 0

202 1 0 47 2 12 2 166 3 0 503 1

204 1 0 49 1 12 2 169 1 0 501 0

205 1 0 50 1 11 2 170 -0 0 502 0

206 102 54 6 1 4 0 6 0 0 0 0

207 2 1 0 30 50 1 1 0 0 0 0

211 1 0 51 1 12 2 173 -0 0 502 0

212 1 0 53 3 12 2 176 0 0 503 0

218 102 53 3 3 0 0 1 0 0 0 0

220 1 0 55 3 12 2 179 0 0 503 0

221 102 53 0 1 0 0 2 0 0 0 0

221 2 2 0 9 50 5 1 26 0 0 0

222 1 0 56 2 12 2 184 3 0 500 0

224 1 0 57 1 12 2 190 -0 0 502 0

232 102 54 3 3 0 0 1 0 0 0 0

235 102 54 0 1 0 0 2 0 0 0 0

236 2 1 0 9 29 2 1 31 0 0 0

236 1 0 48 1 21 1 168 29 1 497 0

238 1 0 52 1 21 1 174 30 1 495 1

239 1 0 54 1 21 1 179 22 1 496 1

240 1 0 46 1 22 1 165 27 1 496 0

241 1 0 59 1 21 1 192 17 1 496 1

241 1 0 58 1 22 1 191 2 0 495 1

244 1 0 60 1 21 1 200 1 0 496 0

247 102 53 3 2 0 0 1 0 0 0 0



A.2. HUTSIM Output File hutsim.out 102

248 1 0 62 1 11 2 206 6 0 501 0

250 102 53 3 2 0 0 2 0 0 0 0

250 1 0 61 4 12 2 203 13 1 501 0

251 1 0 64 1 11 2 209 2 0 502 0

253 102 53 3 2 0 0 3 0 0 0 0

253 1 0 63 1 12 2 207 9 0 501 1

254 1 0 67 1 11 2 221 0 0 502 0

255 1 0 65 1 12 2 212 5 0 501 1

256 102 53 0 1 1 0 4 0 0 0 0

256 2 2 0 15 35 1 1 0 0 0 0

267 102 54 3 2 1 0 1 0 0 0 0

268 1 0 66 1 22 1 212 11 1 497 0

269 1 0 68 1 22 1 222 8 0 496 1

270 102 54 0 1 1 0 2 0 0 0 0

271 2 1 0 9 35 3 1 16 0 0 0

275 1 0 69 1 22 1 228 0 0 496 0

279 1 0 70 1 22 1 232 -0 0 496 0

282 102 53 3 2 1 0 1 0 0 0 0

283 1 0 71 1 11 2 233 18 1 503 0

283 1 0 72 1 12 2 236 15 1 503 0

285 102 53 0 1 1 0 2 0 0 0 0

285 1 0 74 1 12 2 241 8 0 500 0

286 2 2 0 9 29 2 1 18 0 0 0

289 1 0 75 1 12 2 246 2 0 502 1

296 1 0 80 1 21 1 261 4 0 497 0

297 102 54 3 2 2 0 1 0 0 0 0

299 1 0 81 1 21 1 263 1 0 496 1

300 102 54 3 2 2 0 2 0 0 0 0

302 1 0 73 1 22 1 239 21 1 496 1

303 102 54 0 1 2 0 3 0 0 0 0

303 2 1 0 12 32 3 1 16 0 0 0

306 1 0 76 1 22 1 247 11 1 497 1

307 1 0 79 1 22 1 258 5 0 495 1

313 1 0 77 1 12 2 257 22 1 501 1

314 102 53 4 4 0 0 1 0 0 0 0

318 102 53 4 3 0 0 2 0 0 0 0

320 1 0 78 1 11 2 257 12 1 501 0

322 1 0 82 1 11 2 268 18 1 501 1

322 102 53 0 1 0 0 3 0 0 0 0

323 2 2 0 14 37 2 1 20 0 0 0

323 1 0 85 1 11 2 277 16 0 502 1

325 1 0 86 1 11 2 280 5 0 502 0

326 1 0 87 1 11 2 288 7 0 502 1

100 0 End of HUTSIM Output File

HUTSIM 4.2 Delay File Format:

Ti Ri Di Vi Ty Ap De At Dl St Tr

Ti=Exit time or detector passing time (seconds)

Ri=Row type identifier, vehicle=1

Di=Detector identifier number, 0=no detector=exit

Vi=Vehicle identifier number

Ty=Vehicle type 1..5

Ap=Approach number

De=Destination number

At=Arrival time (seconds)

Di=Delay (seconds)

St=Stop count

Tr=Travel (meters)
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