
Chapter 8

Finding Segmentations of Sequences

Ella Bingham

Abstract We describe a collection of approaches to inductive querying systems for
data that contain segmental structure. The main focus in this chapter is on work
done in Helsinki area in 2004-2008. Segmentation is a general data mining tech-
nique for summarizing and analyzing sequential data. We first introduce the basic
problem setting and notation. We then briefly present an optimal way to accomplish
the segmentation, in the case of no added constraints. The challenge, however, lies
in adding constraints that relate the segments to each other and make the end result
more interpretable for the human eye, and/or make the computational task simpler.
We describe various approaches to segmentation, ranging from efficient algorithms
to added constraints and modifications to the problem. We also discuss topics be-
yond the basic task of segmentation, such as whether an output of a segmentation
algorithm is meaningful or not, and touch upon some applications.

8.1 Introduction

Segmentation is a general data mining technique for summarizing and analyzing
sequential data. It gives a simplified representation of data, giving savings in stor-
age space and helping the human eye to better catch an overall picture of the data.
Segmentation problems arise in many data mining applications, including bioinfor-
matics, weather prediction, telecommunications, text processing and stock market
analysis, to name a few.

The goal in segmentation is to decompose the sequence, such as a time series or
a genomic sequence, into a small number of homogeneous non-overlapping pieces,
segments, such that the data in each segment can be described accurately by a
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simple model. In many applications areas, this is a natural representation and re-
veals the high-level characteristics of the data by summarizing large scale variation.
For example, in a measurement time series, each segment s j could have a different
mean parameter μ j such that the measurement values x in segment s j are modeled
as x = μ j +noise.

Segmentation algorithms are widely used for extracting structure from sequences;
there exist a variety of applications where this approach has been applied [3, 4, 6,
23, 29, 30, 32, 37, 38]. Sequence segmentation is suitable in the numerous cases
where the underlying process producing the sequence has several relatively stable
states, and in each state the sequence can be assumed to be described by a simple
model. Naturally, dividing a sequence into homogeneous segments does not yield a
perfect description of the sequence. Instead, a simplified representation of the data
is obtained — and this is often more than welcome.

One should note that in statistics the question of segmentation of a sequence or
time series is often called the change-point problem.

If no constraints are made between different segments, finding the optimal seg-
mentation can be done for many model families by using simple dynamic program-
ming [2] in O(n2k) time, where n is the length of the sequence and k is the number
of segments. Thus one challenge lies in adding constraints that relate the segments
to each other and make the end result more interpretable for the human eye. Another
challenge is to make the computational task simpler. We will discuss both of these
challenges in this chapter, and many more.

This chapter is a survey of segmentation work done in the Helsinki area: at
Helsinki Institute for Information Technology, which is a joint research institute of
University of Helsinki and Aalto University (part of it formerly known as Helsinki
University of Technology), roughly between the years 2004 and 2008.

Notation. We assume that our data is a d-dimensional sequence T consisting of n
observations, that is, T = 〈t1, . . . , tn〉where ti ∈R

d . A k-segmentation S of T is a par-
tition of 〈1,2, . . . ,n〉 into k non-overlapping contiguous subsequences (segments),
S = 〈s1, . . . ,sk〉 such that si = 〈tb(i), . . . ,
tb(i+1)−1〉 where b(i) is the beginning of the i:th segment. In its simplest case, seg-
mentation collapses the values within each segment s into a single value μs which
is e.g. the mean value of the segment. We call this value the representative of the
segment. Collapsing points into representatives results in a loss of accuracy in the
sequence representation. This loss of accuracy is measured by the reconstruction
error

Ep(T,S) = ∑
s∈S

∑
t∈s
||t−μs||p.

The segmentation problem is that of finding the segmentation minimizing this re-
construction error. In practice we consider the cases p = 1,2. For p = 1, the optimal
representative of each segment is the median of the points in the segment, for p = 2
it is the mean of the points.

Depending on the constraints one imposes on the representatives, one can con-
sider several variants of the segmentation problem, and we will discuss many of
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them later in this chapter. Also, instead of representing the data points in a segment
by a single representative, one can consider simple functions of the data points. Ex-
tensions of the methods presented in this chapter into functional representatives is
often straightforward.

Figure 8.1 shows an example of a signal and its segmentation. In this simple
case, the segments are represented by the mean values of the points belonging to a
segment.
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Fig. 8.1 Left: a signal. Right: the result of segmenting into k = 4 segments. The vertical bars show
the segment boundaries (b(1) = 0, b(2) = 100, b(3) = 150, b(4) = 300). The horizontal lines show
the representatives of the segments which in this case are the mean values of the points in each
segment: μ1 = 10.12, μ2 = 3.85, μ3 = 0.00, μ4 = 5.97.

Optimal segmentation. Let us start by giving the optimal algorithm for solving
the plain segmentation problem. Let Sn,k denote the set of all k-segmentations of
sequences of length n. For some sequence T and error measure Ep, we define the
optimal segmentation as

Sopt(T,k) = arg min
S∈Sn,k

Ep(T,S).

We sometimes write E(S) instead of Ep(T,S) as the dependence of the data T is
obvious, and p is often clear from the context. Finding the optimal segmentation
Sopt for a given T of length n and for given k and Ep can be done in time O(n2k) [2]
by a standard dynamic programming (DP) algorithm. The dynamic programming
algorithm proceeds in an incremental fashion, using a table A of size n× k, where
the entry A[i, �] denotes the error of segmenting the sequence T [1, i] using at most �
segments. Here T [1, i] denotes the subsequence of T that contains all points between
1 and i: T [1, i] = 〈t1, . . . , ti〉. Let E(Sopt(T [ j, i],1)) be the minimum error that can
be obtained for the subsequence T [ j, i] when representing it as one segment. The
computation of the entries of table A is based on the equation ([17, 25] etc.)

A[i, �] = min
1≤ j≤i

(A[ j−1, �−1]+E(Sopt(T [ j, i],1)))
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The table is first initialized with entries A[i,1] = E(Sopt(T [1, i],1)) for all i =
1, . . . ,n. The best k-segmentation is found by storing the choices for j at each step
in the recursion in another table B, and by reconstructing the sequence of choices
starting from B[n,k]. Note that the table B also gives the optimal k-segmentations
for all k′ < k, which can be reconstructed by starting from B[n,k′].

The resulting segmentation is optimal in the sense that the representation error
(8.1) between the original sequence and a piecewise constant representation with k
segments is minimized. A piecewise constant representation is one in which the rep-
resentatives of the segments are constants (in practice, means or medians of the data
points in the segment). In fact, the above algorithm can be used to compute opti-
mal k-segmentations with piecewise polynomial models. In a piecewise polynomial
representation, a polynomial of a given degree is fitted to each segment separately.

We note that the dynamic programming algorithm can also be used in the case
of weighted sequences in which each point is associated with a weight. Then the
representatives are defined to be the weighted representatives.

Related work. There is a large body of work in segmentation algorithms for se-
quential data. Terzi and Tsaparas [43] have found three main approaches to seg-
mentation in the literature:

1. Heuristics for solving a segmentation problem faster than the optimal dynamic
programming algorithm, with promising experimental results but no theoretical
guarantees about the quality of the result.

2. Approximation algorithms with provable error bounds, that is, theoretical upper
bounds for the error compared to the optimal error.

3. New variations of the basic segmentation problem, imposing some modifications
or constraints on the structure of the representatives of the segments.

The majority of the papers published on segmentation fall into Category 1, fast
heuristics. The most popular of these algorithms are the top-down and bottom-up
greedy algorithms. The top-down greedy algorithm is used in e.g. [4, 11, 29, 40]
and briefly discussed in [43]: The algorithm starts with an unsegmented sequence
and introduces a new boundary at every greedy step. That is, in the i-th step the
algorithm introduces the i-th segment boundary by splitting one of the existing i
segments into two. The new boundary is selected in such a way that it minimizes
the overall error. No changes are made to the existing i− 1 boundary points. The
splitting is repeated until the number of segments reaches k. The running time of the
algorithm is O(nk).

In the bottom-up greedy algorithm, each point initially forms a segment of its
own. At each step, two consecutive segments that cause the smallest increase in
the error are merged. The algorithm stops when k segments are formed. The time
complexity of the bottom-up algorithm is O(n logn). The algorithm performs well in
terms of error and it has been used widely in time-series segmentation [18, 35, 43].

Yet another fast heuristics is presented by Himberg et al [23]: two slightly dif-
ferent randomized algorithms that start with a random k-segmentation. At each step
they pick one segment boundary (randomly or in some order) and search for the
best position to put it back. This is repeated until the representation error converges.
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Both algorithms run in time O(In) where I is the number of iterations needed until
convergence.

For the algorithms in Category 1 there is empirical evidence that their perfor-
mance is often very good in practice. However, there are no guarantees of their
worst-case error ratio. This is in contrast to algorithms in Category 2 for which
error bounds can be shown. In Category 2, an interesting contribution is that of
Guha et al [16]: a fast segmentation algorithm with provable error bounds. Terzi
and Tsaparas [43] have a similar motivation but different point of view, and we will
take a closer look at this in Section 8.2. Category 3, variations of the basic segmen-
tation problem, is studied extensively, and several approaches will be described in
the following sections.

Online versions of the segmentation problem have also been studied ([26, 36] and
others). In this setting, new observations arrive continuously in a streaming manner,
making the data a streaming time series.

An interesting restriction on the segmentation problem in the online case is to
require more accuracy in the representation of new observations, as opposed to those
which arrived further away in the past. This representation is called amnesic as the
fidelity of approximation decreases with time, and we are willing to answer queries
about the recent past with greater precision. Palpanas et al [36] use a piecewise
linear segmentation method to this end. The error of the approximation is always
kept under some user-specified, time-dependent threshold.

An abstract framework for the study of streaming time series is recently given by
Gandhi et al [12]. They present theoretical results for the space-quality approxima-
tion bounds. Both data streams, amnesic approximations and out-of-order streams
are discussed in their paper. The case of out-of-order time series will also be dis-
cussed in Section 8.6 but only in the case of non-streaming, offline segmentation.

A task related to segmentation is time series approximation or summarization.
Similarly to the task of segmentation, the goal here is again to simplify the repre-
sentation of a sequence. Classical signal processing approaches to time series ap-
proximation include Discrete Fourier Transform, Discrete Cosine Transform and
Discrete Wavelet Transform; common to these tree methods is that a segment-wise
presentation is not sought but the characteristics of the sequence are represented us-
ing an existing “dictionary” of finer and coarser building blocks. Instead, methods
such as Piecewise Aggregate Approximation [46], Adaptive Piecewise Constant Ap-
proximation [8], Piecewise Linear Approximation [7, 28] and Piecewise Quadratic
Approximation [22] etc. are segmentation methods, and the representatives of the
segments are simple functions of the data points in the segment. An interesting
comparison on all of these methods is given in Palpanas et al. [36], by measuring
their reconstruction accuracy on several real world data sets. A perhaps surprising
result was that there was little difference between all the approaches; similar re-
sults have been reported elsewhere, too [8, 27, 45]. The take-home message in this
respect is that we should not choose the representation method based on approxi-
mation fidelity but rather on other features [36]. This is a guiding principle behind
the methods described in this chapter, too.
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An alternative approach to analyzing sequential data is a Hidden Markov Model
(HMM): the observed data is generated by an unknown process that takes several
(unobserved) states, and different states output different observations. Churchill [9]
was among the first to apply HMMs to sequence segmentation.

Organization. In this chapter, we describe various approaches to segmentation,
ranging from efficient algorithms to added constraints and beyond. We start with
an efficient approximation algorithm with provable error bounds in Section 8.2. In
Sections 8.3 to 8.5 we discuss three different constraints to make the segmentation
result more tractable. Sections 8.6 and 8.7 discuss interesting variations in the basic
problem setting. Sections 8.8 to 8.10 touch upon other topics related to segmenta-
tion, such as determining the goodness of an output of a segmentation algorithm,
model selection issues, and bursty event sequences. Finally, Section 17.7 gives a
brief conclusion.

8.2 Efficient Algorithms for Segmentation

In the general case, an optimal segmentation for a sequence can be found using
dynamic programming [2] in O(n2k) time, where n is the length of the sequence
and k is the number of segments. In practice, sequences are typically very long,
and a quadratic algorithm is seldom adequate. Faster heuristics with O(n logn) or
O(n) running time have been presented (see Section 16.1), but there are often no
guarantees of the quality of the solutions they produce.

Instead, Terzi and Tsaparas [43] have presented a constant-factor approximation
algorithm whose optimal running time is O(n4/3k5/3), called the divide and segment
(DnS) algorithm. The error of the segmentation it produces is provably no more
than 3 times that of the optimal segmentation; we thus say that the approximation
ratio is 3. The main idea of the algorithm is to divide the problem into smaller
subproblems, solve the subproblems optimally and combine their solutions to form
the final solution:

• The algorithm starts by partitioning the sequence T into m disjoint subsequences
Ti (of equal length, typically).

• Then each Ti is segmented optimally by dynamic programming, yielding a seg-
mentation Si and a set Mi of k weighted points Mi = 〈μi1, . . . ,μik〉: these are the
representatives of the segments (means or medians), weighted by the length of
the segment they represent.

• All the mk representatives of the m subsequences are concatenated to form the
weighted sequence T ′ = 〈μ11, . . . ,μ1k,μ21, . . . ,μmk〉, and dynamic programming
is then applied on T ′, outputting the final segmentation.

Assuming that the subsequences are of equal length, the running time of the al-
gorithm depends on m, the number of subsequences. The optimal running time is
2n4/3k5/3 and it is achieved at m = (n/k)2/3 [43].
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Terzi and Tsaparas [43] also explore several more efficient variants of the algo-
rithm and quantify the accuracy/efficiency tradeoff. More specifically, they present
a recursive application of the DnS algorithm, resulting in a faster algorithm with
O(n log logn) running time and O(logn) approximation ratio. All presented algo-
rithms can be made to use a sublinear amount of memory, making them applicable
to the case when the data needs to be processed in a streaming fashion (not stored
in main memory). Assuming that one has an estimate of n, the size of the sequence,
then the algorithm processes the points in batches of size n/m. For each such batch
it computes the optimal k-segmentation, and stores the representatives. The space
required is M = n/m+mk and this is minimized for m =

√
n/k, resulting in space

M = 2
√

nk.
Extensive experiments on both real and synthetic datasets demonstrate that in

practice their algorithms perform significantly better than the worst-case theoretical
upper bounds, in terms of reconstruction error. Also, the algorithms perform con-
sistently better than fast heuristic algorithms, and the computational costs are com-
parable [43]. The synthetic datasets are generated by first fixing the dimensionality
of the data (d = 1,5,10) and the segment boudaries (k = 10), and then drawing the
mean of each segment in each dimension from a Uniform distribution, and adding
Gaussian noise whose standard deviation varies from 0.05 to 0.9. The real datasets
balloon, darwin, winding, xrates and phone are from the UCR Time Series Data
Mining Archive1.

8.3 Dimensionality Reduction

Let us then start discussing the various constraints and modifications we add to the
problem of segmentation to make the end result more tractable. The first natural
constraint that we wish to incorporate in the segmentation arises from dimensional-
ity reduction in multidimensional time series: the multidimensional mean parame-
ters μ j of the segments should lie within a subspace whose dimensionality is smaller
than that of the original space.

Bingham et al. [5] have stated the problem as follows. Given a multidimensional
time series, find a small set of latent variables and a segmentation of the series such
that the data in each segment can be explained well by some (linear) combination
of the latent variables. We call this problem the basis segmentation problem.

Our problem formulation allows decomposing the sequences into segments in
which the data points are explained by a model unique to the segment, yet the whole
sequence can be explained adequately by the vectors of the basis.

Following the notation presented in Section 16.1, our data is a sequence consist-
ing of n observations of d-dimensional vectors. For convenience, we now stack the
vectors into a matrix X that contains in its rows the n observations, each of which

1 http://www.cs.ucr.edu/˜eamonn/TSDMA/
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is d-dimensional, so X is an n×d matrix. As previously, the n observations will be
partitioned into k segments S = 〈s1, . . . ,sk〉.

We will consider basis-vector representations of the data. We denote by V =
{v1, . . . ,vm} the set of m basis vectors v� ∈ R

d , � = 1, . . . ,m. The number of basis
vectors m is typically significantly smaller than the dimensionality d of the data
points. In matrix form, V is an m×d matrix containing the basis vectors as its rows.
Also, for each segment S j we have a set of coefficients a j� ∈ R for �= 1, . . . ,m that
tell us how to represent the data using the basis vectors in V . In matrix notation,
A = (a j�) is a k×m matrix of coefficients. V and A will be found by Principal
Component Analysis (PCA, discussed more in the sequel).

We approximate the sequence with piecewise constant linear combinations of the
basis vectors, i.e., all observations in segment s j are represented by a single vector

u′j =
m

∑
�=1

a j�v�. (8.1)

The problem we consider is the following.

Problem 8.1. Denote by j(i) ∈ {1, . . . ,k} the segment to which point i belongs.
Given a sequence T = 〈t1, . . . , tn〉, and integers k and m, find a basis segmentation
(S,V,A) that uses k segments and a basis of size m, so that the reconstruction error

E(T ;S,V,A) =
n

∑
i=1
||ti−u′j(i)||2

is minimized. The constant vector u′j(i) for approximating segment S j is given by
Equation (8.1).

To solve the basis segmentation problem, we combine existing methods for se-
quence segmentation and for dimensionality reduction: (i) k-segmentation by dy-
namic programming, discussed in Section 16.1, and (ii) Principal Component Anal-
ysis (PCA), one of the most commonly used methods for dimensionality reduction.
Given a matrix Z of size n× d with data points as rows, the goal in PCA is to find
a subspace of dimension r < d so that the residual error of the points of Z projected
onto the subspace is minimized. The PCA algorithm computes a matrix Y of rank r,
and the decomposition Y = AV of Y into the orthogonal basis V of size r, such that

Y = argmin
rank(Y ′)≤r

||Z−Y ′||

which holds for all matrix norms induced by Lp vector norms. PCA is typically
accomplished by Singular Value Decomposition (SVD) on the data matrix Z. The
basis vectors v1, . . . ,vm are the right singular vectors of the data matrix.

We suggest three different algorithms for solving the basis segmentation prob-
lem, all of which combine k-segmentation and PCA in different ways:

• Seg-PCA: First partition into k segments in the full d-dimensional space, to ob-
tain segments S = 〈s1, . . .sk,〉 and d-dimensional vectors u1, . . . ,uk representing
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the points in each segment. Then consider the set US = {(u1, |s1|), . . . ,(uk, |sk|)}
where each vector u j is weighted by |s j|, the length of segment s j. Perform PCA
on the set of weighted points US, outputting for each segment vector u j an ap-
proximate representation u′j as in (8.1). Bingham et al [5] show that the Seg-PCA
algorithm yields a solution to the basis segmentation problem such that the recon-
struction error is at most 5 times the reconstruction error of the optimal solution.
Experiments demonstrate that in practice, the approximation ratios are smaller
than 5.

• Seg-PCA-DP: First segment into k segments, then find a basis of size m for the
segment means, similarly to above. Then refine the segmentation boundaries by
using the discovered basis by a second application of dynamic programming. As
the first two steps of the algorithm are identical to the Seg-PCA algorithm, and
the last step can only improve the cost of the solution, the same approximation
ratio of 5 holds also for Seg-PCA-DP.

• PCA-Seg: First do PCA to dimension m on the whole data set. Then obtain the
optimal segmentation of the resulting m-dimensional sequence. This gives com-
putational savings, as the segmentation is not performed on a high-dimensional
space.

Experiments on synthetic and real datasets show that all three algorithms discover
the underlying structure in the data [5]. Prototype implementations are available to
the public at http://www.cs.helsinki.fi/hiit_bru/software/.

A somewhat related problem setting, restricting the complexity of the represen-
tatives of the segments, will be considered in the next section.

8.4 Recurrent Models

Whereas in Section 8.3 we represented the segments as different combinations of a
small set of global basis vectors, we now wish to use a small set of models to predict
the data values in the segments.

Often in a sequence with segmental structure, similar types of segments occur
repeatedly: different models are suitable in different segments. For example, high
solar radiation implies clear skies, which in the summer means warm temperatures
and in the winter cold ones. As another example, the inheritance mechanism of re-
combinations in chromosomes mean that a genome sequence can be explained by
using a small number of ancestral models in a segment-wise fashion. In these ex-
amples, the model used to explain the target variable changes relatively seldom, and
has a strong effect on the sequence. Moreover, the same models are used repeatedly
in different segments: the summer model works in any summer segment, and the
same ancestor contributes different segments of the genome.

In an earlier contribution by Gionis and Mannila [13], the idea for searching for
recurrent models was used in the context of finding piecewise constant approxima-
tions in the so called (k,h) segmentation problem. In their paper it was assumed that
the sequence can be segmented into k pieces, of which only h are distinct. In other
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words, there are h hidden sources such that the sequence can be written as a concate-
nation of k > h pieces, each of which stems from one of the h sources. This problem
was shown to be NP-hard, and approximate algorithms were given [13]. The “Seg-
ments2Levels” algorithm runs in time O(n2(k+h)) and gives a 3-approximation for
p = 1,2 for dimension 1. For higher dimensions, the approximation guarantees are
3+ε for p = 1 and α +2 for p = 2 where α is the best approximation factor for the
k-means problem. The “ClusterSegments” algorithm yields approximation ratios 5
and

√
5 for p = 1 and 2, respectively; the running time is again O(n2(k+ h)). The

“Iterative” algorithm is inspired by the EM algorithm and provides at least as good
approximations as the two previous ones. Its running time is O(In2(k+h)) where I
is the number of iterations.

The goal in (k,h) segmentation is similar to, although the technique is different
from, using a Hidden Markov Model (HMM) to sequence segmentation, originally
proposed by Churchill [9].

In a new contribution by Hyvönen et al [25], this approach was used to arbitrary
predictive models, which requires considerably different techniques than those in
(k,h) segmentation [13]. To find such recurrent predictive models, one must be able
to do segmentation based not on the target to be predicted itself, but on which model
can be used to predict the target variable, given the input measurements. The appli-
cation areas discussed above, the temperature prediction task and ancestral models
in a genome sequence, call for such a recurrent predictive model.

Given a model class M , the task is to search for a small set of h models from
M and a segmentation of the sequence T into k segments such that the behavior of
each segment is explained well by a single model. It is assumed that h < k, i.e., the
same model will be used for multiple segments. More precisely, the data D = (T,y)
consist of a multidimensional sequence T = 〈t1, . . . , tn〉, ti ∈ R

d and corresponding
scalar outcome values y = 〈y1, . . . ,yn〉, yi ∈R. We denote a subsequence of the input
sequence between the i-th and j-th data point as D[i, j]. A model M is a function
M : Rd → R that belongs to a model class M . Given a subsequence D[i, j] and a
model M ∈M the prediction error of M on D[i, j] is defined as

E(D[i, j],M) =
j

∑
�=i
||M(t�)− y�||2. (8.2)

For many commonly used model classes M one can compute in polynomial time
the model M∗ ∈M that minimizes the error in (8.2). For example, for the class of
linear models, the optimal model can be found using least squares. For probabilistic
models one can estimate the maximum likelihood model. For some model classes
such as decision trees, finding the optimal model is computationally difficult, but
efficient heuristics exist. It is thus assumed that one can always find a good model
for a given subsequence.

One should note that the task of predicting a given output value yi for a multi-
dimensional observation ti using a model M ∈M is now different from the basic
segmentation task in which the “output” or the representative of the segment is not
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given beforehand. In the latter, the task is to approximate the sequence rather than
predict.

Now, let us first define the “easy” problem:

Problem 8.2. Given an input sequence D, a model class M , and a number k, parti-
tion D into k segments D1, . . . ,Dk and find corresponding models M1, . . . ,Mk ∈M
such that the overall prediction error ∑k

j=1 E(D j,Mj) is minimized.

The above problem allows for different models in each of the k segments. Our
interest, however, is in the recurrent predictive modeling problem which is a more
demanding task in that it only allows for a small number of h distinct models, h < k.
Thus, some of the models have to be used in more than one segment. More formally,
we define the following problem.

Problem 8.3. Consider a sequence D, a model class M , and numbers k and h, h< k.
The task is to find a k-segmentation of D into k segments D1, . . . ,Dk, h models
M1, . . . ,Mh ∈M , and an assignment of each segment j to a model Mm( j), m( j) ∈
{1, . . . ,h} so that the prediction error ∑k

j=1 E(D j,Mm( j)) is minimized.

For any but the simplest model class the problem of finding the best h models is
an NP-hard task, so one has to resort to approximate techniques.

Given a sequence D and a class of models M , dynamic programming [2] is
first used to find a good segmentation of the sequence into k segments. Thus each
segment will have its unique predictive model. The method for finding the model
describing a single segment depends, of course, on the model class M . After that,
from the k models found in the segmentation step, one selects a smaller number of h
models that can be used to model well the whole sequence. In case parameters k and
h can be fixed in advance, selecting a smaller number of models is treated as a clus-
tering problem, and solved using the k-median [31] or k-means algorithm. Finally,
an iterative improvement algorithm that is a variant of the EM algorithm is applied:
iteratively fit the current models more accurately in the existing segments, and then
find a new segmentation given the improved models. The iteration continues until
the error of the solution does not improve any more.

In the more general case, the parameters k and h are not given, but need to be
determined from the data. This model selection problem is addressed using the
Bayesian Information Criterion (BIC). Selecting a smaller number of models is
again a clustering problem, and using the facility location approach [24] one only
has to iterate over the number of segments k: For each value of k, the correspond-
ing value of h that minimizes the BIC score is automatically selected by the facility
location algorithm.

In [25] the method of recurrent models was applied to two sets of real data, mete-
orological measurements, and haplotypes in the human genome. The experimental
results showed that the method produces intuitive results. For example, in a tem-
perature prediction task, the meteorological time series consisting of 4 consecutive
winters and 3 summers was first found to contain k = 7 segments — not perhaps
surprisingly — and these 7 segments were found to be generated by h = 2 recurring
models, a winter model and a summer model.
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8.5 Unimodal Segmentation

We will discuss another restriction of the basic segmentation problem. In unimodal
segmentation, the representatives of the segments (for example, means or medians)
are required to follow a unimodal curve: the curve that is formed by all representa-
tives of the segments has to change curvature only once. That is, the representatives
first increase until a certain point and then decrease during the rest of the sequence,
or the other way round. A special case is a monotonic curve. Examples of unimodal
sequences include (i) the size of a population of a species over time, as the species
first appears, then peaks in density and then dies out or (ii) daily volumes of network
traffic [18].

In contrast to other segmentation methods discussed in this chapter, the sequence
now takes scalar values instead of multidimensional values. Haiminen and Gionis
[18] show how this problem can be solved by combining the classic “pool adjacent
violators” (PAV) algorithm [1] and the basic dynamic programming algorithm [2]
(see Section 16.1). The time complexity of their algorithm is O(n2k) which is the
same as in the unrestricted k-segmentation using dynamic programming.

Haiminen and Gionis [18] also describe a more efficient greedy-merging heuris-
tic that is experimentally shown to give solutions very close to the optimal, and
whose time complexity is O(n logn): the expensive dynamic programming step is
replaced with a greedy merging process that starts with m segments and iteratively
merges the two consecutive segments that yield the least error, until reaching k seg-
ments.

The authors in [18] also give two tests for unimodality of a sequence. The first ap-
proach compares the error of an optimal unimodal k-segmentation to the error of an
optimal unrestricted k-segmentation. If the sequence exhibits unimodal behaviour,
then the error of its unimodal segmentation does not differ very much from the error
of its unrestricted segmentation — in other words, requiring for unimodality did not
hurt. Instead, if the sequence is not unimodal in nature, then forcing the segments to
follow a unimodal curve will increase the representation error. The authors compute
the ratio between the error of unrestricted k-segmentation and the error of unimodal
segmentation and find a data-dependent threshold value that helps to differentiate
between unimodal and non-unimodal sequences.

The second approach for testing for unimodality is to randomly permute the uni-
modal segments in the data, and to see if the error of unimodal k-segmentation on
the permuted sequence is comparable to the error on the original sequence — the
random permutation will destroy the unimodal structure of the sequence, if such
exists. If the original sequence was indeed unimodal, then the error of the permuted
sequences should be larger in a statistically significant way.

After discussing three different restrictions on the representatives of the segments
in Sections 8.3, 8.4 and 8.5, we then turn to other modifications of the basic problem
of sequence segmentation in the next section.
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8.6 Rearranging the Input Data Points

The majority of related work on segmentation primarily focuses on finding a seg-
mentation S of a sequence T taking for granted the order of the points in T . However,
more often than not, the order of the data points of a sequence is not clear-cut but
some data points actually appear simultaneously or their order is for some other
reason observed only approximately correctly. In such a case it might be beneficial
to allow for a slight rearrangement of the data points, in order to achieve a better
segmentation. This was studied by Gionis and Terzi [15]: in addition to partition-
ing the sequence they also apply a limited amount of reordering, so that the overall
representation error is minimized.

The focus now is to find a rearrangement of the points in T such that the seg-
mentation error of the reordered sequence is minimized. The operations used to re-
arrange an input sequence consist of bubble-sort swaps and moves (single-element
transpositions). The task is to find a sequence of operations O minimizing the re-
construction error on the reordered input sequence TO:

O = argmin
O′

E(Sopt(TO′ ,k))

where Sopt(T,k) is the optimal segmentation of T into k segments, and there is an
upper limit on the number of operations: |O| ≤C for some integer constant C.

The problem of segmentation with rearrangements is shown to be NP-hard to
solve or even approximate. However, efficient algorithms are given in [15], com-
bining ideas from linear programming, dynamic programming and outlier-detection
algorithms in sequences. The algorithms consist of two steps. In the first step, and
optimal segmentation S of the input sequence T into k segments is found. In the
second step, a good set of rearrangements is found, such that the total segmentation
error or the rearranged sequence is minimized. The latter step, the rearrangement,
can be done in several ways, and the authors discuss the task in detail. In one pos-
sible formulation, the rearrangement task is a generalization of the well known NP-
hard Knapsack problem for which a pseudopolynomial-time algorithm is admittable
[44]. For the special case of bubble-sort swaps only, or moves only, a polynomial-
time algorithm for the rearrangement is obtained. The authors also present a greedy
heuristic with time complexity O(Ink) where I is the number of iterations of the
greedy algorithm in [15].

The problem formulation has applications in segmenting data collected from a
sensor network where some of the sensors might be slightly out of sync, or in the
analysis of newsfeed data where news reports on a few different topics are arriving
in an interleaved manner. The authors show experiments on both synthetic data sets
and on several real datasets from the UCR time series archive2.

2 http://www.cs.ucr.edu/˜eamonn/TSDMA
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8.7 Aggregate Segmentation

Whereas in Section 8.6 we refined the input data, we now turn our attention to the
output of one or more segmentation algorithms.

A sequence can often be segmented in several different ways, depending on the
choice of the segmentation algorithm, its error function, and in some cases, its ini-
tialization. The multitude of segmentation algorithms and error functions naturally
raises the question: given a specific dataset, what is the segmentation that best cap-
tures the underlying structure of the data?

Thus a natural question is, given a number of possibly contradicting segmenta-
tions, how to produce a single aggregate segmentation that combines the features of
the input segmentations.

Mielikäinen et al [33] adopt a democratic approach that assumes that all segmen-
tations found by different algorithms are correct, each one in its own way. That is,
each one of them reveals just one aspect of the underlying true segmentation. There-
fore, they aggregate the information hidden in the segmentations by constructing a
consensus output that reconciles optimally the differences among the given inputs.

Their approach results in a proof that for a natural formalization of this task,
there is an optimal polynomial-time algorithm, and a faster heuristic that has good
practical properties. The algorithms were demonstrated in two applications: cluster-
ing the behavior of mobile-phone users, and summarizing different segmentations
of genomic sequences.

More formally, the input is a set of m different segmentations S1, . . . ,Sm, and
the objective is to produce a single segmentation Ŝ that agrees as much as possible
with the input segmentations. The number of segments in Ŝ is learned during the
process. In the discrete case a disagreement between two segmentations S and S′ is
defined as a pair of points (x,y) placed in the same segment by S but in different
segments by S′, or vice versa. Denoting the total number of disagreements between
the sequences S and S′ by DA(S,S′), the formal objective is to minimize

m

∑
j=1

DA(S j, Ŝ),

the grand total number of disagreements between the input segmentations S j and
the output segmentation Ŝ. In the continuous case, disagreements are defined simi-
larly for intervals instead of discrete points. The polynomial-time exact algorithm is
based on the technique of dynamic programming [2], and the approximation algo-
rithm on a greedy heuristic.

Segmentation aggregation can prove useful in many scenarios. We list some of
them below, suggested by Mielikäinen et al [33].

In the analysis of genomic sequences of a population one often assumes that
the sequences can be segmented into blocks such that in each block, most of the
haplotypes fall into a small number of classes. Different segmentation algorithms
have successfully been applied to this task, outputting slightly or completely differ-
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ent block structures; aggregating these block structures hopefully sheds light on the
underlying truth.

Segmentation aggregation adds to the robustness of segmentation results: most
segmentation algorithms are sensitive to erroneous or noisy data, and thus combin-
ing their results diminishes the effect of missing or faulty data.

Segmentation aggregation also gives a natural way to cluster segmentations: the
representative of a cluster of segmentations is then the aggregate of the cluster. Fur-
thermore, the disagreement distance is now a metric, allowing for various distance-
based data mining techniques, together with approximation guarantees for many of
them.

Other scenarios where segmentation aggregation can prove useful include seg-
mentation of multidimensional categorical data and segmentation of multidimen-
sional data having both nominal and numerical dimensions; summarization of event
sequences; and privacy-preserving segmentations [33].

In this section we assessed and improved the quality of the output of the segmen-
tation by aggregating the output of several segmentation methods. A related point
of view is to assess the quality of the segmentations by measuring their statistical
significance — this nontrivial task will be considered in Section 8.8.

8.8 Evaluating the Quality of a Segmentation: Randomization

An important question is how to evaluate and compare the quality of segmentations
obtained by different techniques and alternative biological features. Haiminen et al
[20] apply randomization techniques to this end.

Consider a segmentation algorithm that given as input a sequence T outputs a
segmentation P. Assume that we a priori know a groundtruth segmentation S∗ of T .
Then, we can say that segmentation P is good if P is similar to S∗. In more exact
terms, P is a good segmentation if the entropy of P given S∗, H(P | S∗), and the
entropy of S∗ given P, H(S∗ | P), are small. However, a natural question is, how
small is small enough?

Before we proceed, let us give some more details on the notation. Consider a
segmentation P consisting of k segments P = 〈p1, . . . , pk〉. If we randomly pick a
point t on the sequence, then the probability t ∈ pi is Pr(pi) = |pi|/n where n is the
length of the sequence. The entropy of a segmentation P is now

H(P) =−
k

∑
i=k

Pr(pi) logPr(pi).

The maximum value that the entropy of a segmentation can have is logn, and this
value is achived when all segments are of equal length and thus the probabilities of
a random point belonging to any of the segments are equal.

Consider now a pair of segmentations P and Q of sequence S. Assume that P and
Q have kp and kq segments, respectively: P = 〈p1, . . . , pkp〉 and Q = 〈q1, . . . ,qkq〉.
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The conditional entropy [10] of P given Q is defined as

H(P | Q) =
kq

∑
j=1

Pr(q j)H(P | q j)

= −
kq

∑
j=1

Pr(q j)
kp

∑
i=1

Pr(pi | q j) logPr(pi | q j)

= −
kq

∑
j=1

kp

∑
i=1

Pr(pi,q j) logPr(pi | q j)

That is, the conditional entropy of segmentation P given segmentation Q is the ex-
pected amount of information we need to identify the segment of P into which a
point belongs, given that we know the segment of this point in Q.

Haiminen et al [20] give an efficient algorithm for computing the conditional
entropies between two segmentations: Denote by U the union of two segmentations
P and Q, that is, the segmentation defined by the segment boundaries that appear in
P or in Q. The conditional entropy of P given Q can be computed as H(P | Q) =
H(U)−H(Q). The algorithm runs in time O(kp + kq).

Let us now return to our original problem setting: Assuming we know a groundtruth
segmentation S∗ of T , then P is a good segmentation if H(P | S∗) and H(S∗ | P) are
small. But how small is small enough? Or, is there a threshold in the values of the
conditional entropies below which we can characterize the segmentation P as being
correct or interesting? Finally, can we set this threshold universally for all segmen-
tations?

The generic methodology of randomization techniques (see [14], [34] among
others) that are devised to answer these questions is the following. Given a seg-
mentation P and a ground-truth segmentation S∗ of the same sequence, we first
compute H(P | S∗) and H(S∗ | P). We compare the values of these conditional en-
tropies with the values of the conditional entropies H(R | S∗) and H(S∗ | R) for a
random segmentation R. We conclude that P is similar to S∗, and thus interesting, if
the values of both H(P | S∗) and H(S∗ | P) are smaller than H(R | S∗) and H(S∗ | R),
respectively, for a large majority of random segmentations R. Typically, 10 000 or
100 000 random segmentations are drawn, and if H(P | S∗) < H(R | S∗) in all but
a couple of cases, then P is deemed interesting. The percentage of cases violating
H(P | S∗) < H(R | S∗) can be interpreted as a p value, and a small value denotes
statistical significance.

The example applications in [20] include isochore detection and the discovery
of coding-noncoding structure. The authors obtain segmentations of relevant se-
quences by applying different techniques, and use alternative features to segment
on. They show that some of the obtained segmentations are very similar to the un-
derlying true segmentations, and this similarity is statistically significant. For some
other segmentations, they show that equally good results are likely to appear by
chance.
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8.9 Model Selection by BIC and Cross-validation

One of the key questions in segmentation is choosing the number of segments to use.
Important features of the sequence may be lost when representing it with too few
segments, while using too many segments yields uninformative and overly complex
segmentations.

Choosing the number of segments is essentially a model selection task. Haimi-
nen and Mannila [19] present extensive experimental studies on two standard model
selection techniques, namely Bayesian Information Criterion (BIC) and cross-
validation (CV).

Bayesian Information Criterion (BIC) seeks a balance between model complex-
ity and the accuracy of the model by including a penalty term for the number of
parameters. BIC is defined as [39] BIC =−2lnL+K lnN +C where L is the maxi-
mized likelihood of the model with K free parameters, N is the sample size and C is
a small constant that is often omitted. The model with the smallest BIC is optimal
in terms of complexity.

Cross-validation is an intuitive iterative method for model selection: A subset of
the data is used to train the model. The goodness of fit on the remaining data, also
called test data, is then evaluated. This is repeated for a number of times, in each of
which the data are randomly split into a training set and test set. In an outer loop, the
complexity of the model (here, the number of segments) is varied. When the model
complexity is unnecessarily high, the model overfits the training data and fails to
represent the test data. Alternatively, if the model complexity is too low, the test
data cannot be faithfully represented either. CV is a very general method in that no
assumptions regarding the data are made, and any cost function can be used. The
use of CV has been discussed by e.g. Stone [42] and Smyth [41].

The results in [19] show that these methods often find the correct number of
piecewise constant segments on generated real-valued, binary, and categorical se-
quences. Also segments having the same means but different variances can be iden-
tified. Furthermore, they demonstrate the effect of linear trends and outliers on the
results; both phenomena are frequent in real data.

The results indicate that BIC is fairly sensitive to outliers, and that CV in general
is more robust. Intuitive segmentation results are given for real DNA sequences with
respect to changes in their codon, G+C, and bigram frequencies, as well as copy-
number variation from CGH data.

8.10 Bursty Sequences

In the earlier sections, we have assumed some specific constraints on the segments,
making the problem more applicable to the human eye. Haiminen et al [21] have also
studied constraining the nature of the sequence itself, outside the task of segmenting
the sequence. An intuitive subset of sequences is one in which bursts of activity
occur in time, and a natural question then is, how to formally define and measure
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this. The problem setting applies to event sequences: Given a set of possible event
types, an event sequence is a sequence of pairs (r, t), where r is an event type and t is
the occurrence location, or time, of the event. Moreover, a bursty event sequence is
one in which “bursts” of activity occur in time: different types of events often occur
close together.

Bursty sequences arise, e.g., when studying potential transcription factor binding
sites (events) of certain transcription factors (event types) in a DNA sequence. These
events tend to occur in bursts. Tendencies for co-occurrence of binding sites of two
or more transcription factors are interesting, as they may imply a co-operative role
between the transcription factors in regulatory processes.

Haiminen et al [21] measure the co-occurrence of event types r and r′ either by
(i) dividing the sequence into non-overlapping windows of a fixed length w and
counting the number of windows that contain at least one event of type r and at
least one event of type r′, or by (ii) counting the number of events of type r that are
followed by at least one event of type r′ within distance w, or by (iii) counting the
number of events of type r that are followed or preceded by at least one event of
type r′ within distance w.

In order to determine the significance of a co-occurrence score, we need a null
model to estimate the distribution of the score values and then decide the signifi-
cance of an individual value. Haiminen et al [21] define three such null models that
apply to any co-occurrence score, extending previous work on null models. These
models range from very simple ones to more complex models that take the bursti-
ness of sequences into account. The authors evaluate the models and techniques
on synthetic event sequences, and on real data consisting of potential transcription
factor binding sites.

8.11 Conclusion

In this chapter, we have discussed several variants of the problem of sequence seg-
mentation. An optimal segmentation method, applicable when no specific restric-
tions are assumed, is segmentation using dynamic programming [2]. However, this
is computationally burdensome for very long sequences. Also, it is often the case
that by adding some constraints on the output segmentation, or by making small
modifications to the problem, the output of the segmentation is more interpretable
for the human eye. This chapter is a survey of different approaches for segmentation
suggested by researchers at Helsinki Institute for Information Technology during the
years 2004 to 2008.

In Section 8.2 we described an efficient segmentation method, with a proven
quality of the solution it provides when representing the original data [43]. We then
discussed three constraints on the problem setting of segmentation, to make the
end result more tractable, in Sections 8.3 to 8.5. Using these constraints we wish to
restrict the values that the representatives (that is, means or medians, typically) of the
segments can assume. First, the representatives of multidimensional segments can
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be presented as different combinations of a small set of basis vectors [5]. Secondly,
a small set of models can be used to predict the data values in the segments [25].
Thirdly, one can require the representatives of the sequences to follow a unimodal
or monotonic curve [18].

Then, instead of constraints on the representatives per se, we discussed small
modifications to the basic problem setting in Sections 8.6 and 8.7: By allowing small
reorderings of the data points in a sequence, we can decrease the reconstruction error
of the segmentation, and in some application areas these reorderings are very natural
[15]. In some cases there is a need to choose between several different outputs of
segmentation algorithms, and a way to overcome this is to combine the outputs
into one aggregate segmentation [33]. A very important and nontrivial task is to
characterize the quality of a segmentation in statistical terms, and randomization
provides an answer here [20] (Section 8.8). Choosing the number of segments is
a question of model selection, and experimental results were discussed in Section
8.9 [19]. Finally in Section 8.10, instead of constraining the representatives of the
sequences, we constrained the nature of the sequence itself, when determining when
an event sequence is bursty or not [21].
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