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ABSTRACT

This thesis considers the problem of finding latent structure in high dimensional data. It
is assumed that the observed data are generated by unknown latent variables and their
interactions. The task is to find these latent variables and the way they interact, given the
observed data only. It is assumed that the latent variables do not depend on each other but
act independently.

A popular method for solving the above problem is independent component analysis (ICA). It
is a statistical method for expressing a set of multidimensional observations as a combination
of unknown latent variables that are statistically independent of each other. Starting from
ICA, several methods of estimating the latent structure in different problem settings are
derived and presented in this thesis. An ICA algorithm for analyzing complex valued signals
is given; a way of using ICA in the context of regression is discussed; and an ICA-type
algorithm is used for analyzing the topics in dynamically changing text data. In addition
to ICA-type methods, two algorithms are given for estimating the latent structure in binary
valued data. Experimental results are given on all of the presented methods.

Another, partially overlapping problem considered in this thesis is dimensionality reduction.
Empirical validation is given on a computationally simple method called random projection:
it does not introduce severe distortions in the data. It is also proposed that random projection
could be used as a preprocessing method prior to ICA, and experimental results are shown
to support this claim.

This thesis also contains several literature surveys on various aspects of finding the latent
structure in high dimensional data.
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Chapter 1

About the thesis

1.1 Scope of the thesis

This doctoral thesis considers the problem of finding latent structure in high dimensional
data. Here the term latent means hidden, unknown or unobserved; the term structure
refers to some regularities in the data; high dimensional may be tens or tens of thousands of
dimensions, depending on the situation; and data is any information that can be transformed
into numerical values, most often represented as a matrix of multidimensional observations
where each dimension corresponds to a variable whose value we can somehow measure. The
aims in this thesis are to answer the question “What is there in the data?”, to form a simple
representation of a large data set that is difficult to analyze as such, and to present the data
in a form that is understandable to a human observer.

Throughout the thesis, it will be assumed that the observed data are generated by interactions
between latent variables. The objective is to find out what these latent variables are and
how they interact — this is the key to understanding what the data are about. The latent
variables will be called components, sources or topics: the data are composed of these latent
variables, or the latent variables are the sources of variability in the data, or in particular in
text document data the latent variables are the topics of discussion. Depending on the point
of view, the “structure” in the data we referred to in the beginning is either due to the values
taken by the latent variables or due to the way the latent variables interact. Throughout this
thesis, we will assume that there are no inherent dependencies between the latent variables.

In addition to revealing the latent structure in high dimensional data, another aim of this
thesis is to present ways of reducing the dimensionality of the data. This aim overlaps
partially with the first one: we wish to transform the data into a denser representation and
only retain the most important aspects of the data.

Let us present an example of the problem of finding latent structure in the data. A popular
example is the so called cocktail party problem: Imagine a room full of people discussing
with each other. A few microphones, located at different positions in the room, collect the
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sounds of mixed human voices and possible external noises. An outsider listening to the
mixtures of sounds recorded by the microphone cannot decipher what was actually discussed
in the room. The task now is to decompose the mixtures of sounds back into their original
form, that is, human voices and external noises. These original sounds are called the latent
sources, as they are “hidden” from the outsider listener. The task is often referred to as
source separation. The computational methods discussed later in this thesis are aimed at
solving problems similar to this one.

Although the above example is old and frequently cited, it is repeated here because it suits
nicely some of the specific contributions of this thesis. Firstly, the sounds arriving at the
microphones are more or less delayed and may contain echoes from nearby walls. This poses
additional problems in decomposing the mixtures of sounds. One way to overcome these
problems will be discussed in Chapter 3 of the thesis. Secondly, imagine that instead of
people speaking, we observe their written conversations. A chat room in the Internet is like
a big cocktail party where lots of people discuss different topics simultaneously. Again, an
outsider cannot at first sight understand what people are discussing, as different discussions
get intertwined as they appear on the computer screen. This problem is tackled in Chapters 5
and 6 of the thesis where we present methods for finding out the latent topics of a discussion.

In short, the methods discussed in this thesis estimate the structure in the data by finding
latent components whose interactions might have generated the data. We do not know which
these latent components might be, neither do we know about the exact way they interact.
Nevertheless, we are willing to assume that there are indeed some interactions, so that a
typical observation is not generated by one latent component only. To cast more light on
this, it may be helpful to contrast our approach with two well-known and different ones.

First, the methods used to analyze the data in this thesis are unsupervised in contrast to
supervised; that is, there is no teacher telling us whether our decomposition is correct or
not. No labeled examples, with known input values and corresponding output values1 or
with a known input-output structure, are given for building a model of the data. Instead,
the unsupervised methods try to infer the structure of the data simply by looking at the
values taken by the observed variables. Often it is even the case that no “correct” solution
or structure exists and we can only try to give a “good enough” characterization of the data.
Then the essential question is, how to characterize the goodness in a strict mathematical
sense.

Second, a popular way of presenting the structure in high dimensional data is clustering:
either the observed data points or the observed variables are organized into groups. We will
not study the basic problem of clustering in this thesis. In a clustering problem, it is assumed
that each observation (similarly, each observed variable) belongs to exactly one cluster. In
contrast, we wish to allow the generation of an observation by several latent variables si-
multaneously; using the terminology of clustering, we allow an observation (similarly, an
observed variable) to belong to several clusters simultaneously. Also, in a basic clustering
setting, the focus is either on clustering the observations or the observed variables. In our
setting, the latent structure of the data gives rise to both the observations and the observed
variables, and in a way we are clustering both of them simultaneously.

1To be exact, labeled examples of predictor and predicted variables are used in the regression problem
discussed in Chapter 4, as those are an essential element of regression estimation. Nevertheless, the structure
in the data is unknown in this case, too.
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In this thesis, the main method for analyzing latent structure in the data is independent
component analysis (ICA), described in Chapter 2. ICA can also be seen as a way of dimen-
sionality reduction, although that is not its primary aim. Several other methods for these
two overlapping tasks will be discussed, too.

The original methods and intuitions behind ICA will be extended in various directions: into
different kinds of data (complex valued in contrast to real valued, and binary valued in
contrast to continuous valued) and into different problem settings (regression problems and
information retrieval).

In this thesis, the point of view taken is often that of data mining. Data mining is a name
used for a variety of computational methods and techniques for analyzing large data sets.
The aim in data mining is to describe the data either in a global or a local level. Global
descriptions include clustering, joint probability density estimation, or visualization of the
data; local descriptions might be repeating or exceptional patterns in the data, or statistical
dependencies between the variables. Although data mining is closely related to traditional
statistical data analysis, it has a couple of distinguishing characteristics: the data are not
originally aimed for a particular study and so the analyst cannot affect the process of data
collection; the data set is often so large that its storage and retrieval must be carefully
designed; the emphasis is on local aspects in addition to global behavior in the data. An
introduction to data mining is given in [56] and data mining and statistics are compared in
[46].

This thesis consists of an introductory part and six publications, listed in Section 1.3.
Throughout the introductory part of the thesis, the reader is referred to the publications.
They contain most of the contributions of this work and are self-explanatory. The deriva-
tions, results and discussions of the publications are seldom repeated in this introductory
part. It is assumed that the reader is familiar with the basics of linear algebra, probability
and statistics.

1.2 Contributions of the thesis

The scientific contributions of this thesis include the following.

• Experimental results are given on using random projection as a method of dimensional-
ity reduction. In particular, experimental results on the use of a sparse random matrix
have not been presented elsewhere.

• The use of random projection as a data preprocessing method for independent compo-
nent analysis (ICA) is suggested. Empirical validation is presented in the cases of ICA
of image data, complex valued signals and text document data.

• A fast fixed-point ICA algorithm for separating linearly mixed complex valued source
signals is presented and the local consistency of the estimator given by the algorithm
is proved.

• Empirical validation of using ICA as a preprocessing method in nonlinear regression is
given.
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• It is shown that an ICA-type algorithm can successfully extract the topics of discussion
in dynamically evolving natural language text.

• Two algorithms for the estimation of latent structure in binary valued data are given,
together with empirical results.

• Literature surveys are given on each topic addressed in the thesis: latent variable
decompositions, separation of complex valued signals, ICA-type methods in regression
and in the analysis of text documents, and latent variable models of binary valued
data.

1.3 Publications of the thesis

Publication 1. Ella Bingham and Aapo Hyvärinen. A fast fixed-point algorithm for
independent component analysis of complex valued signals. International Journal of Neural
Systems, 10(1):1–8, February 2000.

Publication 2. Ella Bingham and Heikki Mannila. Random projection in dimensional-
ity reduction: applications to image and text data. In Foster Provost and Ramakrishnan
Srikant, editors, Proceedings of the 7th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 245–250, San Francisco, CA, USA, August 2001.

Publication 3. Aapo Hyvärinen and Ella Bingham. Connection between multilayer per-
ceptrons and regression using independent component analysis. Neurocomputing, 50(C):211–
222, January 2003.

Publication 4. Ella Bingham, Ata Kabán, and Mark Girolami. Topic identification in
dynamical text by complexity pursuit. Neural Processing Letters, 17(1):69–83, 2003.

Publication 5. Ella Bingham, Heikki Mannila, and Jouni K. Seppänen. Topics in 0-1
data. In David Hand, Daniel Keim, and Raymond Ng, editors, Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
450–455, Edmonton, Alberta, Canada, July 2002.

Publication 6. Jouni K. Seppänen, Ella Bingham, and Heikki Mannila. A simple al-
gorithm for topic identification in 0-1 data. In Nada Lavrač, Dragan Gamberger, Ljupčo
Todorovski, and Hendrik Blockeel, editors, Knowledge Discovery in Databases: PKDD 2003.
7th European Conference on Principles and Practice of Knowledge Discovery in Databases.
Cavtat-Dubrovnik, Croatia, September 2003, Proceedings, number 2838 in Lecture Notes in
Artificial Intelligence, pages 423–434. Springer, 2003.

Contents of the publications and the contributions of Ella Bingham

In Publication 1, an ICA algorithm for separating linear mixtures of complex valued source
signals is presented. The fixed-point algorithm is somewhat similar to the FastICA algo-
rithm [76, 70] which had been developed for real valued signals. The local consistency of the
estimator given by the algorithm is proved, too. Ella Bingham was responsible for deriving
the fixed-point algorithm, proving the theorem of the local consistency, planning and con-
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ducting the experiments reported in the paper, studying the relation to subspace methods,
and mainly writing the manuscript.

In Publication 2, the use of random projection as a tool of dimensionality reduction is
discussed. Extensive experiments on text document data and both noisy and noiseless images
are presented. Also, experimental results on using a sparsely populated random matrix as
presented by Achlioptas [1] are given — to the knowledge of the authors of the paper and
Achlioptas, these are the first experiments on using sparse random projection. Ella Bingham
planned and carried out all the experiments in the paper and wrote most of the manuscript.

Publication 3 discusses the use of independent component analysis in regression. When only
a subset of the variables are observed, ICA can be used to predict the values of missing vari-
ables. It is shown that this kind of regression is closely related to regression by a multilayer
perceptron (MLP) network. Ella Bingham was responsible for the experimental results in
the paper.

In Publication 4, an ICA-type algorithm is applied to estimating the dynamically changing
topics of discussion in textual data. The algorithm, complexity pursuit [71], decomposes
a multidimensional time series into components whose probability distributions have low
coding complexity. The textual data in the paper is chat line discussion, and meaningful
topics of discussion are found. Ella Bingham wrote most of the paper and planned and
carried out all the experiments.

Publication 5 presents methods for analyzing the latent structure of binary-valued data.
Ordinary ICA methods have problems in the case of binary or nonnegative sources, and
new methods are proposed. Ella Bingham participated in defining the data model and
algorithms presented in the paper. She designed and conducted most of the experiments,
and participated in writing of the paper.

Publication 6 continues along the lines of Publication 5 in analyzing latent structure in binary
valued data. One of the algorithms given in Publication 5 is now enhanced. Ella Bingham
showed that the lift statistic can be described in matrix form and derived the corresponding
algorithm for estimating the topic structure and topic-attribute probabilities. She carried
out and analyzed most of the experiments presented in the paper. She also participated in
defining the data model, planning the experiments, and writing the paper.

1.4 Structure of the thesis

This thesis describes several ways of analyzing latent structure in data. The main method for
doing this is independent component analysis (ICA), which is extended in various different
ways in the original publications of the thesis. These extensions are fairly independent of
each other and thus each of them will be discussed separately in this introductory part,
always keeping in mind the connection to original ICA.

Chapter 2 of this introductory part describes the main method of analyzing latent structure
of data in this thesis, namely ICA. An overview of different ICA algorithms is given. Data
preprocessing is also discussed as that is the topic of Publication 2 of the thesis; the pub-
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lication is briefly reviewed. Other methods of estimating the latent structure of data are
discussed in the end of Chapter 2.

In Chapter 3, a new ICA algorithm for the case of complex valued signals and sources is
presented. The problem is discussed along the lines of Publication 1, together with new
experimental results.

Chapter 4 and Publication 3 present a way of using ICA in regression problems and discuss
its connections to regression by neural networks.

Chapter 5 discusses how ICA can be used in text mining. First, some general ideas of
statistical natural language processing are discussed. Then a review is given of the approach
taken in Publication 4, namely using an ICA-type algorithm for finding the latent topics
of discussion in dynamically evolving text data. Also, some new experimental results are
shown.

Chapter 6 considers the problem of analyzing binary valued data where extra constraints are
given on the form of the latent structure being sought for. Basic linear ICA cannot be used
under such constraints. This chapter reviews and extends Publications 5 and 6.

Finally, Chapter 7 gives a brief conclusion.
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Chapter 2

Independent component analysis

2.1 Introduction

Independent component analysis (ICA) ([29, 84, 72]) is a well-known method of finding la-
tent structure in data. ICA is a statistical method that expresses a set of multidimensional
observations as a combination of unknown latent variables. These underlying latent vari-
ables are called sources or independent components and they are assumed to be statistically
independent of each other. The ICA model is

x = f(θ, s) (2.1)

where x = (x1, . . . , xm) is an observed vector and f is a general unknown function with
parameters θ that operates on statistically independent latent variables listed in the vector
s = (s1, . . . , sn). A special case of (2.1) is obtained when the function is linear, and we can
write

x = As (2.2)

where A is an unknown m×n mixing matrix. In Formulae (2.1) and (2.2) we consider x and
s as random vectors. When a sample of observations X = (x1, . . . ,xN ) becomes available,
we write X = AS where the matrix X has observations x as its columns and similarly the
matrix S has latent variable vectors s as its columns. The mixing matrix A is constant for
all observations.

Throughout this thesis, matrices are denoted by uppercase boldface letters, vectors by low-
ercase boldface letters and scalars by lowercase letters. An entry (i, j) of a matrix is denoted
as A(i, j). Sometimes we write Am×n to indicate that A is an m × n matrix. The entries
of a vector are denoted by the same letter as the vector itself as shown after Formula (2.1);
generally, y is an element of y and so on. All vectors are column vectors.

The linear model (2.2) is identifiable under the following fundamental restrictions [29]: at
most one of the independent components sj may be Gaussian, and the matrix A must be of
full column rank. The identifiability of the model is proved in [29] in the case n = m and for
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those source densities whose variance is defined. Recently, the identifiability of more general
mixing models and source densities has been discussed in [39].1 Generally, independent
components sj in the linear model (2.2) can be estimated up to a permutation of their order
and a scaling of their values.

What is ICA used for? The most well-known applications of ICA are in the field of signal
processing: biomedical, speech and telecommunications signals to mention a few. Brain ac-
tivity is often measured by the electroencephalogram (EEG), magnetoencephalogram (MEG)
or functional magnetic resonance imaging (fMRI), which are recordings of electric and mag-
netic fields on the surface of the head. These signals can be seen as mixtures of different
physical activities and external noise sources. ICA has been successfully used to extract dif-
ferent sources in multidimensional measured signals. Similarly, separation of different speech
signals, recorded at microphones at different locations, possibly time delayed and noise cor-
rupted, is a problem that can be cast in the ICA framework. In the third application area,
telecommunications, a common transmission line has to be divided among several users. The
code division multiple access (CDMA) technique is a modern way to accomplish this: each
user has an individual code that distinguishes his signal from the others as the signals are
mixed during transmission. Other applications of ICA include feature extraction in images
and finding hidden factors in financial data. The applications mentioned here are discussed
in depth in [72]. Some of the newer application areas will be discussed in this thesis.

There are two schools of thought with respect to what actually is the aim in estimating the
independent components in the data. First, one may regard the data being generated by a
combination of some existing but unknown independent source signals sj , and the task is
to estimate them. This viewpoint is chosen in the so called blind source separation (BSS)
framework — there are some sources which have been mixed, and the mixing process is
completely unknown to us (hence the word “blind”). The application areas of ICA listed
above mostly fall into the BSS category.

Another point of view is to regard ICA as a method of presenting the data in a more
comprehensible way by revealing the hidden structure in the data and often reducing the
dimensionality of the representation. According to this latter school of thought, it might well
be that there are no “true” source signals generating the data — it still pays to represent the
data as a combination of a few latent factors that are statistically as independent as possible.
This view can be called a data mining approach of the problem.

This thesis mostly concentrates on the data mining viewpoint of ICA, but the BSS approach
is also taken, in particular in Publication 1. Also, this thesis concentrates on the linear
mixing model in Formula (2.2). Nonlinear mixing is briefly discussed in Chapter 6.

ICA can also be seen as a method of dimensionality reduction as far as we interpret di-
mensionality reduction as finding a parsimonious representation of the data. Dimensionality
reduction is not the primary aim of ICA and in fact most ICA algorithms favor moderate
dimensionalities (say a few dozens compared to a few hundreds or more) of data — this will
be discussed more in Section 2.3. In any case, assuming the ICA model X = AS holds and
the data matrix X is of size m × N , the mixing matrix A is of size m × n with m > n,
and the source matrix S is of size n×N , we have mN > mn + nN and thus we are able to

1In [39], Eriksson discusses real valued signals. The results generalize to complex valued signals as well,
although not in a straightforward manner (Eriksson, personal communication).
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present the observed data with fewer parameters using the ICA model.

2.2 Estimation of the ICA model

The task in ICA is to find both the latent variables or sources sj and the mixing process; in
the linear case, the latter task consists of finding the mixing matrix A. A popular approach
is to find a demixing or separating matrix W so that variables yj in y = Wx are estimates
of sj up to scaling and permutation. Hence W is an estimate of the (pseudo)inverse of A

up to scaling and permutation of the rows of W. Often the latent variables sj are estimated
one by one, by finding a column vector wj (this will be stored as a row of W) such that
yj = wT

j x is an estimate of sj .

There are several approaches to estimating the independent components and the mixing
matrix, resulting in different algorithms. Some of the approaches are briefly reviewed here.
In all approaches, an objective or a contrast function2 G is first chosen. G is a smooth scalar
valued function of w that measures the goodness of the result of the estimation in one way
or another, and different G are chosen in different approaches. Its derivative g, sometimes
called an activation function, typically appears in the algorithm as a nonlinear function.

The first approach is maximization of non-Gaussianity of the components. According to the
central limit theorem, sums of independent non-Gaussian random variables are closer to being
Gaussian than the original random variables. Thus a linear combination y =

∑

i bixi of the
observed variables xi (which in turn are linear combinations of the independent components
sj) will be maximally non-Gaussian if it equals one of the independent components sj . This
is seen by a counterexample: if y does not equal one of the sj but is a mixture of two or
more sj , then by spirit of the central limit theorem, y is more Gaussian than each of the
sj .

3 Thus the task is to find wj such that the distribution of yj = wT
j x is as far from

Gaussian as possible. Non-Gaussianity is often measured by higher order cumulants such as
kurtosis or skewness, although they are not robust against outliers. Robust measures have
been presented in, e.g., [70]. Non-Gaussianity can be shown to have a rigorous connection
to minimization of mutual information (discussed next), so we do not rely on the heuristic
justification given by the central limit theorem only.

The second approach to solving the ICA problem is to use information-theoretic measures.
Statistical independence between two random variables is obtained when their mutual in-
formation is zero. Mutual information is expressed in terms of marginal entropies of the
variables. Among all random variables of unit variance, a Gaussian variable has the largest
entropy. Negentropy is a convenient measure of entropy: it is always nonnegative, and zero
for Gaussian variables. To maximize the independence between random variables, one can
make the variables as non-Gaussian as possible. Thus this approach is in line with the first
one. Information-theoretic measures are described in detail in [32] and their connection to
ICA estimation is explained in, e.g., [72]. Negentropy is difficult to compute, and in prac-
tice it is approximated by cumulants. Again, the instability of the cumulants in the case of

2To be exact, the contrast function is JG(w) = E{G(wT
x)} in several references, but for brevity of

notation, G is used when referring to the contrast function.
3To be precise, the central limit theorem only speaks about the asymptotic behavior of sums of random

variables.
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outliers suggests using some other contrast functions that have more desirable properties.

The third approach to estimating the ICA model is maximum likelihood (ML) estimation.
In ML, one selects those parameter values that give the highest probability to the observa-
tions. If prior information on the parameters is taken into account, the method becomes the
maximum a posteriori (MAP) method. ICA algorithms based on the ML method include
the Bell-Sejnowski algorithm, also called the Infomax principle [13], and the natural gradient
algorithm [6]. Mutual information is a unifying framework for the ML principle, too [72].

The fourth approach to ICA estimation are tensorial methods. The most well-known among
these are the FOBI (first-order blind identification) [22] and JADE (joint approximate diag-
onalization of eigenmatrices) [25] algorithms. Tensors are generalizations of linear operators
— in particular, cumulant tensors are generalizations of the covariance matrix. Minimizing
the higher order cumulants approximately amounts to higher order decorrelation, and can
thus be used to solve the ICA model. However, the statistical properties of the tensor meth-
ods may be inferior to the methods described above, and they are very burdensome in high
dimensions [72].

An algorithm that can be used in all the previously listed ICA approaches is the FastICA
algorithm4 [76, 70, 72]. The algorithm is an iterative fixed-point algorithm with the following
update for w:

w← E{xg(wT x)} − E{g′(wT x)}w (2.3)

where w is one of the rows of the unmixing matrix W. In practice, the expectations are re-
placed by their empirical estimates. The nonlinear function g is chosen so that it is the deriva-
tive of the non-quadratic contrast function G that measures negentropy, non-Gaussianity, or
whatever is our objective function. The algorithm was first suggested for the kurtosis cost
function in [76]. Other choices of G are discussed in [70] and [72] — robust choices are
non-polynomial functions such as log cosh or exp(−y2). Contrary to many other algorithms,
in FastICA the choice of the contrast function does not severely restrict the type of the
independent components that we are able to estimate. The choice of G is important only if
one wishes to optimize the performance of the algorithm in some way.

Before running the algorithm (2.3), the data are transformed such that they have zero mean
and preprocessed by whitening (described in Section 2.3.1). An initial unit norm vector w is
chosen randomly. After each iteration step (2.3), w is again normalized to have unit norm.
The iteration is continued until the direction of w does not change significantly.

In the so called deflationary approach, the independent components sj are estimated one by
one, and it must be ensured that the rows wj of the unmixing matrix are orthogonal. This is
done after every iteration step (2.3) by subtracting from the current wj the projections of all
previously estimated wp, p = 1, . . . , j − 1. The vector wj is normalized and its convergence
is tested only after this orthogonalization step. The cubic convergence of the deflationary
algorithm was proved in [76].

In the symmetric approach, all independent components sj are estimated simultaneously.
The iteration step (2.3) is computed for all wj , and after that the matrix W containing wj

as its rows is orthogonalized. This is done at each round. The orthogonalization of W is

4http://www.cis.hut.fi/projects/ica/fastica/
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accomplished either by

W← (WWT )−1/2W (2.4)

or iteratively by [70]

1. W←W/||W|| (2.5)

2. W← 3

2
W − 1

2
WWT W (2.6)

3. If WWT is not close enough to identity, go back to step 2. (2.7)

The good convergence properties of the symmetric FastICA algorithm are discussed in [111].

2.3 Data preprocessing for ICA

It is often beneficial to reduce the dimensionality of the data before performing ICA. It might
well be that there are only a few latent components in the high-dimensional observed data,
and the structure of the data can be presented in a compressed format. Estimating ICA in
the original, high-dimensional space may lead to poor results. For example, several of the
original dimensions may contain only noise. Also, overlearning is likely to take place in ICA
if the number of the model parameters (i.e., the size of the mixing matrix) is large compared
to the number of observed data points [74]. Care must be taken, though, so that only the
redundant dimensions are removed and the structure of the data is not flattened as the data
are projected to a lower dimensional space. In this section two methods of dimensionality
reduction are discussed: principal component analysis and random projection.

In addition to dimensionality reduction, another often used preprocessing step in ICA is
to make the observed signals zero mean and decorrelate them. The decorrelation removes
the second-order dependencies between the observed signals. It is often accomplished by
principal component analysis which will be briefly described next.

2.3.1 Principal component analysis

In principal component analysis (PCA) [122, 67], an observed vector xorig is first centered
by removing its mean (in practice, the mean is estimated as the average value of the vector
in a sample). Then the vector is transformed by a linear transformation into a new vector,
possibly of lower dimension, whose elements are uncorrelated with each other. The linear
transformation is found by computing the eigenvalue decomposition of the covariance ma-
trix, which for zero-mean vectors is the correlation matrix E{xorigx

T
orig} of the data. The

eigenvectors of E{xorigx
T
orig} form a new coordinate system in which the data are presented.

The decorrelating process is called whitening or sphering if also the variances of each element
of the new data vector are set to unity. This can be accomplished by scaling the vector
elements by the inverses of the eigenvalues of the correlation matrix. In all, the whitened
data have the form

x = D−1/2ET xorig (2.8)
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where x is the whitened data vector, D is a diagonal matrix containing the eigenvalues of the
correlation matrix and E contains the corresponding eigenvectors of the correlation matrix
as its columns. In practice, the expectation in the correlation matrix is computed as the
sample mean. Subsequent ICA estimation is done on x instead of xorig. For whitened data
it is enough to find an orthogonal demixing matrix if the independent components are also
assumed white.

Dimensionality reduction is performed by PCA simply by choosing the number of retained
dimensions, m, and projecting the d-dimensional observed vector xorig to a lower dimensional
space spanned by the m (m < d) dominant eigenvectors (that is, eigenvectors corresponding
to the largest eigenvalues) of the correlation matrix. Now the matrix E in Formula (2.8) has
only m columns instead of d, and similarly D is of size m×m instead of d× d, if whitening
is desired.

There is no clear way to choose the number of retained dimensions in practice. In theory,
the rank of X is equal to the rank of S in the noiseless case, so it is enough to compute the
number of non-zero eigenvalues of X. The problem is discussed in, e.g., [72, 149]. One often
chooses the number of largest eigenvalues so that the chosen eigenvectors explain the data
well enough, for example, 90 per cent of the total variance in the data. As PCA preprocessing
for ICA always involves the risk that the true independent components are not in the space
spanned by the dominant eigenvectors, it is often advisable to estimate fewer independent
components than what is the dimensionality of the data after PCA. Trial and error are often
needed in determining both the number of eigenvectors and the number of independent
components estimated.

PCA is a convenient method for estimating the structure of the data, assuming that the distri-
bution of the data is roughly symmetric and unimodal. PCA finds the orthogonal directions
in which the data have maximal variance. PCA is an optimal method of dimensionality
reduction in the mean-square sense: data points projected into the lower dimensional PCA
subspace are as close as possible to the original high dimensional data points, meaning that

∑

t

||xorig(t)− x(t)||2 (2.9)

is minimized. Here we denote by xorig(t) the t-th original observation vector and by x(t) its
projection.

2.3.2 Random projection

Computing the PCA of a high-dimensional data set is computationally burdensome. In this
thesis it is proposed that random projection (RP) is a suitable preprocessing method for
ICA: using RP before PCA significantly reduces the computational load without introducing
severe distortions in the data set.

Random projection is a method of dimensionality reduction. In Publication 2 of the thesis,
several examples of its use are given, together with discussions on its suitability. In ran-
dom projection, the original high-dimensional data matrix X

orig
d×N is projected into a lower-

dimensional space using a random matrix Rk×d (k � d) whose columns have unit lengths,
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resulting in a k ×N dimensional matrix XRP :

XRP = RXorig (2.10)

The usefulness of random projections stems from the Johnson-Lindenstrauss lemma [79]: if
points in a vector space are projected onto a randomly selected subspace of suitably high
dimension, then the distances between the points are approximately preserved. Strictly
speaking, (2.10) is not a projection because R is generally not orthogonal. A linear map-
ping such as (2.10) can cause significant distortions in the data set if R is not orthogonal.
Orthogonalizing R is unfortunately computationally expensive. Instead, we can rely on a
result presented by Hecht-Nielsen [58]: in a high-dimensional space, there exists a much
larger number of almost orthogonal than orthogonal directions. Thus vectors having random
directions are sufficiently close to orthogonal with a high probability, and equivalently RT R

approximates an identity matrix.

Consider the linear ICA model for the original data vectors xorig, as in Formula (2.2).
Reducing the dimensionality by random projection does not violate the identifiability of the
model, as the independent components stay intact and only the mixing matrix is changed:

xRP = Rxorig = RAs = ARP s (2.11)

where we define ARP = RA to emphasize that the ICA model still holds: xRP = ARP s.
Here it is assumed that k, the dimensionality of xRP , is still larger or equal to n, the
dimensionality of s, making ARP of full column rank.

Thus we propose that random projection could be used prior to PCA, to reduce the dimen-
sionality from the original d to some k (k � d). The whitening of the data by PCA in the
new, lower-dimensional space is significantly less demanding. (The computational complex-
ities of random projection and PCA are discussed in Publication 2.) One may then either
reduce the dimensionality further by PCA or directly estimate ICA in the k-dimensional
space.

Achlioptas [1] suggests the use of sparse random matrices instead of a random matrix whose
entries are Gaussian distributed (which is the usual choice in the random projection litera-
ture). An entry of R is then

R(i, j) =
√

a ·











+1 with probability 1

2a

0 with probability 1− 1

a

−1 with probability 1

2a

(2.12)

where a > 1 is some constant. To the knowledge of the authors of Publication 2 and
Achlioptas himself, Publication 2 is the first one in which experimental results on sparse
random projection are presented.

Let us present a simple example on using random projection as a preprocessing method
in ICA. A total of 24 monochrome images of natural scenes were randomly mixed to 600
mixtures using a (600 × 24)-dimensional mixing matrix: X600×32768 = A600×24S24×32768;
the number of pixels in each image was 32768. The demixing matrix was found by applying
FastICA either on PCA preprocessed data or on data that were first randomly projected to a
lower dimensional space and then PCA preprocessed. Table 2.1 lists the separation accuracies
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and the number of floating point operations needed. The separation accuracy is measured
as the sum of squared errors between the product of mixing and unmixing matrices (where
the matrices used for preprocessing were taken into account) and a permutation matrix.
The results in Table 2.1 are averages over 10 runs. In the first case, the dimensionality
was directly reduced to 24 (which is the number of independent components) by PCA. In
the second case, ordinary random projection with a Gaussian distributed random matrix
was used to reduce the dimensionality from 600 to 30, and then PCA was used to further
reduce the dimensionality to 24. PCA is computationally cheap in this low-dimensional
random projected space. In the third case, a sparse random projection matrix was used
instead of the Gaussian distributed random projection matrix, still somewhat lessening the
computational burden. The sparse random matrix was generated using Formula (2.12) with
a = 3. We see that random projection gives computational savings but almost no loss in
separation accuracy.

Table 2.1: Estimation errors and computational loads with different preprocessing
methods in ICA

Preprocessing method SSE Flops
PCA to k = 24 directly 1.63 2.84 · 1010

RP to k = 30 before PCA to k = 24 1.60 1.98 · 109

Sparse RP to k = 30 before PCA to k = 24 1.65 9.10 · 108

In Publication 2 the performance of random projection was compared to several other meth-
ods of dimensionality reduction: principal component analysis, singular value decomposition,
discrete cosine transform and median filtering. The application areas were text documents
and both noisy and noiseless images. The measure of performance was the distortion in
the similarity of randomly chosen data vectors that took place when the dimensionality of
the data was reduced. The similarity of two data vectors was computed by using either
their Euclidean distance or inner product. Also, the computational complexities of the di-
mensionality reduction methods were compared by measuring the number of floating point
operations. The results of Publication 2 indicate that random projection is a promising
method for dimensionality reduction that does not introduce a great distortion in the data,
while being computationally very simple.

As random projection preserves the interpoint distances well, it is most suitable for those
application areas where every dimension of the data is more or less equally important and
has a similar scale, and the interpoint distances are meaningful — for example text document
data (assuming that the vocabulary is chosen appropriately) or data sets where the Euclidean
distance is a meaningful distance measure. In some other applications, for example in process
monitoring, some measured quantities (that is, dimensions) might be closely correlated with
each other or are scaled very differently, and the interpoint distances do not necessarily bear
a clear meaning.
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2.3.3 Other random low rank matrix approximations

Achlioptas and McSherry [2] have presented simple techniques for accelerating the computa-
tion of a low rank approximation of a matrix X in the case X has strong spectral structure
(that is, the largest singular values of X are significantly greater than those of a random
matrix with size and entries similar to X). They sample and/or quantize the entries of X,
thus reducing the number of non-zero entries and/or the length of their representation. The
theoretical validity of such procedures relies on the fact that sampling and/or quantization
can be seen as adding a random matrix V to X — with high probability, V has very weak
spectral structure, and the effects of sampling and quantization nearly vanish when a low
rank approximation to X + V is computed.

Achlioptas and McSherry show that sampling and quantization greatly accelerate algorithms
such as orthogonal iteration and Lanczos iteration [53] that are used to compute the singular
value decomposition (SVD) of a data matrix. Note that the dimensionality of the data is
not reduced in sampling and quantization — dimensionality reduction can be performed
afterwards using the results of SVD, if desired.

A natural question now arises: can we use similar procedures for speeding up ICA, too?
The FastICA algorithm is somewhat similar to orthogonal iteration and Lanczos iteration in
that the data are iteratively projected in some direction and normalized, a new direction of
projection is computed, and the data are again projected and normalized. The motivation
of this would be to make the whitening phase of ICA computationally simpler. The SVD is
largely unaffected by sampling and/or quantization. Unfortunately, this does not imply that
ICA would be unaffected by such procedures — the results of [2] only show that the second-
order characteristics of the data remain intact, while in ICA the higher order characteristics
are taken into account, too. In fact, in the experiments conducted by the author of this thesis
(details not shown), information-theoretic measures such as the negentropy were severely
affected by random sampling and quantization of the data.

In the case of random sampling of the data, there is a fundamental reason why ICA cannot
be estimated. Denote by x(t) the t-th observation vector and by x̂(t) its sampled version.
The procedure of sampling can be written as

x̂(t) = ρ(t)x(t); ρ(t) = diag{ρ1(t), . . . , ρm(t)} (2.13)

where ρ(t) is a diagonal matrix, and its element ρi(t) is non-zero if the i-th element of x(t)
is sampled and zero otherwise. Now the ICA mixing model could be written as

x̂(t) = ρ(t)As(t) = Â(t)s(t). (2.14)

But now the new mixing matrix Â(t) depends on t and thus is not constant with respect to
different observations, which violates the basic assumptions of ICA. Also, if A is square, Â

is not invertible as the determinant of ρ(t) is zero; for non-square A, Â might not have full
column rank either.

Quantization of the observed data is described in [2] as finding the largest absolute value b
in the data matrix, and then setting each entry of the data matrix either to +b or −b with
a probability depending on the original value of the entry. Quantization may be realized in
other ways, too, and the remarks made here apply to a more general setting. Quantization is
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not a linear operation; instead, quantizing corresponds to a so called post-nonlinear mixture
where the source signals have been mixed linearly, but a nonlinear transformation takes
place before the measurement is done. Some ICA theory has been developed for such post-
nonlinear mixtures [143] with invertible nonlinearities. Quantization is not invertible, so
those ICA methods cannot be applied. Also, quantization destroys the structure of the data
more severely than sampling and is very sensitive to outliers; thus it does not seem to be a
promising method of preprocessing in ICA.

Generally, the random perturbation V can be seen equivalent to adding sensor noise in ICA.
Sensor noise can be tolerated by the existing ICA methods if the noise is Gaussian or if its
covariance structure is known and can be restricted to a special form [72]. Here neither of
these requirements is satisfied.

2.4 Other latent variable decompositions

As mentioned in Section 1.1, one of the aims of this thesis is to discuss methods for latent
variable decomposition in high dimensional data. In this section, some methods other than
ICA are briefly discussed. All of them can be cast in the broader framework of (linear)
generative models, overviews of which have been given in [60, 112, 131, 145].

Principal component analysis (PCA), described in Section 2.3.1, is a method for latent vari-
able decomposition in its own right, in addition to being a method for data decorrelation or
whitening. One way to write the data model in PCA is x = Ay where y = (y1, . . . , yn) is
Gaussian, zero mean and white, and A has the eigenvectors of the data covariance matrix
as its columns. Probabilistic versions of PCA have been given by [28, 130, 146]. The first of
these generalizes the case to other than Gaussian latent variables.

Factor analysis, originally developed in social sciences and psychology [57], tries to find
relevant and meaningful factors y that explain the observed data. The data model is x =
Ay + n; the interpretations of its components are the same as in PCA except for the vector
n whose elements, the so called specific factors, are uncorrelated with the factors y, and have
a diagonal covariance matrix. The unknown matrix A of factor loadings can be assumed
to absorb the variances of the y. The matrix A is solved in such a way that the observed
variables x in x have a high loading only on a small number of factors y — reminiscent of a
sparse mixing matrix in ICA [73], although solved in a different way.

Projection pursuit [47, 81, 69] tries to find directions in which the data have an interesting
structure — here “interesting” often refers to non-Gaussian or otherwise structured, and
the aims are data visualization and exploratory data analysis. Again, the data are linearly
projected.

In nonnegative matrix factorization (NMF) by Lee and Seung [97, 98], an observed data
matrix X is decomposed into the product of two unknown matrices: X = AY. All three
matrices X, A and Y have nonnegative entries. Typically the dimensionality of the observed
vectors (the columns of X) is larger than that of the columns of Y, so NMF is yet another
method of dimensionality reduction. Lee and Seung give two algorithms for finding the
unknown matrices but no probabilistic interpretation of the results. Computationally, the
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methods seem very demanding and there are no clear results on the quality of the solutions
[98]. The problem setting of NMF was already presented by Paatero and Tapper in [115, 114].
Recently, Hoyer [68] has combined the nonnegativity constraints with sparsity constraints.
Note that the assumption of nonnegativity of A and Y already imposes some kind of sparsity
on the estimated matrices, as that is the only way to restrict AY from growing too large
compared to the observed data X. Welling and Weber [153] present a fixed point algorithm
for positive tensor factorization, for tensors of arbitrary orders.

Hofmann’s probabilistic latent semantic analysis (PLSA) [64, 65] is a strong matrix decom-
position method for matrices of probabilities: P = AY. The decomposition resembles that
of NMF except that all matrix entries have values between 0 and 1, and they sum to 1
at each column. PLSA is typically used in document analysis, with the aim of modeling
the observed term and document frequencies by latent topics of discussion. The probability
P(i, j) of observing term i in document j is presented as a convex combination of n aspects
A(i, l), l = 1, . . . , n. The terms are conditionally independent given the topic. The model
has the form p(W = w|D = d) =

∑

z p(Z = z|D = d)p(W = w|Z = z), where Z, D and
W are random variables corresponding to the topics, documents and terms, respectively. In
matrix form, P(i, j) gives p(W = wi|D = dj), A(i, l) gives p(W = wi|Z = zl)

5 and Y(l, j)
gives p(Z = zl|D = dj). One main difference to NMF is that the probabilities P are not
observed, only the multinomial document vectors as columns of X (an entry of a document
vector gives the number of occurrences of a term in a document). The model is solved using
the expectation-maximization (EM) algorithm [34].

Latent Dirichlet allocation (LDA) and multinomial PCA (MPCA) as presented by [18], [102]
and [20] are methods somewhat similar to Hofmann’s PLSA in that they are probabilistic in
nature. In particular in MPCA, an observed document vector’s distribution is multinomial
with a parameter vector p = Ay. Here y, the proportions of different latent variables in this
document, is first sampled from a Dirichlet distribution. The matrix A again gives the prob-
abilities of terms in different latent variables. For inference and learning in the LDA/MPCA
model, a variational approximation of the data likelihood is done in [18], followed by an EM
algorithm for maximum likelihood parameter estimation. Ways to enhance the estimation
are presented by [102] and [20]. All of these approaches are computationally quite demand-
ing. In a recent paper, Girolami and Kabán [52] have discussed the equivalence between
PLSA and LDA.

A popular method for analyzing multidimensional data is mixture modeling where the ob-
served data distribution is assumed to be a convex combination of some underlying latent
distributions: p(x) =

∑n
j=1

πjpj(x|θj) where πj is the probability that a data vector x is gen-

erated by the jth component density pj with parameters θj ; it also holds
∑n

j=1
πj = 1. All

components xi of the observed vector x have the same probabilities πj of being generated
by the jth underlying distribution. This is an important difference to ICA-type methods
where the components xi of x may arise to different degrees A(i, j) from different latent
components sj . In contrast to ICA, in mixture models it is also often assumed that one data
vector is generated by one latent distribution, although generation probabilities are given
for all latent distributions. The observed vectors can then be clustered corresponding to

5To be exact, p(W = wi|Z = zl) must be interpreted as the probability that topic zl generates word
wi; this is not the same as the probability of observing wi when zl is active, as other topics than zl may
contribute to observing wi, too.
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these latent distributions. Originally, the latent distributions were often assumed univariate
Gaussian. In more recent papers, the observed data distribution is seen as a mixture of
PCA’s [62], a mixture of probabilistic PCA’s [145], or a mixture of factor analyzers [49], to
name a few; all of these are locally linear decompositions.

Local PCA [48] can be used in dimensionality reduction as discussed in [87]: the data space is
first partitioned into disjoint regions, and PCA is then performed separately in each region.
This approach is closely related to mixtures of PCA’s.
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Chapter 3

ICA for complex valued signals

3.1 Introduction

The first theoretical development of ICA in this thesis is the separation of linearly mixed
complex valued signals as presented in Publication 1. Here the problem is reviewed briefly
and some new insights are given. The reader is referred to Publication 1 for more discussions
and derivations.

A complex random variable z can be written as the sum of its real and imaginary parts,
z = u + iv where u and v are real random variables. We denote by Re(z) the real part u of
z and by Im(z) the imaginary part v of z. Alternatively, a complex random variable can be
presented in polar coordinates as z = ρeiφ where ρ is the modulus (also called radius) and φ
is the phase of the variable.

Complex valued signals are often encountered in, e.g., the fields of telecommunications or
audio separation where convolutive (that is, time-lagged) signals are mixed: the sources
are located so far away from the measurement locations that the source signals arrive at
different instances in time, with possible echoes from nearby walls and so on. Moving into
the frequency domain changes the convolution into multiplication, and an ICA-type mixing
is obtained, where the mixtures, the sources and the mixing matrix are complex valued. A
common practice is to divide the frequency domain into bins; this helps for example in noise
cancellation, if colored noise is observed. Then a complex source separation task is solved in
each bin. In the following section, an algorithm for the separation of complex valued signals
is given.

3.2 A fast fixed-point algorithm

We assume that the ICA model x = As holds and both the independent component variables
or source signals s and the observed variables x are complex valued. The mixing matrix A
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may be complex valued if desired. The source signals sj are assumed to have zero mean
and unit variance, with uncorrelated real and imaginary parts of equal variances. (The last
assumption implies that sj must be strictly complex; the imaginary part may not vanish
everywhere.)

In the case of real valued signals, the independent components are typically found up to
permutation and scaling. In the complex case, these indeterminacies hold as well, and in
particular the scaling is complex valued. In other words, there is an unknown phase for each
sj . This indeterminacy is an inherent property of complex ICA and not a consequence of
the assumptions made in our approach.

It will be assumed that sj has a spherically symmetric distribution — thus the distribution
of sj depends on the modulus of sj only and the scaling by a constant complex value does not
change the distribution of sj . This assumption simplifies our approach and is quite realistic
in many applications, and it is also in line with the indeterminacy mentioned above.

In Publication 1 a fast fixed point algorithm for the separation of complex valued signals is
given. It is somewhat similar in nature to the FastICA algorithm [76, 70] briefly discussed in
Section 2.2; hence the algorithm of Publication 1 is sometimes called the complex FastICA
algorithm. The fixed-point algorithm for estimating one component y = wHx is

w+ = E{x(wHx)∗g(|wHx|2)} − E{g(|wHx|2) + |wHx|2g′(|wHx|2)}w (3.1)

wnew =
w+

||w+|| (3.2)

where the asterisk denotes complex conjugation, and wH is the vector w transposed and
complex conjugated. The choice of the nonlinear function g is discussed in Publication 1.
To estimate several components, the outputs wH

j x are decorrelated before the normalization
(3.2) similarly to what was discussed in the end of Section 2.2. For details, please refer to
Publication 1.

In Publication 1 we also give the conditions under which the estimator given by the algorithm
is consistent.1 We start from an arbitrary nonlinear smooth contrast function and prove that
its extrema coincide with the independent components. The nonlinear contrast function can
be chosen quite freely to optimize, e.g., the statistical behavior of the estimator. This
approach is computationally simple in contrast to another approach, where independence is
measured by mutual information, approximated by cumulants. As discussed in Section 2.2,
it is advisable to avoid cumulant nonlinearities as they are not robust against outliers in the
data.

One practical implication of the consistency of the estimator is that the signs of the values
of the contrast function for true independent components need not be known — in some
ICA algorithms, the sign of the kurtosis (or some other function of the true sources) must
be known.

Experimental results are given in Publication 1 to illustrate the performance of the fixed
point algorithm and the theorem on the consistency of the estimator. Also, the connection

1In the theorem on page 4 of the paper we assume that G : R
+ ∪ {0} → R is a sufficiently smooth even

function. To be exact, there is a misprint here: the parity of G is undetermined as G(y) only exists for
y ∈ R

+ ∪ {0}, and thus G cannot be even.
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to independent subspace methods [75] and multidimensional ICA [23] is discussed: complex
ICA is a restricted form of independent subspace methods.

Apart from the experimental results given in Publication 1, Fiori and Burrascano [45] com-
pare the algorithm of Publication 1 with JADE [24] in electromagnetic source localization.
No significant differences between the algorithms were found with respect to separation ac-
curacy or computational complexity. Ristaniemi and Joutsensalo [128] use the algorithm of
Publication 1 in separating the codes of different users in a CDMA (code-division multiple
access) wireless communication network.

Earlier it was mentioned that the frequency domain is divided into bins and a complex ICA
problem is solved in each bin. Due to the indeterminacy of the ordering of the estimated
ICA components (similarly to the case of real valued signals) a permutation problem now
arises: the order of the estimated sources should be the same in each bin. This problem is
tackled in some of the references listed in Section 3.4.

3.3 Random projection of complex signals

We next describe a small experiment on using random projection prior to ICA on high
dimensional complex valued signals. The source signals are artificially generated complex
random signals sj = ρje

iφj where for each signal j the modulus ρj is drawn from a different
distribution (Exponential, Gamma, Poisson, Hypergeometric, Beta, Uniform, Weibull or
Geometric) and the phase φj is uniformly distributed on [−π, π]. The uniform phase ensures
that the distribution of sj is spherically symmetric as discussed in Section 3.2. The sources
have unit variance. Examples of such source distributions are seen in Figure 3.1. The number
of sources is 8, each having 50 000 observations. The sources are randomly mixed using a
(100× 8)-dimensional complex valued mixing matrix.

The data described above are either random projected using a 10×100-dimensional complex
random matrix and then PCA preprocessed to 8 dimensions, or directly PCA preprocessed
to 8 dimensions. The algorithm described in the previous section is then used to separate
the sources, with a nonlinearity g(y) = 1/(2

√
ε + y) where ε = 0.1.

Similarly to the experiment in Section 2.3.2, we study the sums of squared errors (SSE)
between the product of the mixing and unmixing matrices and a permutation matrix. Here
the product matrix is transformed into the real domain by taking element-wise absolute
values (remember from Section 3.2 that the sources are only estimated up to scaling by
a complex unit-norm constant, so in the case of perfect separation, we get a permutation
matrix with one unit-norm element in each row and each column). Figure 3.2 shows the
average convergence of ICA estimation in the cases of random projected and original data,
over 20 trials. We can see that both cases converge quickly and the SSE’s are almost equal.2

Thus at least in this small experiment, random projecting the high dimensional data prior to
PCA preprocessing does not distort the data. Computing the random projection, PCA and
ICA takes 77.3 seconds of CPU time on the average; directly computing PCA and then ICA

2The 95 per cent confidence intervals over 20 trials are also plotted, although it is questionable whether
the SSE’s are sufficiently Gaussian to permit the computation of the confidence intervals.
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Figure 3.1: Examples of complex valued source signals with different modulus
densities: Exponential (upper left), Poisson (upper right), Hypergeometric (lower
left), Weibull (lower right). The source signals are spherically symmetric and have
unit variance. The plane is the complex plane, the horizontal coordinate giving
the real part and the vertical coordinate giving the imaginary part of a complex
number.

takes 90.3 seconds of CPU time on the average3. This shows that the preprocessing of data
by random projection again gives computational savings. Also, the theorem on the local
consistency of the estimator, discussed in Publication 1, is still applicable to the random
projected data.

3.4 Other approaches

The separation of complex signals is already discussed in Comon’s seminal paper [29] from
a cumulant point of view. The kurtosis of the estimated components is taken as a contrast
function. In the complex case, kurtosis is not uniquely defined and its choice is discussed
in [29]. The algorithm presented there is computationally quite demanding. A simpler
algorithm is the cumulant-based JADE [25], also applicable to the complex case. Moreau
and Macchi [105] give a cumulant-based algorithm which is also computationally heavy.

A somewhat different but still cumulant-based approach is Back and Tsoi’s complex recur-
rent network [8] that is analogous to Jutten and Herault’s algorithm [84]. Back and Tsoi’s
algorithm is computationally somewhat demanding. The algorithm works partly in the time
domain and partly in the frequency domain and they claim that the permutation problem
between different frequency bins is thus overcome.

Comon and Moreau [31] give a cumulant-based algorithm for finding a sequence of Givens

3Again, although computing the 95 per cent confidence intervals is a bit questionable, the interval is
[76.6, 77.9] for the case of random projection and [89.7, 90.9] for the case without random projection.



3.4. Other approaches 23

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3.2: Convergence of ICA estimation of complex valued signals. Horizontal
axis: number of fixed point iterations. Vertical axis: Sum of squared errors of the
estimated mixing matrix. Observation data are random projected prior to PCA
preprocessing (solid line) or directly PCA preprocessed (dashed line). Dotted lines
give 95 per cent confidence intervals over 20 trials.

complex rotations for 2-dimensional observations and an arbitrary number (≥ 2) of sources.
Givens rotations [53] are used in some ICA algorithms in the real-valued case, too: The
observed data are first whitened and dimensionality reduced so that only an orthogonal
square mixing matrix is left to find. Any orthogonal m × m matrix can be written as
a product of m(m − 1)/2 Givens rotation matrices and a diagonal matrix with diagonal
elements ±1. A Givens rotation is a plane rotation around the origin. The technique is
useful in ICA in the two dimensional case but in higher dimensions several Givens rotations
must be performed for each pair of components.

Smaragdis [140] presents a Bell-Sejnowski [13] type algorithm that is directly applicable to
complex signals if transposes of vectors are simply changed to hermitians. An appropriate
nonlinear function must be chosen: g(x) = tanh(x) used in the real case is unbounded in
the complex domain, so he uses g(z) = tanh Re(z) + i tanh Im(z). He proposes a heuristic
coupling of adjacent frequency bins to make sure that the order of the estimated sources is
the same in every frequency bin. The coupling approach is not always very effective, however.

In the fields of speech and radar signal processing, a popular and robust approach to solving
the permutation problem is direction of arrival estimation (see, e.g., [149, 150]). It is assumed
that the spatial locations of sources with respect to the locations of measurement do not
change. Each frequency band must have the same direction of arrival for a chosen source
signal; this gives the correct ordering of the sources within frequency bands. Names such as
beampattern analysis or null beamforming also refer to this technique.

Since the appearance of Publication 1, new approaches to complex signal separation have
been discussed in the literature. These are briefly reviewed in the following.
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Clarke [27] avoids the use of cumulants by giving conditions of independence between two
complex-valued signals. The problem in his approach is that only two signals are studied at a
time. Fiori [44] presents a generalized Hebbian learning theory for a complex-weighted linear
feedforward network and applies it to complex ICA. Zarzoso and Nandi [155, 156] define so
called bicomplex numbers, by which they get an algorithm analogous to real ICA for finding
2-dimensional Givens rotations. This approach is applicable to the case of two source signals
and two observed mixtures. In [157] Zarzoso and Nandi give closed-form estimators using
bicomplex numbers.

Mitianoudis and Davies [104] tackle the permutation problem between different frequency
bins by adding a time-dependent term that imposes frequency coupling between the bins.
They study two fixed-point algorithms, a natural gradient type algorithm [76] and the com-
plex FastICA algorithm of Publication 1. The time-dependent term β(t) is integrated in
the activation function g(y) as gnew(y) = 1/β(t) · g(y) in both algorithms. They perform
different experiments and conclude that the complex FastICA algorithm is slightly better:
faster, more robust and more accurate.

Ristaniemi and Joutsensalo [128] prove that the convergence of the complex FastICA algo-
rithm is cubic when kurtosis is chosen as a contrast function. The proof is analogous to the
one for real valued signals, given by Hyvärinen and Oja in [76].

Recently, the separation of complex valued signals and the permutation correction are also
discussed in, e.g., [7, 11, 21, 54, 80, 89, 91, 106, 108, 123, 127, 135].
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Chapter 4

ICA in regression

4.1 The regression problem in the ICA framework

In this chapter we turn our attention to using ICA as a preprocessing method in nonlinear
regression. The problem is treated in Publication 3 of this thesis. The contribution of the
author of this thesis is smaller in Publication 3 than in the other Publications, and thus the
problem is reviewed only briefly.

In a regression problem, one has a set of predictor variables and a set of predicted variables.
The task is to generate a mapping between these sets so that given the values of the predictor
variables, the values of the predicted variables can be estimated.

The regression problem can be cast into the ICA framework as follows. The set of mixtures
x is divided into two, predictor (xo) and predicted (xm) variables1. Using a training set of
both xo and xm, we estimate the ICA model as

(

xo

xm

)

=

(

Ao

Am

)

s (4.1)

which gives us the joint probability density of xo and xm as densities of sums of independent
random variables s. With this joint density, we can estimate the expected value of the
predicted variables xm given the predictor variables xo. Using the general rules of densities
of transforms (see, e.g., [72], pages 20 and 36), we can write

E{xm|xo} = Am

∫

Aos=xo

sp(s)ds (4.2)

where p(s) is the joint density of the independent components. In Publication 3 an approx-
imation for the integral formula (4.2) is given. First, the data are linearly preprocessed and
the xm are replaced by the residuals of linear regression. Then the approximation reads

E{xm|xo} ≈ Amg(AT
o xo) (4.3)

1In Publication 3, the predictor variables were called “observed” and the predicted variables were called
“missing”; hence the subscripts o and m.
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where g : R
n → R

n is a multidimensional function that consists of applying a (possibly)
different function gi on each component of its argument: gi(u) = p′i(u)/pi(u) + cu. We
denote by pi the density of the i-th independent component, and by c a constant scaling
term. The arguments of g are initial linear estimates of the independent components s as
A is orthogonal due to prewhitening and AT

o is equal to the pseudoinverse of Ao. The
approximation is derived for independent components whose distribution is not far from a
Gaussian distribution.

The approximative formula (4.3) shows that ICA regression can be seen as regression by a
multilayer perceptron (MLP) network with one hidden layer. The activation functions of the
hidden layer are gi, the number of hidden units equals the number of estimated components,
the weights between the input and the hidden layer are given by Ao and the weights between
the hidden and the output layer are given by Am.

ICA can now be seen as a preprocessing method in regression: instead of forming the re-
gression directly on xo, we compute estimates of the sources s using AT xo and form a
nonlinear regression on them, as seen in Formula (4.3). The nonlinearly mapped sources are
transformed back to xm by multiplication with Am.

In Publication 3, experimental results on three different source densities — strongly super-
Gaussian, Laplace distributed (somewhat super-Gaussian) and Cosh distributed (very weakly
super-Gaussian) sources — are given for validating the approach. It is shown that the
approximative formula (4.3) nicely matches the exact integral formula (4.2) in all cases; the
better the less super-Gaussian the sources are. On the other hand, the very principle of ICA
regression seems to be plausible only if the sources are very super-Gaussian; this is natural
as ICA regression is nonlinear and assumes that all linear dependencies are first removed
from the data. For Gaussian sources, linear regression captures all dependencies there are,
and there is nothing left to be explained by the nonlinear structure of ICA regression.

In contrast to other ICA settings studied in this thesis, the use of random projection as a
preprocessing method is not discussed here. In a regression problem, the number of predictor
variables is often moderate, and dimensionality reduction is not needed.

4.2 Related methods

Publication 3 compares ICA regression with multilayer perceptrons and also discusses its re-
lation to projection pursuit regression and wavelet shrinkage. Some other related approaches
are described here.

Density shaping by Roth and Baram [129] was one of the first ICA-type approaches to
regression, although the concepts of ICA or BSS were not mentioned in the paper. They
give a neural network that performs a similar task as the Infomax [13] in maximizing the
entropy of the network’s output. A linear conditional expectation estimator xm = E{xm|xo}
is given for a one-dimensional predicted variable.

Cascade correlation by Fahlman and Lebiere [41] is a feedforward neural network architecture
that can also be used for regression. The network is built incrementally, adding new hidden



4.2. Related methods 27

units one by one until the performance of the network is satisfactory. In the beginning, the
network has no hidden units and the weights of the connections between the input and the
linear output layer are estimated — this corresponds to finding the linear dependencies in
the data, as is first done in ICA regression. Then a nonlinear hidden unit is included in the
model to explain what was left to be explained after the linear regression, and the incoming
weights of the hidden unit are optimized. After this, all connections to the output layer are
trained (including those directly from the input layer.) If there still remains some residual
between the output of the network and the training data, another hidden unit is added, with
incoming connections both from the input layer and the first hidden unit. The process of
adding hidden units, training its incoming weights and training all weights connected to the
output layer is repeated until the residual error in the training set vanishes.

The name “cascade” stems from the architecture of the network: new hidden units are con-
nected both to the input layer and all preceding hidden units. The architecture is thus
somewhat different from the MLP that corresponds to our ICA regression, where only one
hidden layer with several units is used. Also, the training in cascade correlation is different
in that after including new hidden units, the outgoing weights of the previous units are also
updated. This is reminiscent of stepwise linear regression where the predictor variables are
not totally independent and thus including new predictor variables (which are nonlinear func-
tions of the previous ones) changes the explanatory power of the previously added predictor
values, too. In our ICA regression the source estimates AT

o xo in (4.3) are independent and
decorrelated so that they explain orthogonal aspects of the observed data. There is no clearly
defined way to choose the nonlinearities in the cascade correlation network, in contrast to
ICA regression where the nonlinearities are directly obtained from the densities of the latent
sources.

Back and Weigend [9] estimate the ICA components of stock returns and reconstruct the
observed data either as linear combinations of the independent components or as sums of
thresholded independent components. Reconstruction is shown to be better than with PCA,
which is a well established tool in finance.

Eltoft and Kristiansen [38] use ICA and regression for filling in gaps in time series. Nonlinear
predictions are computed in the independent component domain, and prediction errors in
the observation domain.
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Chapter 5

ICA in text mining

5.1 Introduction

In times of huge information flow, there is a strong need for automatic textual data analysis
tools. Methods developed for this task fall in the broader category of statistical natural lan-
guage processing (SNLP). This includes all quantitative approaches to automated language
processing, such as probabilistic modeling, information theory and linear algebra [99]. In
this thesis, the focus is on text document data presented in a matrix format (discussed in
more detail in the sequel), and various linguistic aspects of SNLP remain untouched.

Another umbrella under which textual data analysis partially lies is information retrieval
(IR). Quoting a textbook on IR [10], “Information retrieval deals with the representation,
storage, organization of, and access to information items.” Textual documents are but one
source of information; others include images, music and so on. In the IR research, the
emphasis is typically on finding the information relevant to a user’s need. Examples of
the information need might be “Find documents containing information on fitness boxing
and places for that in Helsinki” or “What is the total length of illuminated ski tracks at
the Saariselkä ski resort?”. This information need is translated into a query that can be
processed by an IR system such as a search engine [10]. In addition to [10], introductions
into IR include [148, 133].

The third framework of textual data analysis is data mining; this point of view is discussed
in, e.g., [3, 56]. The name “text mining” has been chosen for this chapter as aspects of data
mining are touched elsewhere in this thesis, too: the general aim of finding the underlying
structure in data is common to both data mining and statistical data analysis.

The approach to textual data analysis taken in this thesis fits into the modeling phase of
SNLP. The results of the methods presented in this thesis help in seeing the underlying
structure of a large text corpus. For example, analyzing the topics of the documents aids in
topic-based document retrieval; this will be discussed in Sections 5.2 and 5.3.

In Publication 4 of this thesis we describe a way of using independent component analysis in
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text mining. ICA was originally developed for signal processing purposes, in particular for
continuously distributed signals. Text documents are a very different application area. How-
ever, in statistical natural language processing it has been observed that if text documents
are presented in a numerical format, then many numerical and computational methods can
be used to analyze the textual data.

The vector space model [133], also called bag-of-words model, is a popular format for present-
ing text documents. In this model, each document forms one d-dimensional vector where d
is the number of distinct terms in the vocabulary. Forming the vocabulary is a preprocessing
step which is discussed in, e.g., [10] and [99]; in our work, it is realized using the Bow toolkit
[100]. The main task is to limit the size of the vocabulary by choosing only a subset of all
terms appearing in the documents. This involves giving weights to terms to reflect their im-
portance. The i-th element of the document vector indicates the frequency (or some function
of the frequency) of the i-th vocabulary term in the document. The document vectors are
collected as the columns of the data matrix, also called term by document matrix.

In the vector space model, the documents are treated as points in a high dimensional space.
As a tradeoff for the computational simplicity of the representation, all information about the
order of the words inside the document or the structure of the document is lost. On the other
hand, using the vector space model makes it possible to see text document data in the same
framework as other high dimensional data sets encountered in data mining applications, e.g.,
customer transaction data or web log data. The observations might be documents, customers
or web users; the observed variables are then terms, products bought or web pages visited,
respectively.

A common practice in text mining is to compute the singular value decomposition (SVD) of
the data matrix and project the data into the subspace spanned by the left singular vectors
corresponding to the largest singular values. Thus the observed documents are represented as
linear combinations of some orthogonal features, called latent semantic factors. This method
is known as latent semantic analysis (LSA) in text mining, first discussed in [33]. LSA is
said to tackle the problem of synonymy and partially also polysemy1, and take advantage of
the implicit structure in how terms are associated with documents [33].

LSA uses only second-order moments of the data, so a natural step forward is to apply
more powerful methods such as independent component analysis. First approaches to using
ICA in the context of text data were presented by Isbell and Viola [77], Kolenda et al.
[96] and Kabán and Girolami [85]. In these approaches, a text document is seen as an
instantaneous mixture of independently occurring latent topics. In the text mining parlance,
a topic is a probability distribution on the universe of terms. The estimated ICA mixing
matrix of text data reveals to which degree the terms belong to different topics, and the
estimated sources show which topics are active in each document, as shown in Figure 5.1.
(Alternatively, one may also analyze the transpose of the data matrix, in which case the
mixing matrix reveals which documents are good examples of each topic, and the sources
show which terms represent each topic the best. In Publication 4 we have analyzed both
the original term by document matrix and its transpose, the document by term matrix. The
estimated sources then reveal the association of terms with topics and the association of

1Synonymous words have the same meaning, such as “car” and “automobile”. A polysemous word has
several different meanings, such as “branch”.
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documents with topics, respectively.) In practice, the high dimensional term by document
matrix is often first preprocessed by SVD or PCA, and the dimensionalities of the matrices
change; this is discussed in more detail in Section 2 of Publication 4.

X A S=

to
pi

cs

te
rm

s

te
rm

s

topicsdocuments

documents

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

Figure 5.1: The observed matrix X has terms as its rows and documents as its
columns. A column of the mixing matrix A tells the degrees of activity of each
term in a topic, and a row of the source matrix S tells the degree of activity of a
topic in each document.

In the rest of this chapter, we discuss the analysis of a dynamically evolving text stream in
Section 5.2. In Section 5.3 we compare ICA and the self-organizing map (SOM) in document
clustering and discuss the use of random projection as a preprocessing step.

5.2 Analysis of dynamically evolving text

In Publication 4 we have extended the use of ICA in text mining by analyzing dynamically
evolving text. In basic ICA and in the above references, the ordering of the observed data
vectors is not taken into account in estimating the model; in the approach of Publication 4,
the observed data are instead seen as time series. Other latent variable methods for analyzing
time-varying text data include Kolenda and Hansen’s [94, 95] second-order approach, Kabán
and Girolami’s [86] hidden Markov model type algorithm and Slaney and Ponceleon’s [138]
LSA-based segmentation algorithm. Outside latent variable methods, there is a rich literature
under the name “topic detection and tracking” for finding topically related material in streams
of data. See, e.g., [151, 5, 4].

The dynamically evolving text data that are analyzed in Publication 4 are chat line data.
The discussion found in chat lines on the Internet is an ongoing stream of text generated
by the chat participants and the chat line moderator. Typically, several different discussions
are going on simultaneously. Assuming that the discussions are more or less independent of
each other, we can view the situation as an ICA mixing, and use an ICA-type algorithm to
extract the different topics of the discussions.

The algorithm used in Publication 4 is based on Hyvärinen’s complexity pursuit [71] algo-
rithm. The idea in complexity pursuit is to find interesting structure in multidimensional
time series data. Interestingness is measured as a low Kolmogorov coding complexity of a
projection of the data. Intuitively stated, projections with a short coding length are typi-
cally structured in some way, that is, they are far from random noise and/or Gaussianity.
Connections between Kolmogorov complexity and ICA-type methods are discussed in [117].
The complexity pursuit method is quite similar to ICA except that it exploits the temporal
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dependencies in the data in addition to higher order statistics. No special emphasis is put
on the statistical independence of the estimated latent sources, though.

The details of the algorithm are discussed in Publication 4. Let us briefly describe its main
characteristics here. The data are first whitened by PCA. At each iteration step, a first order
autoregressive (AR) model is estimated for each latent variable sj . Then an approximation
of the Kolmogorov complexity of the residual of the AR model is minimized by gradient
descent. The estimated projection directions wj are decorrelated after every iteration step,
similarly to the way described in Section 2.2.

For the experiments of Publication 4, chat line data from the CNN Newsroom chat line2

were collected. The text stream of almost 24 hours was split into short sections, each of
which was considered as a document, and the term by document matrix of 5000 terms and
7430 documents was formed as discussed in Section 5.1. We estimated 10 latent topics of
discussion, shown in Publication 4. The estimated topics are very easy to interpret as they
concentrate on different terms — for a human observer the lists of the most important terms
of each topic are very meaningful. Also, looking at the estimated topics in the time domain,
we see that different topics behave differently over time; they all have their own periods of
activity, which seems very natural considering the problem setting. Participants of the chat
line discussion come and go, and so do the topics they discuss.

To compare the performance of the complexity pursuit algorithm to that of other ICA-type
or time series methods, we also analyzed newsgroup data which are labeled in the sense that
each article belongs to one newsgroup whose identity is known. The data were from the 20
Newsgroup corpus3 and consecutive articles were split into overlapping sections to emphasize
the time-dependent nature of the data. We measured how well the estimated topic time series
can be clustered into clusters corresponding to different newsgroups. We compared the
complexity pursuit algorithm to ordinary FastICA [70], JADETD

4 [107], Kolenda’s delayed
decorrelation [94] and Stone’s temporal predictability maximization5 [142] and showed that
complexity pursuit yields the smallest classification error.

Our results suggest that the method could serve in queries on temporally changing text
streams, perhaps complementing other topic segmentation and tracking methods [5]. An
important example of temporally changing text streams is online news services.

5.3 Preprocessing by random projection

Regarding the very high dimensionality of the document data, let us again discuss the use
of random projection as a preprocessing step. Computing the PCA or SVD of the term by
document matrix is a common practice prior to ICA estimation, similarly to what is done in
many other application areas. As random projection does not severely distort the distances

2http://www.cnn.com/chat/channel/cnn_newsroom
3http://www.cs.cmu.edu/˜textlearning
4The code was kindly provided by Mr Jukka Matilainen, who compiled Cardoso’s JADE

(from http://sig.enst.fr/˜cardoso/icacentral/Algos/cardoso/JnS.tar) and Ziehe’s TDSEP
(from http://www.first.gmd.de/˜ziehe/download.html) codes.

5The code was kindly provided by Dr J.V. Stone.
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between data points, we may use it to reduce the dimensionality of the data and then compute
the PCA or SVD in the lower dimensional space. The original term by document matrix
typically has thousands of terms and is very sparse; reducing its dimensionality to a few
hundred gives computational savings even though the sparsity of the data is then lost.

Random projection has been used successfully in another text mining approach, namely the
WEBSOM [93] method that is based on the self-organizing map (SOM) by Kohonen [92]. In
this approach, documents are ordered on a two dimensional map display in an unsupervised
manner so that similar documents lie close to each other. A sparse binary random matrix
is used in the WEBSOM system to reduce the dimensionality of the document vectors prior
to forming the map. Experimental results on random projection with the WEBSOM system
are given in [88, 93]. Note that PCA or SVD is usually not computed when forming the
map, so the context of random mapping is different from what we have discussed so far in
this thesis — the SOM is not a method for finding projection directions of the data matrix
like PCA, SVD, ICA, factor analysis etc. are.

In [16] we have shown experimental results of using random projection prior to ICA and
SOM. The documents analyzed in the project were segments of spoken dialogues carried out
over the telephone in a customer service, transcribed into text. The topics of the discussion
segments were analyzed and the segments were clustered. The quality of the clustering was
assessed by comparing it to a manual labeling of the documents (that is, segments). ICA is
not primarily intended for clustering but instead for presenting each observation vector as a
combination of latent variables. Here one document typically is about one topic only, and
thus one latent variable dominates in it, and we can cluster the document into this latent
variable. SOM, on the other hand, arranges the documents onto a two dimensional plane in
which more or less clear clusters can be seen.

In our experiments [16], we computed the ICA on the original data and both the ICA
and the SOM on the random projected data, and compared the clustering accuracies. The
nonlinearity in the FastICA algorithm was the “skewness” nonlinearity g(u) = u2 to reflect
the skewed distribution of the estimated latent components: the activities of the topics in
documents are nonnegative and mostly zero, with only one (or a couple of) active topic(s) in
one document. Random projection gave computational savings in ICA with a slight decrease
in the quality of the clustering. The overall performance of SOM was a bit better than
that of ICA. The most visible difference between their performances was seen in documents
belonging to a small cluster containing documents that were manually assigned as “out of
domain” (that is, impossible to classify). ICA could not find the correct clustering for
these, probably mainly because these documents did not form a statistically meaningful and
coherent entity, and also because the number of these documents was small. Apart from
these documents that topically do not truly belong together although they were manually
labeled so, ICA performed as well as SOM or even better. So in addition to studying random
projection in the context of ICA of text documents, in [16] we have also given evidence that
the performances of ICA and SOM in document clustering are comparable.
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Chapter 6

Finding structure in binary data

6.1 Introduction

Let us consider the problem of finding a simple representation for a large data set that takes
values in {0, 1}. (When referring to data that takes values in {0, 1}, we will talk about
“binary data” or “0-1” data interchangeably.) Our general hypothesis is the same as before,
namely that the observations are generated by some unknown latent components and their
interactions. Specifically, we assume that an observed data vector is a realization of a few
co-occurring topics. Intuitively, the topics are collections of variables whose occurrences are
somehow connected to each other. In Chapter 5 we noted that in the text mining parlance,
a topic is a probability distribution on the universe of terms — in this chapter we maintain
this definition with some possible restrictions on the form of the distribution. For the ease of
notation, we may also characterize a topic by listing the variables on which its distribution
concentrates.

We assume that the topics cover more or less different aspects of the data set and that their
occurrences or activities are independent of each other. Using the basic ICA model notation,
the topics correspond to the columns of the mixing matrix A, and the topic activities are
given by the rows of the source matrix S. The linear model X = AS does not exactly hold
but instead we discuss a few other ways of writing the data model.

As an example, consider market basket data where for each customer (an observed data
vector) we list which products she/he buys among all products available in the store. The
actual number of items bought is not modeled, but only the occurrence or non-occurrence
of each product in the customer’s basket. Market basket data are usually sparse, as one
customer only buys a small subset of a large set of alternative products. We assume that the
data consist of a small number of independent product groups: a customer typically buys
products belonging to one or a few groups (e.g., baby-care products and dairy products).
These unknown product groups are the latent topics of interest. Similarly, consider a large
collection of text documents represented as a binary term by document matrix. The data
often contain several distinct topics, one particular document dealing with only one or a
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couple of them. Here, a topic is characterized by a subset of terms. A third example of
binary data are web log data. A typical user of a large web site might visit pages concerning
only one or a few specific topics within a broad choice of pages. Again, it is of interest to
find these latent groups of web pages, given only the sets of pages that each user visited.
Of course, such a representation omits important temporal relationships between the page
accesses.

We assume that the observations are sparse, that is, there are a lot more 0s in the data
than 1s. We also emphasize that the roles of 1 and 0 in the data are very different and
not interchangeable: observing a 1 in a data vector means that there must have been an
occurrence of at least one topic that generates the 1. Observing a 0 results either if no topic
generates the 1, or simply if none of such topics occur in the observed data vector.

It is also natural to assume that the noise present in the observations is binary. Most ICA
approaches assume Gaussian noise which has convenient properties. The case of binary noise
is more problematic.

The problem of decomposing 0-1 data can be tackled by several different approaches de-
pending on what assumptions we are willing to make about the latent structure of the data.
Given an observation data matrix whose values are in {0, 1}, basic linear ICA would give
matrices A and S whose entries are real valued. In this chapter we discuss cases in which
we wish to restrict the values of A or S or both somehow. We first consider the case when
the latent topics or their occurrences or both are binary. In Section 6.3 we assume that both
are probabilities, that is, values in the range [0, 1].

6.2 Binary sources and/or binary mixing

6.2.1 Problem setting and related methods

Let us first restrict both the latent topics (in matrix A) and topic occurrences (in matrix S) to
binary values. Given a large data set of binary observations, our task is to find a reasonably
small number of binary latent topics such that the observations can be reconstructed by
simple “OR” operations or unions between a few topics. The data model in this “truly
binary” approach is not the matrix product X = AS but

X(i, t) =
∨

j

(A(i, j) ∧ S(j, t)) ∨B(i, t) (6.1)

where the noise in matrix B is binary, unless omitted.

To better understand this approach, consider again the examples of binary data listed at
the beginning of this chapter. Restricting our attention to binary topics means in the case
of document data that the topic of a document is characterized by a subset of all terms in
the vocabulary, and the terms in this subset do not have a particular order of importance.
Similarly, the supermarket products or web pages forming the latent topics in market basket
data or web log data, respectively, are all equally important. Also, by saying that the
occurrences of topics are binary we mean that for one observation vector, a subset of topics
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is active and the rest are inactive, and the degree of activity is equal for all active topics.

This truly binary approach has several drawbacks. First is the above mentioned restriction
on the nature of the variables or the topic activity. Second is the deterministic nature of the
data model. If a topic is active, then all variables belonging to the topic will be observed.
This problem is shared by the basic noiseless linear ICA, too, but here the problem is more
pronounced due to the binary nature of A and S. In Section 6.3 we will give a probabilistic
interpretation for our binary data.

One can even argue that there is a fundamental reason why (linear) ICA cannot solve binary
mixtures of binary sources: the intuition based on the central limit theorem discussed in
Section 2.2 does not hold in this case. A disjunction of two binary vectors is still a binary
vector, and Gaussianity does not increase as sources are mixed, as the mixing is not a
linear combination. Thus ICA methods based on non-Gaussianity maximization cannot be
used, and information-theoretic measures should not be approximated by measures of non-
Gaussianity.

In the framework of basic linear ICA, the problem of binary topics and binary topic occur-
rences can be solved approximately if we assume that both A and S are binary and sparse.
For such data, the “OR” operation is practically equivalent to a linear combination. A few
resulting entries of X = AS typically yield values larger than 1 but they can be thresholded
later to 1. Also, one may regard the data being generated by the model X = f(AS) where f
is a unit step function that operates on each element of the matrix AS individually: f(u) = 1
for u ≥ 0, and f = 0 otherwise. This is a post-nonlinear mixture as discussed by, e.g., [143].
The nonlinear function f is not continuously differentiable, and ICA methods developed for
post-nonlinear mixtures cannot be used. (In the post-nonlinear setting, one might as well
assume A and S not binary but nonnegative in general, and the model X = f(AS) would
give exactly the same observations.)

Himberg and Hyvärinen [59] have presented experimental results where the sources, mixing,
observations and noise are binary and the data are generated by Formula (6.1). In esti-
mating the mixing matrix A, they threshold the estimate to binary values. In their paper
the emphasis is on finding the mixing matrix instead of the binary sources. The FastICA
algorithm is used, with the nonlinearity measuring either the skewness or the kurtosis of the
estimated sources. The results on sparse simulated data are quite promising.

ICA was originally developed for continuously distributed latent source signals. Assuming
binary valued sources poses the difficulty that the source density is not differentiable but
instead consists of a peak at 0 and another one at 1. Maximum likelihood (ML) based
methods such as Infomax [13] and natural gradient [6] use the source density and its derivative
in the ICA estimation; now the derivative is not available. Instead, the source density must
be approximated by a differentiable density. Palmieri et al. [119] assume that the data are
continuous valued and they approximate the desired source density as a two-mode mixture
of Gaussians.

Several other authors have discussed the ICA of binary (or in general, discrete) sources
and non-binary observations with Gaussian noise. Belouchrani and Cardoso [14, 15] suggest
a version of the ML for discrete sources in which the source distribution is known. The
maximization of the likelihood is performed via the expectation-maximization (EM) [34]
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algorithm. In their approach it is possible to separate more sources than observed signals.
The EM algorithm becomes nevertheless quite demanding as the computational complexity
grows exponentially with the dimension of the data. Discrete sources are often encountered
in telecommunications. Comon and Grellier [30] assume more sources than observed signals
and use the MAP method to estimate the sources in a telecommunications setting. Miskin
[103] gives ensemble learning type algorithms for the task. In his approach, more sources
than sensors can be estimated, as the prior distribution for the sources is sparse. Cheung and
Xu’s [26] method is based on clustering the observations and thereby determining the correct
number of sources. Højen-Sørensen et al. [66] discuss a Bayesian approach to ICA in which
several source distributions, including binary, can be studied. In all of these approaches, the
noise is assumed to be Gaussian, which is not suitable for our problem of analyzing binary
valued data.

To conclude, assuming that binary data are generated by the interaction of binary compo-
nents seems a problem not suitable for ICA as such. Instead, we will turn our attention to
non-binary latent spaces, discussed in the following section.

6.3 Topic models

6.3.1 Data model and problem setting

In Publications 5 and 6 we discuss the problem of finding latent structure in binary valued
data. In contrast to what was discussed in Section 6.2, we do not assume that the latent
variables are binary but instead both A and S contain probabilities or “activations” similarly
to the case in Chapter 5. In Publications 5 and 6 we present a probabilistic model and
give two algorithms for estimating the structure in the data. The publications are briefly
reviewed and some new insights are given in the following, together with pointers to related
work.

We assume that the data are generated by interactions between independent latent topics:
Each topic has a probability sj of being active in an observation vector. The topics j generate
occurrences of variables1 xi according to some topic-variable probabilities A(i, j). For each
observation x, some topics are first selected according to their individual activity probabilities
s. The selected topics then generate observations according to the topic-variable probabilities
A.

We assume that A(i, j) are probabilities constant over the observed binary data vectors (as
in ICA) but we do not restrict them otherwise; for example we do not require that they sum
to 1 over i or j. (The term “probability” is not the most precise here, but as it is used in
Publications 5 and 6, we continue to use it here.) Similarly, the sj are probabilities drawn
from some predefined distribution, not summing to 1 over j. The drawing can either be done
once for the whole data set, making the sj constant over observations, or repeatedly for each
observation vector. In the latter case S(j, l) denotes the probability of topic j in observation
l.

1The observed variables are called “attributes” in Publications 5 and 6.
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As mentioned earlier, in information retrieval the term “topic” refers to a probability dis-
tribution on the universe of terms. Although the columns of A do not sum to 1 in our
approach and thus do not form a probability distribution, we choose to call them topics in
this overview and in the publications.

Figure 6.1 shows an example of our topic model. The topics are denoted by 1, 2 and 3 and
the variables by A, B and so on. We assume that different topics give rise to mostly non-
overlapping sets of variables. That is, for a topic j, A(i, j) is large for a subset of variables
i, and for another topic j′, A(i, j′) is large for another subset of variables i, mostly disjoint
from the former subset. This is a sensible assumption for several real world problems. For
example in document data, mainly different terms are used to discuss different topics, except
for homonyms and polysemes2 that may belong to several topics and bear a different meaning
in each topic.

A

A

A

A

A A

AA
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(A,1)

s s s1 2 3
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Figure 6.1: An example topic model. Topics 1, 2 and 3 are generated independently
of each other with probabilities s1, s2 and s3. The topics then generate observed
variables with probabilities A(i, j). The dashed arrows indicate that a variable
may be generated by several topics.

Specifically, to achieve what we earlier described vaguely as “mostly non-overlapping sets
of variables”, we can restrict the values of A in two different ways. In Publication 5 we
use the concept of ε-separability, first presented by Papadimitriou et al. [120]. This states
that each topic j has a disjoint set of primary variables Uj , and of the total probability
mass

∑

i A(i, j) of topic j, a small fraction of size ε with 0 ≤ ε ≤ 1 belongs to variables
other than the primary variables Uj of the topic. That is,

∑

i6∈Uj
A(i, j) ≤ ε

∑

i A(i, j).
Let us now stop for a moment and analyze what this actually means. From the viewpoint
of an individual variable i, this does not restrict at all the way in which the probabilities
A(i, j) are distributed — even if i is the primary variable of some topic j′, there might be
another topic j′′ for which A(i, j′′) > A(i, j′). We might argue that the concept of “primary
variables” is not always intuitive and the estimation of the main structure of the data may
be cumbersome.

To overcome the problem discussed above, we restrict the distribution of A in another way
in Publication 6. Instead of ε-separability which controls the “outgoing” probabilities of

2A homonymous word has several different, unrelated meanings, such as “bank”. A polysemous word has
several different but related meanings, such as “branch” [99].
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the topics, in Publication 6 we use the concept of θ-bounded conspiracy which controls the
“incoming” probabilities of the variables. The θ-bounded conspiracy condition states that
every variable i has a primary topic j′ for which

∑

j 6=j′ A(i, j) ≤ θA(i, j′). That is, the
probability that any of the non-primary topics generates i is at most θ times the probability
that the primary topic generates i. From the viewpoint of an individual variable i it is now
clear into which topic it mainly belongs to. In Figure 6.1 the dashed arrows indicate that
either ε > 0 or θ > 0, depending on how we wish to restrict the structure of the data.

Unfortunately, we cannot write a topic model simply as P = AS where P(i, l) would give
the probability P (X(i, l) = 1), that is, the probability of seeing variable xi in observation
l. As several topics may generate a variable, the formula becomes more cumbersome. For
example, in Figure 6.1 we have P (B = 1) = s1A(B, 1) + s2A(B, 2) − s1s2A(B, 1)A(B, 2).
Generally, allowing any topic to generate any variable3, we have

P (X(i, l) = 1) =
∑

j

S(j, l)A(i, j)−
∑

j

∑

j′<j

S(j, l)S(j′, l)A(i, j)A(i, j′)

+O(S(j, l)3A(i, j)3). (6.2)

Thus P equals AS plus some extra terms. However, if the topics are almost disjoint (that
is, ε ≈ 0 or θ ≈ 0), we can omit the extra terms. Also, for any ε or any θ, if the probabilities
are quite small, the first term dominates. The first term is a sum of n terms of order
O(A(i, j)S(j, l)), the second is a sum of n(n− 1)/2 terms of order O(A(i, j)2S(j, l)2) and so
on. For example, if the probabilities are 0.2 on the average, the first term dominates as long
as the number of topics is n < 51, a limit seldom exceeded in practical data sets.

The approximation P = AS bears close resemblance to both ICA, PLSA and NMF. The
latter two were discussed in Section 2.4; the ICA variant we will study here is the nonnegative
ICA by Plumbley [126], described in more detail in Section 6.3.4. As we do not observe the
probabilities in P but instead the binary outcomes in the matrix X, we must decompose
the data as X = AS instead when using ICA, PLSA or NMF. This is of course a crude
approximation but hopefully hints which elements of A and S are non-zero and thus sheds
light on the structure of the data. Comparative results on different methods are given in
Section 6.3.3.

6.3.2 Algorithms

In Publications 5 and 6 we give two methods for finding the latent structure in the data.
The first method is called the Probe algorithm, discussed in Publication 5. Intuitively, if
two variables belong to the same topic, then they behave similarly with respect to any third
variable C. For every pair of variables A, B we compute the probe distance

d(A,B) =
∑

C 6=A,B

|P (C|A)− P (C|B)| (6.3)

3In Publication 5, Section 3, in the sentence “In the ε-separable case, any variable may in principle be
generated by any topic . . . ” the higher order interactions in p(A) are missing. Although not mentioned in
the paper, it is assumed that ε is very small and all probabilities are quite small so that the higher order
terms can be omitted.
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where the probabilities P are estimated as frequencies in the data. Optionally, the probe
distances can be scaled so that each variable’s average distance to all other variables is the
same. This is done by scaling the sum of all probe distances to a variable to 1. The scaling
is beneficial if some variables are very rare.

Using the above distance measure, we then cluster the variables into possibly overlapping
sets which correspond to the topics. The term “clustering” usually refers to non-overlapping
clusters; terms such as relaxed clustering and multi-faceted clustering are used in the litera-
ture when an object is allowed to belong to multiple clusters simultaneously. We accomplish
relaxed clustering by hierarchical linkage clustering that is interrupted before all variables
are clustered4. The remaining variables typically have a small distance to variables in several
different clusters, and thus they are inserted into more than one cluster.

The second method for estimating the latent topics is called the Ratio or Lift algorithm,
discussed in Publications 5 and 65. It computes for every pair of variables A, B a statistic
called lift :

lift(A,B) =
P (A | B)

P (A)
=

P (A,B)

P (A)P (B)
(6.4)

where again the probabilities are estimated as frequencies in the data. The lift statistic equals
1 if variables A and B are independent (that is, they belong to different topics) and the larger
the lift statistic is, the more dependent the occurrences of A and B are. Furthermore, if both
A and B belong to one topic only, then lift(A,B) = 1 if they belong to different topics and
lift(A,B) = s−1

j if they belong to the same topic j. Thus such variables are easy to cluster
into topics.

The case of variables belonging to several topics (let us call them multi-topic variables) is
more cumbersome and is analyzed in Publication 6. Assume that there are some variables
belonging to one topic only (let us call them single-topic variables). Then the lift between
a multi-topic variable and any single-topic variable can be approximately written as a linear
combination of lifts between single-topic variables. The coefficients of this linear combination
indicate which single-topic variables share a topic with the multi-topic variable, that is, into
which topics the multi-topic variable belongs.

We have some reasons to believe that the above linear approximation also holds for the probe
distances in some form or another. This is a topic of a further study.

Both methods estimate the latent structure in the data mainly by telling which variables
belong to the same topic, and thus present the topics as lists of variables. In the ICA
terminology, this information is given by the A matrix, as discussed previously in Section
6.3.1. We regard this information more important than that given by the ICA source matrix
S that tells the probabilities s of the topics in the observation vectors. Using the lift statistic,
we can approximate these topic probabilities by averaging lift(A,B) = s−1

j over all single-
topic variables of topic j, if needed. Methods such as PLSA, LDA and MPCA (discussed in
Section 2.4) estimate the topic probabilities, too.

4Mr. Johan Himberg’s help in programming the interrupted hierarchical linkage clustering is appreciated.
5We used the name “Ratio” in Publication 5 and the name “Lift” in Publication 6. Before writing Publi-

cation 6 we became aware that the term “Lift” had been used in the literature.
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6.3.3 Experimental results

Preliminary experimental results on the Probe and Lift algorithms are given in Publication
5. In Publication 6, the mean squared errors in estimating the topic-variable probability
matrix A are presented for the Lift algorithm, NMF [97], PLSA [65], and K-means. The
corresponding results for the Probe algorithm and nonnegative ICA [126] are given in this
section.

We generated artificial data according to our θ-bounded topic model presented in Section
6.3.1. The model has 10 topics and 100 variables; other details of the model are given
in Publication 6. The Lift algorithm gives the topic-variable probabilities as explained in
Publication 6. The Probe algorithm assigns the variables into overlapping topics but does not
give estimates of the topic-variable probabilities. Instead, we can estimate the probabilities
of single-topic variables similarly to the Lift algorithm, and for the multi-topic variables we
approximate each probability as a mean over all probabilities in the corresponding topic.
For NMF, PLSA6 and nonnegative ICA7, we decompose the data as X = AS as discussed
at the end of Section 6.3.1; this gives us directly an estimate of A. A naive alternative to
these latent variable methods is the simple K-means algorithm which clusters the variables
into non-overlapping sets.

Figure 6.2 shows the mean squared errors (MSE’s) of the estimated topic-variable probabili-
ties, compared to the true probabilities used to generate the data. The conspiracy parameter
θ runs from 0 to 1 with intervals of 0.02. For each θ, the topic probabilities s are sampled
anew, so there is great variability in the generating models. In Figure 6.2 we see that for
smaller θ, the Lift and Probe algorithms estimate the topic-variable probabilities and thus
the structure of the data very nicely. When θ grows very large, the model is more difficult to
estimate with these two algorithms. The behaviors of nonnegative ICA, NMF and PLSA do
not depend on θ, which is natural: the methods are not primarily aimed for such θ-bounded
data, but instead are able to estimate the structure also when the topics are totally over-
lapping. Nonnegative ICA does not force the matrix A to nonnegative values, and therefore
we need to threshold the negative values to zero, which perhaps gives unfair advantage; the
mean squared errors are very small. In favor of NMF and PLSA it must be noted that
although their MSE is large at small θ, they might still be able to reconstruct the data.
The Probe algorithm does not always work as well as the Lift algorithm, perhaps due to the
lack of the linear approximation that we presented for the Lift algorithm in Publication 6
(briefly discussed in Section 6.3.2). The K-means algorithm estimates the structure of the
data poorly for all θ.

To conclude, we suggest that the Probe and Lift algorithms approximate the structure of the
binary data quite well if the latent topics only overlap to a small or moderate degree. One
of their advantages is the simplicity of computations.

As an example of real word data we use the same data set as in Publications 5 and 6: a
collection of bibliographical data on computer science8. The number of documents (that is,
bibliographical entries) is 67066. We remove a small set of stop words and, for the results

6The PLSA [65] method was kindly programmed by Mr. Teemu Hirsimäki. No simulated annealing was
used in the EM algorithm of the PLSA in our experiments.

7The code was kindly provided by Dr. Mark Plumbley.
8Available at http://liinwww.ira.uka.de/bibliography/Theory/Seiferas/
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shown in this chapter and in Publication 6, we select the 100 most common terms. An entry
of the data matrix is 1 if the term appears in the document and 0 otherwise. The data are
quite sparse: about 2 per cent of the entries of the data matrix are non-zero.

We use a hierarchical average linkage clustering algorithm (available in Matlab) on the pair-
wise distances between the terms. The distances are given either as the scaled probe distances
(6.3) or as the inverses of the lift statistics (6.4) (the lift is a similarity measure, so a conve-
nient distance measure is obtained by taking its inverse). We cluster the terms into topics;
the results are shown in Publication 6 for the lift statistic and in Table 6.1 for the case of
probe distances. The number of topics was chosen as 21 in Publication 6, and the same
number is chosen here for the ease of comparison of the results.

In Table 6.1 we see that the clusters are of different sizes and encompass very different terms.
The structure our method yields is immediately familiar for a theoretical computer scientist.
The estimated topics are surprisingly coherent in their term lists. Some topics concentrate
on a very specific area within computer science: the terms of topic 1, for instance, are clearly
words that occur frequently in the titles of papers on graph algorithms; topic 5 is about
programming and topic 11 deals with formal languages. Topics 3, 6, 7, 9, 12, 13 and 21
are also about quite well-defined areas in computer science. Some topics only encompass
a few terms that behave similarly because they are almost synonyms (topic 14) or appear
frequently together (topics 10, 15, 16, 19 and 20). The rest of the topics — 4, 8 and 17
— contain terms whose meaning suits many different contexts. Some topics (2 and 18)
correspond to publication forums9; typically only one of these terms appears in a document.
This is in contrast to the topics listed above, the topics with “scientific content”, several of
whose terms appear in one document.

In addition to the terms listed in Table 6.1 there are five “outliers” whose probe distance is
large to all other terms and thus they do not get clustered into any topic: ’approximation’,
’codes’, ’communication’, ’dynamic’ and ’scheduling’.

Note that it can well happen that several topics apply to one document: the “content-
bearing” terms in the title and the publication forum are represented in different topics. A
subjective comparison between Table 6.1 here and Table 1 in Publication 6 suggests that
the topics found by the Probe algorithm are even more coherent than the ones found by the
Lift algorithm. We conclude that the probe distances and lift statistics are fruitful ways of
finding related term sets in document data.

9Explanations of the abbreviations in Table 6.1: In topic 2, ’actainf’ is Acta Informatica, ’beatcs’ is
Bulletin of the European Association for Theoretical Computer Science, ’damath’ is Discrete Applied Math-
ematics, ’dmath’ is Discrete Mathematics, ’focs’ is IEEE Symposium on Foundations of Computer Science,
’icalp’ is International Colloquium on Automata, Languages and Programming, ’infctrl’ is Information and
Computation (formerly Information and Control), ’ipl’ is Information Processing Letters, ’jacm’ is Journal of
the ACM, ’jcss’ is Journal of Computer and System Sciences, ’libtr’ is one kind of a technical report, ’mfcs’ is
International Symposium on Mathematical Foundations of Computer Science, ’sicomp’ is SIAM Journal on
Computing, ’stacs’ is International Symposium on Theoretical Aspects of Computer Science, ’stoc’ is ACM
Symposium on Theory of Computing, ’tcs’ is Theoretical Computer Science, and ’tr’ is technical report. In
topic 18, ’cacm’ is Communications of the ACM, ’crypto’ is International Cryptology Conference, ’ieeetc’ is
IEEE Transactions on Computers, and ’lncs’ is Lecture Notes in Computer Science.
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topic terms
1 algorithm algorithms efficient fast graph graphs matching optimal

parallel problem set simple
2 actainf beatcs damath dmath focs geometry icalp infctrl ipl jacm

jcss libtr mfcs sicomp stacs stoc tcs tr
3 complexity functions machines probabilistic
4 applications problems some
5 approach de logic model programming programs system systems van
6 network networks routing sorting
7 computational information theory
8 linear new two
9 binary search tree trees
10 polynomial time
11 algebraic automata finite languages note properties sets theorem
12 data structures
13 analysis design distributed using
14 computation computing
15 bounds lower
16 computer science
17 from learning
18 cacm crypto ieeetc lncs
19 number random
20 abstract extended
21 finding minimum planar

Table 6.1: Topics in bibliographical data, computed using the probe distances. The
terms are in alphabetical order; the order of the topics is not relevant.
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6.3.4 Related methods

Our model can be interpreted as a Bayesian network (a graphical model): the topics and the
observed variables are the nodes of the graph. The nodes are discrete valued, the relations
between them are directed and acyclic, and child nodes (here the observed variables) are
independent of each other given the values of their parent nodes (here the topics). For an
introduction to graphical models, see e.g. [82, 83].

Our model is also an example of a multiple cause model. A seminal paper presenting such
models for binary valued data is by Saund [134], stating that “a multiple cause model accounts
for observed data by combining assertions from many hidden causes, each of which can
pertain to varying degree to any subset of the observable dimensions”. The data likelihood
of our model, presented in Publication 6, is similar but not identical to that in [134] where
a so called “soft disjunction” or “noisy-OR” mixing is applied. Sahami et al. [132] apply
the model to text categorization. The model is estimated by iterative gradient descent in
[132, 134]. A similar model is presented by Jaakkola [78] and solved by variational methods.

Our data model is somewhat similar to that of Papadimitriou et al. [120] (discussed in
Publication 5) and the one in latent Dirichlet allocation and multinomial PCA (LDA and
MPCA, see Section 2.4). The task of decomposing the data is similar to Hofmann’s PLSA
[64, 65], Lee and Seung’s NMF [97, 98] and Hoyer’s nonnegative sparse coding [68]; all of
these were discussed in Section 2.4 and PLSA and NMF were used in the experiments in the
previous section. However, these references do not give special emphasis on binary data.

Hinton et al. [61, 63] have presented a method called contrastive divergence. It is a graphical
model that uses a restricted Bolzmann machine [141] whose units are binary valued and
the hidden units are not connected to each other. All hidden units are connected to all
visible units with bidirectional connections. This corresponds to our topic model where the
topics are in the hidden layer and the observed variables in the visible layer, except that
in our model the dependence relations are not bidirectional but only the observed variables
depend on the topics. When the values of the variables are observed, the hidden units of the
Bolzmann machine are conditionally independent. In contrast, in our model and in PLSA,
LDA and MPCA, the observed variables are conditionally independent given the topics.

Bernoulli mixtures (see, e.g., [40, 55]) are a common choice for analyzing binary data. How-
ever, we do not wish to use them since mixture models assume that all entries of an obser-
vation vector have the same probabilities of being generated by the jth latent component
distribution, as mentioned in Section 2.4.

There are a few ICA approaches to estimating nonnegative A and S. Generally, the matrix
entries are not assumed to be probabilities but any nonnegative real numbers. Nuzillard [110]
gives a method that constrains both the mixing matrix and latent variables to nonnegative
values. She first performs original ICA and then uses an iterative method called Alternated
Least Squares to restrict the mixing matrix and the latent variables to nonnegative values.
Parra et al. [121] present a constrained ICA method in which the problem of estimating non-
negative mixing and latent variables is solved by a maximum a posteriori (MAP) approach.
The priors for the mixing matrix and for the latent variables impose the nonnegativities.

In his nonnegative ICA, Plumbley [124] suggests that decorrelating the observed data is
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enough if nonnegativity constraints are imposed on the latent variables and the mixing
matrix. Usually in ICA, decorrelation of observations is just a preprocessing step and not a
sufficient condition for independence — according to Plumbley, the nonnegativity constraints
are sufficient to fix the remaining underdetermined parameters of the solution, provided that
the sources have a non-zero probability density function in the positive neighborhood of
zero. In Plumbley [125, 126] and Oja and Plumbley [113] the case of nonnegative sources
is studied, but the values of the mixing matrix A are not assumed nonnegative. Several
algorithms are given, all starting with data whitening. After the whitening step, it remains
to find a rotation which forces all of the data into positive values. This is done either by
axis pair rotations, by nonnegative PCA, or by a geodesic search in the space of orthogonal
matrices; the latter was used in our experiments in Section 6.3.3.

Generative topographic mapping (GTM, [144, 17]) gives a probabilistic visualization of high-
dimensional data; in this case the latent variables are Gaussian and not binary valued.
Pajunen [118] and Girolami [50, 51] have presented binary versions of GTM: the latent space
is not continuous but an n-dimensional grid of discrete points to which the observations
are mapped (typically n = 2). This gives a clustering of data points. The clusters are
non-overlapping in the sense that one observation belongs to one cluster only.

A somewhat different method for analyzing binary (or in general, term-document data) is
given by Dhillon’s co-clustering [35], sometimes also called double clustering. In contrast to
clustering only terms or documents, he clusters both dimensions of the data matrix simul-
taneously by a spectral graph partitioning algorithm. Dhillon does not present his approach
as a latent variable model. However, an analogy can be drawn to the approach described in
this chapter: a term can be clustered into those topics in which its probability of appearance
is “large” or significantly non-zero, and similarly a document can be clustered into topics
which have a “large” probability of occurrence in this document. (This analogy lends itself
easily to NMF and PLSA, too.) The clustering in Dhillon’s co-clustering is non-overlapping
in the sense that a document (or similarly, a term) can only belong to one cluster; in our
topic model the clusters may overlap. A method related to Dhillon’s co-clustering and to
principal component analysis is correspondence analysis [42] that displays a low dimensional
projection of the data for two variables simultaneously (in [42], for genes and hybridizations).

Overlapping clusters are encountered in the field of fuzzy systems [154], too: assuming fuzzy
topics, each observation would have a membership value ranging from 0 to 1 in each topic.
The case of both observations and variables having a membership value in a topic is not
straightforward in this setting, neither is the use of the concept of latent variables.

Another method related to clustering is the famous information bottleneck method of Tishby
et al. [147]. More precisely, it is an information-theoretical approach to dimensionality re-
duction. Variables are clustered in a way that maximizes the mutual information within the
cluster. An application of the method to term and document clustering is given in [139]:
first, the terms are clustered so that the obtained clusters maximally preserve the informa-
tion about the documents. Then the documents are clustered so that the information about
the term clusters is preserved. The clusters are not overlapping in this double clustering
approach. In an earlier paper, Becker and Hinton [12] also found coherent regions in the
observed data by maximizing mutual information; the method is for the continuous space.
A corresponding task, again in the continuous space, is accomplished by the discriminative
clustering method by Sinkkonen et al. [137, 136].
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Chapter 7

Conclusion

7.1 Summary

This thesis considered the problem of representing a large data set in a compressed format.
It was assumed that the data are not completely random but there are some regularities that
form a kind of internal structure in the data. A natural task in such a setting is to find out
this internal or latent structure and thus obtain a simple representation of the data.

The hypothesis to start with was that an effective method for estimating latent structure in
data, independent component analysis (ICA), could be extended into new problem settings.
ICA, which originated in the field of signal processing, is a powerful and promising method
for solving a problem that at first sight seems unsolvable: Assume that the observed data
are generated by some unknown interactions between unknown but statistically independent
latent variables. Using the observed data only, find these unknown latent variables and the
way they interact. It has been shown [29] that the problem is indeed solvable if some require-
ments are met, as discussed in Section 2.1. ICA has been applied more or less successfully to
various different problems in a multitude of application areas; some applications are listed
in [72] and some others are discussed in this thesis.

Tempted by its promise, the work was started to extend ICA in various different ways. The
first extension was from real valued to complex valued signals. A simple but computationally
efficient algorithm for separating complex valued, linearly mixed signals was given in this
thesis; this was not the first ICA algorithm for such a problem, but the elegance of the
FastICA algorithm [76, 70] had not been previously applied to the problem. Conditions on
the local consistency of the estimator given by the algorithm were also given in this thesis.

The second extension was to use ICA as a preprocessing method in nonlinear regression:
First, using the labeled training examples of predictor and predicted variables, the indepen-
dent latent variables and their linear mixing are estimated by ordinary ICA. Then instead
of forming a nonlinear regression on the original predictor variables, the nonlinearities are
applied to the independent latent variables and the result is transformed back to the original
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observation space by projecting with the estimated mixing matrix. This procedure resembles
closely regression by a multilayer perceptron (MLP) but is defined in a more disciplined way:
choosing the nonlinearities and the weight matrices of the MLP network is now straightfor-
ward.

The third extension was the use of ICA in information retrieval. The original idea of finding
the latent topics of written text had been presented elsewhere. In this thesis, the focus was
on analyzing the topics of discussion in a dynamically evolving text stream; as an example
of such data, chat line discussion appearing on the Internet was used. It was shown that by
using an ICA-type method developed for time-dependent signals, called complexity pursuit
[71], the topics in such data can be found and visualized in a convenient way. This has
applications in the retrieval of text whose characteristics change over time, such as online
news services.

The fourth extension in this thesis was the analysis of binary valued data that contain
some hidden topics; again text document data may serve as an example. A restricting
assumption on the latent structure of the data was that the observed variables (that is,
terms) have unknown probabilities of belonging to each latent topic, and the latent topics
themselves have unknown probabilities of appearance in each observed document. In short,
a nonlinear mixture of the latent topics is observed, and as the parameters of the model are
probabilities, ordinary (linear) ICA cannot be used as that would result in negative values for
the parameters. Instead, two methods were presented for analyzing such data. The methods
are based on the independence of the latent topics and can thus be seen as extensions of the
original idea of ICA, although the name ICA might be misleading in this setting.

Apart from the objective of extending ICA into new problem domains, this thesis also had
other objectives. As mentioned at the beginning of this chapter, a general aim was to
study methods for representing a large data set in a compressed form by finding some latent
structure in it. A somewhat overlapping aim was to discuss methods for dimensionality
reduction (the focus was mainly on projection-based methods). The methods for finding the
latent structure in the data can be viewed as performing dimensionality reduction, so these
aims are intertwined. Specifically, the use of random projection as a method of dimensionality
reduction was studied. It was also proposed that random projection is a suitable method
of data preprocessing prior to ICA, and supporting empirical evidence was given in several
different contexts.

This thesis also gave literature surveys on each addressed problem: latent variable decom-
positions, separation of complex valued signals, ICA-type methods in regression and in in-
formation retrieval, and the estimation of structure in binary valued data.

7.2 Further work

From the point of view of the ICA community, the linear ICA model has been studied
extensively during the past years and it is natural to set the focus on new problem settings.
The extensions presented in this thesis are by far not the only possible ones, nor are they
yet conclusively studied here.
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The problems encountered in information retrieval often involve non-continuous data: binary,
count or (continuous) nonnegative data. The case of binary data was studied in this thesis;
other types of data deserve attention in the future, too. Also, many kinds of restrictions on
the type of the latent structure being sought for are possible. We concentrated on “additive”
interactions of the latent variables. A structure worth studying is one in which some latent
variables have inhibitory effects: for example, if some topic is active, then some other topic
must stay inactive (of course, such topics are not independent of each other any more and
the independence cannot be utilized in the algorithms). Another form of inhibition is one in
which a topic generates exclusive-or appearances of terms: among two specific terms, only
one may appear at a time. Or, a topic favors the appearance of a term and inhibits the
appearance of another.

The analysis of the link structure in large graphs such as the World Wide Web is an interesting
new field of application of many latent variable models. Questions such as “Are there some
smaller subgraphs that are more or less independent of each other?” can be posed. Proposed
techniques for the link analysis include spectral partitioning [37, 43, 101, 109, 152] and the
HITS [90] and PageRank [116, 19] algorithms that can also be conveniently presented in
matrix form [36]. The field of bioinformatics has several problems where latent variable
methods could prove useful, too. For example, given a DNA sequence, the task would be to
decompose it into short subsequences generated by some latent variables. We hope to be able
to address these problem domains in the future, taking into account the specific restrictions
posed by the application areas.
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