
Pattern Recognition 44 (2011) 159–171
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

E-m

alpaydin
journal homepage: www.elsevier.com/locate/pr
Regularizing multiple kernel learning using response surface methodology
Mehmet Gönen �, Ethem Alpaydın

Department of Computer Engineering, Boğazic- i University, TR-34342 Bebek, _Istanbul, Turkey
a r t i c l e i n f o

Article history:

Received 26 June 2009

Received in revised form

12 May 2010

Accepted 2 July 2010

Keywords:

Support vector machine

Multiple kernel learning

Regularization

Response surface methodology
03/$ - see front matter & 2010 Elsevier Ltd. A

016/j.patcog.2010.07.008

esponding author.

ail addresses: gonen@boun.edu.tr (M. Gönen)

@boun.edu.tr (E. Alpaydın).
a b s t r a c t

In recent years, several methods have been proposed to combine multiple kernels using a weighted

linear sum of kernels. These different kernels may be using information coming from multiple sources

or may correspond to using different notions of similarity on the same source. We note that such

methods, in addition to the usual ones of the canonical support vector machine formulation, introduce

new regularization parameters that affect the solution quality and, in this work, we propose to optimize

them using response surface methodology on cross-validation data. On several bioinformatics and digit

recognition benchmark data sets, we compare multiple kernel learning and our proposed regularized

variant in terms of accuracy, support vector count, and the number of kernels selected. We see that our

proposed variant achieves statistically similar or higher accuracy results by using fewer kernel

functions and/or support vectors through suitable regularization; it also allows better knowledge

extraction because unnecessary kernels are pruned and the favored kernels reflect the properties of the

problem at hand.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Support vector machine (SVM) is a discriminative classifier
proposed for binary classification and is based on the theory of
structural risk minimization [1–4]. Given a sample of N indepen-
dent and identically distributed training instances, fxi,yig

N
i ¼ 1,

where xiARD and yiAf�1,þ1g is its class label, SVM basically
finds the linear discriminant with the maximum margin in the
feature space induced by the mapping function, F : RD-RS. The
decision function is

f ðxÞ ¼ sgnð/w,FðxÞSþbÞ

whose parameters can be learned by solving the following
quadratic optimization problem:

min:
1

2
JwJ2

2þC
XN

i ¼ 1

xi

w:r:t: wARS, nARN
þ , bAR

s:t: yið/w,FðxiÞSþbÞZ1�xi 8i

where w is the vector of weight coefficients, C is a predefined
positive trade-off parameter between model simplicity and
classification error, n is the vector of slack variables, and b is the
bias term of the separating hyperplane. Instead of solving this
optimization problem directly, the Lagrangian dual function
ll rights reserved.

,

enables us to obtain the following dual formulation:

max:
XN

i ¼ 1

ai�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajyiyj/FðxiÞ,FðxjÞS
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{kðxi,xjÞ

w:r:t: aARN
þ

s:t:
XN

i ¼ 1

aiyi ¼ 0

CZaiZ0 8i ð1Þ

where a is the vector of dual variables corresponding to each
separation constraint and the obtained kernel matrix is positive
semidefinite. Solving this, we get w¼

PN
i ¼ 1 aiyiFðxiÞ and the

decision function can be written as

f ðxÞ ¼ sgn
XN

i ¼ 1

aiyikðxi,xÞþb

 !
:

There are several kernel functions successfully used in the
literature such as the linear kernel (kL), the polynomial kernel (kP),
and the Gaussian kernel (kG):

kLðxi,xjÞ ¼/xi,xjS

kPðxi,xjÞ ¼ ð/xi,xjSþ1Þq, qAN

kGðxi,xjÞ ¼ expð�Jxi�xjJ
2
2=s2Þ, sARþþ :

There are also kernel functions proposed for particular applications,
such as natural language processing [5] and bioinformatics [6].

www.elsevier.com/pr
dx.doi.org/10.1016/j.patcog.2010.07.008
mailto:gonen@boun.edu.tr
mailto:gonen@boun.edu.tr
dx.doi.org/10.1016/j.patcog.2010.07.008

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171160
Selecting the kernel function and its parameters (e.g. q or s) is
an important issue in SVM training. Kernel selection is generally
done by selecting the best kernel function after applying a cross-
validation procedure; that is, they are used singly and separately
and the one that leads to highest accuracy on validation data is
chosen. In recent years, kernel combination methods have been
proposed where we use multiple kernels instead of selecting one
specific kernel function and its corresponding parameters. Each
kernel function captures a different measure of similarity and
using several instead of one may enable a better solution. If we
have input coming from multiple sources each with its own
kernel (or kernels), combining kernels allows information from
these sources to be integrated effectively. The reasoning is similar
to combining different classifiers: Instead of choosing a single one
and putting all our eggs in the same basket, it is better to have a
set and let an algorithm do the picking or combination.

Multiple kernel learning (MKL) [7–9] optimizes the support
vector parameters and the kernel combination weights jointly. MKL
is proposed to obtain sparse kernel ensembles eliminating some of
the kernels by assigning them zero weights during training.

The MKL formulation of Bach et al. [8] introduces new regulariza-
tion parameters that are directly related to the sparsity of the solution
obtained. The easiest approach of setting them all equal does not
always work well because it implies giving equal a priori weight to all
kernels. The approach in Bach et al. [10] is a heuristic to simply
estimate the weights but it is clear that ideally, these weights should
also be trained in a coupled manner with the kernel machines.

We propose using response surface methodology (RSM) on
validation error to optimize these parameters using data and to
obtain more regularized solutions. We show that optimizing the
regularization parameters using an RSM-based approach leads to
more sparse kernel ensembles where some kernels are given zero
weight without diminishing accuracy, when compared to the
canonical MKL on several benchmark data sets. Not using a kernel
in the ensemble may be either because: (a) the notion of similarity
used in the kernel function is not appropriate or (b) the data source
used to calculate the kernel does not carry useful information. If a
kernel function is assigned zero weight in the combination rule, it
means that this specific kernel function or the data source used in this
kernel function does not carry discriminative information for the
problem and hence can be pruned.

The rest of this paper is organized as follows: Section 2 reviews
different kernel combination methods. In Section 3, we explain how
regularization can be achieved for the MKL formulation of Bach et al.
[8] by extending it using RSM. Section 4 demonstrates the effect of
regularization in kernel combination with experiments on several toy
and real-world, bioinformatics data sets. A survey of related work is
given in Section 5, and we conclude in Section 6.
2. Kernel combination methods

The kernel matrix in the objective function must be positive
semidefinite to solve the optimization problem in (1) efficiently. In
this case, the mathematical model becomes a convex optimization
problem and there are several methods that can be used to obtain the
global optimum. Simple rules, such as scaling with a positive number,
summation, and multiplication, as summarized in (2), allow us to
obtain new kernel functions from existing ones; they ensure that the
combined kernel has also a positive semidefinite kernel matrix [11]:

kðxi,xjÞ ¼ ak1ðxi,xjÞ; aARþ

kðxi,xjÞ ¼ k1ðxi,xjÞþk2ðxi,xjÞ

kðxi,xjÞ ¼ k1ðxi,xjÞk2ðxi,xjÞ: ð2Þ
Summation rule is applied successfully to computational biology [12]
and optical digit recognition [13] where heterogeneous data sets exist
by the nature of these problems. In both works, summation of two or
more kernels obtained from different representations of the same
data set is used.

Such simple rules make assumptions about the combination
rule before training. For example, unweighted summation of
kernel functions gives equal importance to each kernel. Lanckriet
et al. [7,14] replace the kernel function in the objective and
decision functions with a weighted linear combination of kernels
where weights are also learned. The new objective function is

min:
g

max:
a

XN

i ¼ 1

ai�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajyiyj

XP

m ¼ 1

Zmkmðxi,xjÞ ð3Þ

where m indexes kernels, P is their number, each kmð�,�Þ
corresponds to a different kernel function, and Zm is the
combination weight of kmð�,�Þ. The new decision function becomes

f ðxÞ ¼ sgn
XN

i ¼ 1

aiyi

XP

m ¼ 1

Zmkmðxi,xÞþb

 !
: ð4Þ

Lanckriet et al. [7,14] represent this problem using a semidefinite
programming (SDP) formulation by constraining the combined
kernel matrix to be positive semidefinite. Lanckriet et al. [14]
simplify further the model into a quadratically constrained
quadratic programming (QCQP) problem by considering only
nonnegative combination weights. The QCQP formulation can be
solved for both the support vector coefficients ðaÞ and the
combination weights ðgÞ, whereas the SDP formulation gives only
the combination weights (without any restriction of nonnegativ-
ity) and requires another step of solving a canonical SVM problem
to find the support vector coefficients. The QCQP formulation has
been tested on genomic data fusion with different kernel
functions evaluated on different data representations [15].

Bach et al. [8] propose to use an unweighted sum of
discriminant values calculated over different feature spaces in
the decision function:

f ðxÞ ¼
XP

m ¼ 1

/wm,FmðxÞSþb: ð5Þ

They rewrite the primal optimization problem that uses the weighted
l1-norm on feature spaces and the l2-norm within each feature space:

min:
1

2

XP

m ¼ 1

dmJwmJ2

 !2

þC
XN

i ¼ 1

xi

w:r:t: wmARSm , nARN
þ , bAR

s:t: yi

XP

m ¼ 1

/wm,FmðxiÞSþb

 !
Z1�xi 8i ð6Þ

where dm is the nonnegative weight assigned to the feature space
induced by Fmð�Þ, wm is the vector of weight coefficients, and Sm is the
dimensionality of the corresponding feature space. This model can be
treated as a second-order cone program and the resulting dual
problem is

min:
1

2
g2�

XN

i ¼ 1

ai

w:r:t: gAR, aARN
þ

s:t: dmgZ
XN

i ¼ 1

aiyiFmðxiÞ

�����
�����

2

8m

XN

i ¼ 1

aiyi ¼ 0

CZaiZ0 8i: ð7Þ

This formulation has nonlinear constraints different from the original
dual problem and is a case of conic programming. It is difficult to

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171 161
solve this model because of the high space and time complexity.
Squaring each side of the first set of constraints in (7) and replacing g2

with 2g reveal the following QCQP problem:

min: g�
XN

i ¼ 1

ai

w:r:t: gAR, aARN
þ

s:t: d2
mgZ

1

2

XN

i ¼ 1

XN

j ¼ 1

aiajyiyj/FmðxiÞ,FmðxjÞS
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{kmðxi,xjÞ

8m

XN

i ¼ 1

aiyi ¼ 0

CZaiZ0 8i

where we again get the optimal kernel weights from the optimal dual
variables ðgÞ corresponding to the first P constraints. By taking the
derivative of the Lagrangian dual with respect to g, we see that the
kernel weights satisfy

XP

m ¼ 1

d2
mZm ¼ 1: ð8Þ

From the optimality conditions, we observe that wm ¼

Zm

PN
i ¼ 1 aiyiFmðxiÞ and by plugging this expression into (5), we

obtain the same decision function as (4). Sonnenburg et al. [9] develop
a semi-infinite linear programming equivalent to this model and a
solution method to solve the model iteratively calling a canonical
SVM solver, instead of solving it as a QCQP problem.
3. Regularizing multiple kernel learning via response surface
methodology

We use the mathematical model in (6) developed by Bach et al.
[8] as our base model, where the regularization term in the
objective function consists of fwmg

P
m ¼ 1 and fdmg

P
m ¼ 1. In general,

fdmg
P
m ¼ 1 are treated as scaling factors to balance the scale
Table 1
Prior probabilities and Gaussian parameters used for toy data sets.

Data set Positive class (priors, means, covariances

GAUSS2
p1¼0.50 m1 ¼

�1:0

þ1:0

 !
S1 ¼

0:8 0:0

0:0 2:0

�

GAUSS3
p1¼0.25 m1 ¼

�2:0

þ1:0

 !
S1 ¼

0:8 0:0

0:0 2:0

�

p2¼0.25 m2 ¼
þ2:0

þ1:0

 !
S2 ¼

0:8 0:0

0:0 2:0

�

GAUSS4
p1¼0.25 m1 ¼

�3:0

þ1:0

 !
S1 ¼

0:8 0:0

0:0 2:0

�

p2¼0.25 m2 ¼
þ1:0

þ1:0

 !
S2 ¼

0:8 0:0

0:0 2:0

�

GAUSS5
p1¼0.16 m1 ¼

�4:0

þ1:0

 !
S1 ¼

0:8 0:0

0:0 2:0

�

p2¼0.18 m2 ¼
þ0:0

þ1:0

 !
S2 ¼

0:8 0:0

0:0 2:0

�

p3¼0.16 m3 ¼
þ4:0

þ1:0

 !
S3 ¼

0:8 0:0

0:0 2:0

�

In the GAUSS2 data set, each class has one Gaussian component. In the GAUSS3 data set, th

set has two components in each class and the GAUSS5 data set has three components in
differences between kernel function outputs. It is a common
procedure to normalize the kernel outputs before training:

kðxi,xjÞ ¼
kðxi,xjÞffi

kðxi,xiÞkðxj,xjÞ

q
and the trace of each normalized kernel becomes N. All fdmg

P
m ¼ 1

values are taken as 1 after normalization; this strategy is used in
Sonnenburg et al. [9].

The solution obtained from the optimization problem gives us
a linear combination of kernel functions that satisfies (8) obtained
from the Karush–Kuhn–Tucker optimality conditions [8]. This
equation defines upper bounds for fZmg

P
m ¼ 1 and we can control

the feasible region for fZmg
P
m ¼ 1 by changing fdmg

P
m ¼ 1. For

example, if the value assigned to dm is high, the kernel
corresponding weight Zm moves closer to zero and will be
eliminated from the final kernel combination.

We consider fdmg
P
m ¼ 1 as regularization parameters and from

this perspective, the training process should also search for better
fdmg

P
m ¼ 1, instead of simply selecting them all equal to 1. In order

to show the effect of fdmg
P
m ¼ 1 on regularization, we create four

toy data sets which are mixtures of Gaussians with different
number of components (see Table 1) and we test the effect of
different fdmg

P
m ¼ 1 using MKL on them.

We combine three kernels (kL, kP, and kG) on toy data sets by
taking dL as 1 and changing dP and dG on a grid in the log scale. We
use the second-degree (q ¼2) polynomial kernel and estimate s in
the Gaussian kernel as follows:

s¼
1

N

XN

i ¼ 1

Jxi�xnnðiÞJ2 ð9Þ

where nn(i) is the index of the nearest neighbor of xi.
Fig. 1 shows the plot of the misclassification error on each data

set for different values of dP and dG. The complexity of the
discriminant increases as we increase the number of components,
which increases the need for nonlinear kernels. We see that on
GAUSS2 and GAUSS3 data sets, the best classification performance is
) Negative class (priors, means, covariances)

�
p2¼0.50 m2 ¼

þ1:0

�2:2

� �
S2 ¼

0:8 0:0

0:0 4:0

� �

�
p3¼0.50 m3 ¼

þ0:0

�2:2

� �
S3 ¼

0:8 0:0

0:0 4:0

� �
�

�
p3¼0.25 m3 ¼

�1:0

�2:2

� �
S3 ¼

0:8 0:0

0:0 4:0

� �
�

p4¼0.25 m4 ¼
þ3:0

�2:2

� �
S4 ¼

0:8 0:0

0:0 4:0

� �

�
p4¼0.25 m4 ¼

�2:0

�2:2

� �
S4 ¼

0:8 0:0

0:0 4:0

� �
�

p5¼0.25 m5 ¼
þ2:0

�2:2

� �
S5 ¼

0:8 0:0

0:0 4:0

� �
�

e positive class has two and the negative class has one component. The GAUSS4 data

the positive class and two components in the negative class.

−0.5

0

0.5
−0.5

0

0.5 log10dG

log10 dP

log10dG

log10 dP

log10dG

log10 dP

log10dG

log10 dP

E
rr

or

−0.5

0

0.5
−0.5

0

0.5

10

20

30

40

50

E
rr

or

−0.5

0

0.5

−0.5
0

0.5

5

10

15

20

12
14
16
18
20
22

E
rr

or

−0.5

0

0.5

−0.5
0

0.5

12

13

14

15

16

E
rr

or

Fig. 1. The average validation error over fdmg
P
m ¼ 1 grid on toy data sets. We see that taking fdmg

P
m ¼ 1 ¼ 1 (0 in the log scale) may not always be optimal (shown by a filled

circle). The circles show the sampled points and the star shows the solution found by our proposed response surface approach. (a) GAUSS2. (b) GAUSS3. (c) GAUSS4. (d) GAUSS5.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171162
obtained when we choose dP and dG larger than or near 1, that is,
when we force the model to use the more complex kernels kP and
kG with smaller coefficients to avoid overfitting. On the other
hand, dP and dG are chosen smaller than or near 1, resulting larger
coefficients for kP and kG to avoid underfitting on GAUSS4 and
GAUSS5 data sets. This indicates that each data set has its own
smoothness constraint, and that fdmg

P
m ¼ 1 should not just be taken

equal but should be selected carefully to avoid overfitting or
underfitting.

In this study, we propose to use RSM on validation error for
selecting fdmg

P
m ¼ 1 in an outer loop. RSM is a collection of

statistical and mathematical techniques developed especially for
process optimization [16]. It is assumed that the system response,
r, is written as some unknown function of P factors, d¼ fdmg

P
m ¼ 1,

as follows:

r¼ f ðfdmg
P
m ¼ 1Þþe

where e is a random error component. We do not know f ð�Þ and
instead, we approximate it by f̂ ð�Þ using a low-order polynomial
function (e.g. quadratic). We start by taking a small sample ðD,rÞ
of d and the corresponding r values, around some center in the d
space. RSM consists of two basic steps: First, we fit the response
surface f̂ ð�Þ to ðD,rÞ and then, we optimize the response, that is,
from f̂ ð�Þ we sample a d� value, which we believe will return a
better f ð�Þ value. In the case of a quadratic fit, this can be
calculated analytically as the optimum point of f̂ ð�Þ. d� and the
corresponding actual r* are added to ðD,rÞ and the procedure
continues until there is no further improvement.

In our case, factors correspond to kernels and response
corresponds to validation accuracy. We select a second-order
model in the log scale (in order to ensure nonnegativity
of fdmg

P
m ¼ 1) for estimating the misclassification error.

Without loss of generality, we can fix the regularization
parameter for one of the kernels and the misclassification error
can be expressed as

b0þ
XP

m ¼ 2

bm log10 dmþ
XP

m ¼ 2

XP

h ¼ m

bmhlog10dm log10 dh

where b0, fbmg
P
m ¼ 1, and fbmhg

P
m ¼ 1,h ¼ m are the model parameters.

At each iteration, because we are fitting a quadratic, at least
P(P + 1)/2 points are required to estimate the model parameters.
To initialize, we use the second-order Koshal design [16] that uses
three levels for each variable and with three factors (kernels), it is
given as

k1

k2

k3

0 0 0 0 0 0

0 þD �D 0 0 þD
0 0 0 þD �D þD

0
B@

1
CA

where the rows correspond to kernels and the columns corre-
spond to different fdmg

P
m ¼ 1 values in the log scale assigned to

kernels. For example, the first column is often referred as the
‘‘center point’’ in RSM (which in our case for the first iteration of
RSM corresponds to having all fdmg

P
m ¼ 1 equal to 1). Then, we

construct ‘‘axial points’’ by moving towards negative and positive
directions in each dimension by a small increment D (columns
2–5). The remaining runs required for estimating all model
parameters are selected as ‘‘factorial points’’ by moving toward
positive direction in each pair of dimensions (column 6); that is,
we sample around the center point. For three kernels, the sample
points of the initial grid are shown in Fig. 1 (Filled circle is the
center point and empty circles are other points). We train MKLs at
these points and check their misclassification error on the
validation data. Then, we fit a quadratic to those set of errors
and find analytically its optimum, which gives us the next sample
point. We then sample there, add it to the list and make a new fit,
until the improvement is negligible.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171 163
Using a second-order model in RSM corresponds to using
Newton’s method to find the minimum of the smoothed validation
error curve. If the error curve obtained from sampled points is
close to a quadratic surface, RSM converges very fast. If the error
surface has an irregular shape with multiple local minima, RSM
converges to one of the local minima like Newton’s method.
Algorithm 1. Regularized multiple kernel learning (RMKL)

LD: the matrix containing weight vectors in log scale
VE: the matrix containing average cross-validation errors of each weight vector

dðtÞ: the weight vector at iteration t

ve(t): the average cross-validation error at iteration t

ldðtÞ: the weight vector at iteration t in log scale

1: gridSize(PðPþ1Þ=2 start of initialization

2: LD(0 center point (0 vector in the log scale)
3: for m¼2 to P do
4: LD(½LD þDem� high level for each dimension

5: LD(½LD �Dem� low level for each dimension

6: end for
7: for m¼2 to P do
8: for h¼m+1 to P do
9: LD(½LD þDemþDeh� high levels for each pair of dimensions

10: end for
11: end for
12: for t¼1 to gridSize do
13:

dðtÞ (
1

10LDð:,tÞ

� �
moves the point from the log scale to original space

14: veðtÞ (TrainMKLSVMðdðtÞÞ returns the average error on validation sets

15: VE(½VE veðtÞ�

16: end for end of initialization

17: loop
18: t(tþ1
19: ldðtÞ (ResponseSurfaceðLD,VEÞ fits surface and finds the best point

20:
dðtÞ (

1

10ldðt�1Þ

� �
moves the point from the log scale to original space

21: if JldðtÞ�ldðt�1Þ
J2oe then checks convergence

22: return dðt�1Þ returns the last point

23: end if
24: veðtÞ (TrainMKLSVMðdðtÞÞ returns the average error on validation sets

25: LD(½LD ldðtÞ�
26: VE(½VE veðtÞ�
27: end loop
The usual approach for finetuning parameters in machine
learning is exhaustive grid search. There are two main motiva-
tions for using RSM instead of exhaustive grid search: (a) RSM
may require significantly fewer points: grid search requires L(P�1)

points for the case with P kernels and L levels whereas RSM starts
with P(P+1)/2 initial points and converges long before L(P�1)

iterations, as our experiments show. (b) RSM can obtain the result
in terms of arbitrary factor values other than predefined factor
levels and does a finer search than the resolution of the grid.

Algorithm 1 illustrates the idea of our proposed regularized MKL
(RMKL) in more detail. An initial search grid is constructed between
Lines 2–11 using the second-order Koshal design. MKL is trained on
validation sets with fdmg

P
m ¼ 1 taken from the points of the initial

search grid and validation errors are calculated for response surface
calculations between Lines 12–16. The initial search grid points and
their validation errors are used to start RSM and used to fit the
quadratic response surface. The optimum operating point is
calculated at its minimum. MKL method is trained at this point
on the training set and its validation set (different from the training
set) error is added to the sample points (Lines 17–27) and the next
fit is done. RSM continues until convergence, which can be checked
by Jdðtþ1Þ

�dðtÞJ2oe where e is a small threshold.
An example is given in Fig. 1. The stars show the points of
convergence of RSM. We can see that it converges to points
which are in deep valleys of the error function. The effect
of regularization can also be clearly seen in Fig. 2. MKL
method selects a combination with weights ðZL2ZP2ZGÞ ¼

ð0:0020:2520:75Þ on the GAUSS3 data set and it overfits. When
we train with the proposed RSM-based method, it converges to
the point (dL–dP–dG)¼ (1.00–0.85–1.46) selecting a different
combination with weights ðZL2ZP2ZGÞ ¼ ð0:0020:4820:31Þ,
shown by a star in Fig. 1(b). This particular run takes seven
iterations where the first six iterations are used to initialize
RSM. This solution implies that the second-order polynomial
kernel is favored over the Gaussian kernel and this leads to a
smaller combination weight for the Gaussian kernel and, as we
see in Fig. 2(a) and (b), a smoother separating boundary using
fewer support vectors.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3 4−4
−4

−3

−2

−1

0

1

2

3

4

Fig. 2. Separating hyperplanes (solid lines) and support vectors (thick points) on the GAUSS3 data set with (kL–kP�kG) combination. Dashed lines show the Gaussians from

which data are sampled and the optimal Bayes’ discriminant. (a) MKL ðZL2ZP2ZGÞ ¼ ð0:0020:2520:75Þ. (b) RMKL ðZL2ZP2ZGÞ ¼ ð0:0020:4820:31Þ, shown by a star in

Fig. 1(b). We see that the latter gives smaller weight to the Gaussian kernel favoring the second-order polynomial kernel and finds a smoother boundary using fewer

support vectors.

Table 2
The average accuracies, support vector percentages, and combination weights with (kL–kP–kG) combination on bioinformatics data sets.

MKL RMKL

Test accuracy SV Test accuracy SV

ZL2ZP2ZG ZL2ZP2ZG dL–dP–dG

ACCEPTORS 90.4570.42 50.1271.11 91.1970.38 44.9070.82
0.30–0.70–0.00 0.00–0.00–4.59 1.00–1.55–0.47

DONORS 94.7770.28 27.7870.47 94.7870.21 26.2570.45
0.11–0.03–0.86 0.17–0.00–0.73 1.00–1.52–1.06

ARABIDOPSIS 85.2970.84 62.3271.10 85.9270.85 62.3970.98

0.25–0.75–0.00 0.00–0.00–5.16 1.00–1.00–0.44

VERTEBRATES 86.2270.22 53.8470.72 86.1570.30 40.8670.44
0.20–0.80–0.00 0.70–0.15–0.00 1.00–1.42–1.16

POLYADENYLATION 68.2571.24 72.1471.02 68.7071.34 72.8171.06

0.01–0.16–0.84 0.00–0.00–1.09 1.00–1.54–0.96

The regularization parameters found by RMKL are also reported.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171164
4. Experiments

In our experiments, we use the MOSEK optimization package
[17] to solve QCQP problems. MOSEK enables us to obtain the
support vector coefficients ðaÞ and the kernel combination
weights ðgÞ from the primal–dual solution found.

Our methodology is as follows: Given a data set, if separate
training and test splits are not supplied, a random one-third is
reserved as the test set and then the remaining two-thirds is
resampled using 5�2 cross-validation to generate 10 training
and validation sets, with stratification. The validation sets of all
folds are used to optimize C by trying values 0.01, 0.1, 1, 10, and
100. The best configuration is used to train the final learners on
the training folds and their performance is measured on the test
set. So, for each data set, we have 10 test set results.

In the result tables, we report the average test accuracy
percentages and support vector percentages. These are made bold
if the difference between MKL and the regularized variant is
statistically significant using the 5�2 cv paired F test [18]. To
check for significant difference on a number of data sets, we use
Wilcoxon’s signed-rank test [19].

D parameter for RSM method is selected as 0.3 in our
experiments. This corresponds to selecting the low and high
factor levels as 0.5 (10�0.3) and 2 (10+ 0.3).
4.1. Combining general purpose kernels

We perform experiments on five different bioinformatics
data sets by combining the linear kernel, the second-degree
polynomial kernel and the Gaussian kernel whose width para-
meter is estimated as in (9). ACCEPTORS and DONORS are human splice
site detection data sets consisting of 3889 and 6246 data
instances, respectively [20]. ARABIDOPSIS and VERTEBRATES are transla-
tion initiation site detection data sets containing 2048 and 13454
instances, respectively [21]. POLYADENYLATION is a polyadenylation
signal prediction data set containing 9255 instances for human
DNA and mRNA sequences [22]. We use the supplied training and
test splits on ACCEPTORS, DONORS, and POLYADENYLATION data sets.

We see in Table 2 that RMKL uses statistically significantly
fewer support vectors on ACCEPTORS and DONORS data sets and
obtains statistically significantly higher accuracy on the ACCEPTORS

data set. MKL uses kL and kP with nonzero weights whereas RMKL
assigns zero weights to these kernels and uses only kG on the
ACCEPTORS data set. This selection improves the average testing
accuracy statistically significantly and even though RMKL uses
only the Gaussian kernel, it stores statistically significantly fewer
support vectors. On the DONORS data set, RMKL assigns more
weight to the linear kernel, removing the second-order
polynomial kernel and using the Gaussian kernel less; the

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171 165
accuracy does not change but the percentage of support vectors
decreases statistically significantly. This shows that RMKL is able
to choose between kernels depending on the complexity of the
discriminant to be learned: If the boundary needs to be complex,
the Gaussian kernel is favored; if it is simple, linear or polynomial
kernels are given higher weights.

On the ARABIDOPSIS data set, too, RMKL chooses to use only kG

instead of using both kL and kP. It obtains statistically significantly
higher accuracy by storing a comparable number of support
vectors. On the VERTEBRATES data set, RMKL gives higher weight to
kL than kP and this causes a significant decrease in the support
vector count. RMKL stores nearly 13 per cent fewer support
vectors than MKL on the average.

On the POLYADENYLATION data set, RMKL obtains comparable
accuracy and support vector count. kL and kP are replaced with kG

(one kernel is calculated instead of two) and RMKL increases the
average testing accuracy but not statistically significantly.

We also perform experiments on the multiple features (MULTI-

FEAT) digit recognition data set from the UCI repository, composed
of six different data representations for 2000 handwritten
numerals. The properties of these different data representations
are summarized in Table 3. Two binary classification problems are
Table 3
Different data representations in the MULTIFEAT data set.

Name Dimension Data source

FAC 216 Profile correlations

FOU 76 Fourier coefficients of the character shapes

KAR 64 Karhunen–Lo�eve coefficients

MOR 6 Morphological features

PIX 240 Pixel averages in 2�3 windows

ZER 47 Zernike moments

Table 4
The average accuracies, support vector percentages, and combination weights with (kF

MKL RMKL

Test accuracy SV Test accur

ZFac2ZFou2ZKar2ZMor
2ZPix2ZZer ZFac2ZFou2

EO 98.3170.34 14.8670.79 98.1870.2

0.30–0.29–0.11–0.01–0.28–0.02 0.40–0.24–

SL 97.4070.37 32.5970.82 97.1370.3

0.25–0.30–0.09–0.15–0.15–0.07 0.31–1.11–

The regularization parameters found by RMKL are also reported.

Fig. 3. Two-dimensional projections obtained on the EO data set by KPCA. (a) SUM: T

eigenvectors explains 23.66% of the variance. (c) RMKL: The first two eigenvectors exp
generated from the MULTIFEAT data set: In the EO data set, we
separate even digits from odd digits; in the SL data set, we
separate small (‘0’–‘4’) digits from large (‘5’–‘9’) digits.

In our experiments, we combine six linear kernels calculated
from each of the representations by MKL and RMKL. We see in
Table 4 that RMKL uses five data representations (eliminating PIX

by assigning zero weight) on the EO data set whereas MKL uses all
data representations with nonzero weights. Both methods obtain
comparable average accuracy results on the test set. On the SL
data set, RMKL eliminates two data representations (PIX and ZER)
without a significant decrease in accuracy while storing
statistically significantly fewer support vectors.

In order to see the differences between kernel combination
rules, we apply kernel principal component analysis (KPCA) [3] to
the kernels obtained using unweighted sum (SUM), MKL and
RMKL. Fig. 3 gives the two-dimensional projections obtained on
the EO data set. We see that using a weighted sum (learning the
combination weights using MKL or RMKL) produces a better
projection than using an unweighted sum; there does not seem to
be a significant difference between the projections obtained by
MKL and RMKL.
AC–kFOU–kKAR–kMOR–kPIX–kZER) combination on the MULTIFEAT data set.

acy SV

ZKar2ZMor
2ZPix2ZZer dFAC–dFOU–dKAR–dMOR–dPIX–dZER

9 14.5070.96

0.22–0.05–0.00–0.27 1.00–1.07–1.02–0.58–1.63–0.53

1 27.5871.56
0.13–0.47–0.00–0.00 1.00–0.59–1.19–0.50–1.58–2.14

he first two eigenvectors explains 24.86% of the variance. (b) MKL: The first two

lains 16.32% of the variance.

Table 5
Kernels for protein function prediction problem [14].

Kernel Explanation Data source

kPfam Pfam kernel Protein sequences

kPfamE Enriched Pfam kernel Protein sequences

kTAP Diffusion kernel Protein interactions

kPhys Diffusion kernel Protein interactions

kGen Diffusion kernel Protein interactions

kExp Correlation kernel Gene expression profiles

kExpG Gaussian kernel Gene expression profiles

kSW Smith-Waterman kernel Protein sequences

Table 6

The average accuracies, support vector percentages, and combination weights with ðkPfam2kTAP2kPhys2kGen2kExpÞ combination on the protein function prediction

experiments.

MKL RMKL

Test accuracy SV Test accuracy SV

ZPfam2ZTAP2ZPhys2ZGen2ZExp ZPfam2ZTAP2ZPhys2ZGen2ZExp dPfam2dTAP2dPhys2dGen2dExp

Y1 78.5970.87 91.5071.40 79.2170.45 94.8571.05

0.70–0.04–0.08–0.14–0.05 0.46–0.06–0.05–0.12–0.09 1.00–1.23–1.32–1.30–1.33

Y2 93.2370.00 90.9573.15 93.5670.25 85.9372.51

0.37–0.03–0.15–0.22–0.22 0.34–0.25–0.41–0.00–0.00 1.00–1.00–1.00–2.06–2.06

Y3 87.1770.39 96.1170.40 87.4770.28 93.1471.05
0.12–0.02–0.18–0.32–0.37 0.23–0.07–0.25–0.45–0.00 1.00–1.00–1.00–1.00–2.08

Y4 85.6270.51 87.2271.43 87.0770.58 82.8172.07
0.22–0.03–0.24–0.30–0.21 0.34–0.22–0.33–0.04–0.00 1.00–0.94–1.10–1.33– 1.57

Y5 91.9070.26 91.2471.44 92.2970.21 77.5274.48
0.20–0.01–0.18–0.26–0.34 0.35–0.01–0.00–0.00–0.74 1.00–1.25–1.39–1.59–0.93

Y6 86.7370.36 93.5871.26 87.6470.43 92.7871.26

0.59–0.00–0.15–0.25–0.01 0.40–0.01–0.04–0.46–0.00 1.00–1.24–1.32–1.06–1.76

Y7 90.3170.30 82.5670.88 90.4970.36 86.4570.68

0.20–0.00–0.28–0.22–0.30 0.32–0.00–0.54–0.10–0.00 1.00–1.37–0.97–1.30–1.62

Y8 92.9270.20 91.4973.03 93.2670.26 95.9171.34

0.16–0.02–0.16–0.22–0.45 1.00–0.00–0.00–0.00–0.00 1.00–10.0–10.0–10.0–10.0

Y9 94.7570.10 82.2873.69 95.2070.40 84.1872.39

0.14–0.15–0.19–0.10–0.42 0.39–0.00–0.12–0.00–0.10 1.00–2.39–1.54–3.18–1.78

Y10 89.1670.36 93.3971.51 89.0570.32 75.9472.87
0.09–0.00–0.27–0.24–0.39 0.23–0.00–0.25–0.45–0.00 1.00–1.41–1.13–1.00–1.42

Y11 94.6570.00 96.2471.05 94.4370.13 86.6871.79
0.05–0.03–0.15–0.17–0.60 0.22–0.15–0.24–0.39–0.00 1.00–1.00–1.00–1.00–2.08

Y12 95.2670.33 76.3271.91 95.2470.45 79.6372.24

0.99–0.01–0.00–0.00–0.00 0.57–0.01–0.05–0.20–0.00 1.00–1.37–1.33–1.27–1.33

Y13 97.7370.04 77.1474.49 97.7470.00 9.7470.83
0.11–0.12–0.15–0.18–0.44 0.13–0.15–0.20–0.00–0.52 1.00–1.00–1.00–1.41–1.00

5�2 cv paired F test (W–T–L) 0–13–0 6–5–2

Direct comparison (W–T–L) 10–0–3 8–0–5

Wilcoxon’s rank test (W/T/L) W T

The regularization parameters found by RMKL are also reported.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171166
4.2. Combining domain-specific kernels

We perform protein function prediction experiments on the
MIPS Comprehensive Yeast Genome Database (CYGD) [23] which
categorizes 3588 proteins into 13 top-level categories that can be
interpreted as 13 binary classification tasks (Y1,Y2,y,Y13), one
for each category. The reason for decomposing into binary
classification problems instead of using a multiclass formulation
is that some proteins belong to more than one category. We use
the eight kernel functions shown in Table 5, also used in Lanckriet
et al. [14].

Two different kernel subsets described in Lanckriet et al. [14]
are also used in our experiments: (kPfam–kTAP–kPhys–kGen–kExp) and
(kPfamE–kTAP–kPhys–kGen–kExpG–kSW). We also report the count of
(W)ins–(T)ies–(L)osses on the 13 tasks with the regularized
variant from direct comparison and the 5�2 cv paired F test.
Wilcoxon’s signed-rank test is used to compare MKL and RMKL in
terms of average accuracies and support vector counts and the
results are shown as (W)in, (T)ie, or (L)oss.

In Table 6, comparing MKL and our proposed regularized
variant, RMKL, we see that the average accuracy percentage on
the test set remains statistically similar on the 13 tasks. Direct
comparison between average accuracies shows that the average
accuracy increases on 10 out of 13 tasks, and Wilcoxon’s signed-
rank test finds a significant win of RMKL accuracy over MKL.
Comparing support vector percentages, RMKL has six significant
wins and eight direct comparison wins; using Wilcoxon’s signed-
rank test, however, there is no significant difference between the
support vector percentages.
We can also compare the combination weights ðfZmg
P
m ¼ 1Þ for

both methods and the regularization parameters ðfdmg
P
m ¼ 1Þ found

by RMKL in Table 6, and we see that another difference between
these two methods is the number of active kernels with nonzero
weights. RMKL method, on 10 out of 13 tasks, assigns nonzero
combination weights to fewer kernel functions, compared to MKL.
This leads to a decrease in kernel calculations, and therefore
testing time for new instances. As an extreme case, on the Y8 task,
RMKL converges to a point where all fdmg

P
m ¼ 1 coefficients except

for the first kernel function are equal to 10 and are effectively
pruned. For this task, we obtain combination rules that use only
one kernel function ðkPfamÞ with higher average accuracy. RMKL
uses fewer kernels on Y2, Y3, Y4, Y7, Y10, and Y11 tasks by
assigning a larger regularization parameter to kExp. This can be
interpreted as an indication that gene expression profiles do not
give useful information for these classification tasks and can
safely be removed from the ensemble of kernels.

Table 7 lists the average accuracy and support vector percentages
for the second subset of kernels. As on the first subset, the
regularized variant achieves similar accuracy results and
statistically significantly reduces the support vector percentage on
six out of 13 tasks, increasing on four tasks. With direct comparison,
the numbers of wins increase to six and eight for the average
accuracy on the test set and support vectors stored, respectively. On
this second subset, Wilcoxon’s signed-rank test does not report a
difference between MKL and RMKL in terms of average accuracies on
the test set nor support vector counts.

Table 7 also gives the combination weights ðfZmg
P
m ¼ 1Þ for both

methods and the regularization parameters ðfdmg
P
m ¼ 1Þ found by

Table 7

The average accuracies, support vector percentages, and combination weights with ðkPfamE2kTAP2kPhys2kGen2kExpG2kSW Þ combination on the protein function prediction

experiments.

MKL RMKL

Test accuracy SV Test accuracy SV

ZPfamE2ZTAP2ZPhys2ZGen2ZExpG2ZSW ZPfamE2ZTAP2ZPhys2ZGen2ZExpG2ZSW dPfamE2dTAP2dPhys2dGen2dExpG2dSW

Y1 80.7270.74 93.2470.78 80.6870.52 89.2971.28
0.17–0.03–0.10–0.16–0.05–0.48 0.45–0.17–0.20–0.03–0.10–0.00 1.00–1.02–1.06–1.18–1.02–2.52

Y2 94.3270.21 75.7472.90 94.4870.22 72.1573.05
0.00–0.01–0.12–0.21–0.06–0.59 0.00–0.00–0.21–0.00–0.07–0.71 1.00–2.06–1.00–2.06–1.00–1.00

Y3 87.5170.38 81.1371.69 87.5370.34 73.1771.14
0.04–0.01–0.15–0.30–0.05–0.45 0.23–0.04–0.22–0.40–0.11–0.00 1.00–1.00–1.00–1.00–1.00–2.08

Y4 85.6370.48 86.1071.11 85.5370.77 76.2371.30
0.15–0.03–0.20–0.23–0.06–0.33 0.45–0.04–0.38–0.01–0.04–0.00 1.00–1.12–1.05–1.37–1.25–1.50

Y5 93.6870.50 62.6973.23 94.5970.23 34.1671.49
0.14–0.01–0.16–0.09–0.19–0.40 0.50–0.01–0.01–0.00–1.01–0.00 1.00–1.21–1.32–1.46–0.68–1.48

Y6 87.4470.74 93.0170.96 87.9070.61 84.1271.38
0.11–0.01–0.11–0.19–0.04–0.54 0.42–0.14–0.33–0.00–0.11–0.00 1.00–1.00–1.00–2.06–1.00–2.06

Y7 91.0570.24 75.7271.28 90.7070.35 81.5571.09

0.08–0.01–0.28–0.23–0.02–0.38 0.35–0.00–0.49–0.11–0.00–0.00 1.00–1.57–1.00–1.22–1.46–1.50

Y8 93.7870.43 57.6072.13 93.7770.31 81.8771.66

0.01–0.03–0.18–0.24–0.03–0.52 0.00–0.00–0.00–0.00–0.00–4.10 1.00–1.34–1.36–1.17–1.29–0.49

Y9 95.0070.32 76.1472.69 94.9970.31 72.5473.77

0.05–0.27–0.20–0.11–0.04–0.33 0.04–0.00–0.29–0.00–0.08–0.58 1.00–2.06–1.00–2.06–1.00–1.00

Y10 89.5670.36 70.9572.80 89.5870.36 89.8371.49

0.00–0.00–0.27–0.22–0.02–0.48 0.00–0.00–0.27–0.23–0.00–0.50 1.00–1.00–1.00–1.00–2.08–1.00

Y11 94.4370.11 87.6371.79 94.4370.11 87.6371.79

0.00–0.03–0.19–0.24–0.02–0.53 0.00–0.03–0.19–0.24–0.02–0.53 1.00–1.00–1.00–1.00–1.00–1.00

Y12 96.4170.32 36.4271.02 96.2270.29 46.7071.53

0.43–0.02–0.19–0.04–0.01–0.31 0.68–0.00–0.15–0.03–0.00–0.02 1.00–1.38–1.25–1.25–1.38–1.25

Y13 97.8070.09 61.7079.56 97.8370.11 50.1679.26

0.00–0.18–0.12–0.15–0.07–0.50 0.00–0.00–0.18–0.00–0.15–0.67 1.00–2.06–1.00–2.06–1.00–1.00

5�2 cv paired F test (W–T–L) 0–13–0 6–3–4

Direct comparison (W–T–L) 6–1–6 8–1–4

Wilcoxon’s rank test (W/T/L) T T

The regularization parameters found by RMKL are also reported.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171 167
RMKL. On 12 out of 13 tasks, RMKL assigns nonzero weights to
fewer kernel functions. As mentioned before, this leads to a
significant reduction in the total time needed to calculate the
output for a given test input. Note that here, we do not explicitly
penalize nonzero weights; the number of kernels used decreases
as a part of the regularization process. On the Y8 task, RMKL
converges to a point where regularization coefficient for kSW is
smaller than 1. We can say that the Smith–Waterman kernel
provides the most informative similarity measure for this
classification task and its combination weight goes up to 4.10,
removing all other kernels. A similar behavior is also observed for
kPfamE on Y1, Y4, Y5, Y6, and Y12 tasks. On all these tasks, RMKL
assigns combination weights greater than 0.42 to kPfamE. The
reduction in the number of kernel functions used in the decision
function after training is also observed in this set of experiments.
5. Related work and discussions

Chapelle et al. [24] propose a similar approach for choosing
multiple parameters for SVMs. Their method tries to minimize the
estimated test error bound and instead of explicitly fitting a
response surface, updates parameters with a gradient-descent
step calculated from the error bound. Our proposed method fits
an approximate response surface for the test error using
validation errors obtained over the sample points and finds the
minimum point of the fitted response. Momma and Bennett [25]
use a more similar approach to select support vector regression
parameters. They do not fit a response surface either; instead,
they perform a moving grid search strategy by changing the
center point of the grid.

RSM is also used by Blum et al. [26] in protein structure
prediction together with a Monte Carlo search procedure. Their
model is not a kernel machine but they optimize the parameters
of a specific function used in bioinformatics, called Rosetta energy
function. They formulate the energy function in terms of input
features and try to optimize it through optimizing the response
surface. In order to get rid of irregularities emerging due to the
high number of input features, they eliminate some of the
features and calculate the response surface using the remaining
features. In our case, the number of dimensions (factors) is limited
by the number of kernel functions and this does not lead to any
convergence problem in our experiments.

Regularization issues in multiple kernel learning have previously
been studied. Bach et al. [10] try to learn the entire regularization
path for multiple kernel learning. The regularization path is
calculated for the parameter which corresponds to the C parameter
in the objective function of (6). We do not consider the optimization
of C in the regularization process, we simply use a cross-validation
procedure for this purpose, but it can also be added to this process
by appending it as another dimension (factor) to RSM. The effect of
fdmg

P
m ¼ 1 onto regularization is also mentioned, though their

optimization is not discussed. Micchelli and Pontil [27,28] formulate
the multiple kernel learning problem from a different perspective;
they directly perform optimization for convex combination para-
meters using square loss regularization.

Bach et al. [10] and Bach [29] also state that selecting the
regularization parameters ðfdmg

P
m ¼ 1Þ in a data-dependent manner

may lead to better results. For example, Bach et al. [10] propose to

−0.5

0

0.5
−0.5

0

0.5

12
14
16
18
20
22

log10dg

log
10 d

p
log10dg

log
10 d

p

E
rr

or

−0.5

0

0.5
−0.5

0

0.5

12

13

14

15

16

E
rr

or

Fig. 4. Misclassification errors over fdmg
P
m ¼ 1 grid on (a) GAUSS4 and (b) GAUSS5 data sets. The circles and star show the sampled points and the solution found by our

proposed RSM approach. The triangles and line show the sampled points and search direction if we use the eigenvalues of combined kernel matrices, as used in Bach et al.

[10]. (Only solutions for g¼ 0, 0.1, and 0.2 are shown; for other values of g, the solutions fall outside.) We see that the best solution, shown by star, may not be on the path

found using eigenvalues.

Acc. Don. Ara. Ver. Pol.

−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

Task

A
cc

ur
ac

y
D

iff
er

en
ce

MKL
RMKL
EMKL
RWKL

Acc. Don. Ara. Ver. Pol.

1

2

3

Task

A
ct

iv
e

K
er

ne
l C

ou
nt

Fig. 5. Comparison of MKL, RMKL, EMKL, and RWKL methods in terms of the average test accuracy and number of kernels used with (kL–kP–kG) combination. In accuracy

comparisons, the average accuracy of MKL is used as the baseline performance.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171168
select these parameters by looking at the eigenvalues of combined
kernel matrices and their methodology is as follows: Given P

different kernel matrices, the numbers ðfemg
P
m ¼ 1Þ of the eigenva-

lues greater than 1=2 for each kernel matrix1 are calculated and
the regularization parameters are taken as dm ¼ egm where g is
selected between 0 and 1 (we refer to this method as EMKL). In
our experiments, we optimize g by trying values 0,0.1,0.2,y,1 on
the validation sets of all folds and choosing the best. Our proposed
method using RSM selects the regularization parameters by
looking at the performance measures obtained with different
parameter selections and does not consider any prior information.

We also note that selecting the regularization parameters with
the help of the eigenvalues integrates the kernel matrix complex-
ity into the selection process before training. For example, the
second-degree polynomial and the Gaussian kernel usually have
higher femg

P
m ¼ 1 values than the linear kernel and this leads to the

penalization of these kernels if we choose g larger than 0. Even if
we use g values smaller than 0, the regularization parameters are
selected as a function of em values and this restricts us to use a
predetermined region in the parameter space. Our method allows
fdmg

P
m ¼ 1 to converge to any point in the parameter space

independently. The advantage of this difference can be clearly
seen on GAUSS4 and GAUSS5 data sets in Fig. 4. The search direction
obtained by using the eigenvalues (shown by the line) may not be
1 In Bach et al. [10], it was 1=2N but we normalize kernel matrices to unit

diagonal instead of unit trace. So, we count the eigenvalues greater than 1=2.
a good direction for searching the optimum point of the response
surface (shown by the star). EMKL can improve the performance
of MKL but it performs parameter selection only on this search
direction and the selected parameter set may be suboptimal.
RMKL selects fdmg

P
m ¼ 1 from the whole parameter space by

starting from a grid of samples (circles) around the center point
(corresponding to the original MKL selection).

On the ARABIDOPSIS data set for example, as shown in Table 2,
RMKL favors the Gaussian kernel instead of the linear and the
second-degree polynomial kernels. On this data set, if we use the
eigenvalues to decide on the regularization parameters, we
penalize the Gaussian kernel due to the high number of large
eigenvalues and fail to obtain the result obtained by RMKL.

It is also possible to perform RSM on combination weights
ðfZmg

P
m ¼ 1Þ directly by solving the canonical SVM optimization

problems without using the MKL formulation; we refer to this
method as RWKL. This approach clearly speeds up the training
phase but we cannot take advantage of the sparsity provided by
the objective function of MKL formulation. The objective function
of (6) forces the model to choose sparse kernel combinations
whereas replacing the objective function of (1) with (3) does not
favor sparsity.2
2 Actually, this is the approach we followed when we used the localized

multiple kernel variant. There, we have ZmðxjVÞ, an input-dependent kernel gating

system whose parameters, V, are learned by gradient-descent [30].

EO SL

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Task

A
cc

ur
ac

y
D

iff
er

en
ce

MKL
RMKL
EMKL
RWKL

EO SL

1

2

3

4

5

6

Task

A
ct

iv
e

K
er

ne
l C

ou
nt

Fig. 6. Comparison of MKL, RMKL, EMKL, and RWKL methods in terms of the average test accuracy and number of kernels used with (kFAC–kFOU–kKAR–kMOR–kPIX–kZER)

combination.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13

−0.5

0

0.5

1

1.5

Task

A
cc

ur
ac

y
D

iff
er

en
ce

MKL
RMKL
EMKL
RWKL

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13

1

2

3

4

5

Task

A
ct

iv
e

K
er

ne
l C

ou
nt

Fig. 7. Comparison of MKL, RMKL, EMKL, and RWKL methods in terms of the average test accuracy and number of kernels used with ðkPfam2kTAP2kPhys2kGen2kExpÞ

combination.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13

−1

−0.5

0

0.5

1

Task

A
cc

ur
ac

y
D

iff
er

en
ce

MKL
RMKL
EMKL
RWKL

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13

1

2

3

4

5

6

Task

A
ct

iv
e

K
er

ne
l C

ou
nt

Fig. 8. Comparison of MKL, RMKL, EMKL, and RWKL methods in terms of the average test accuracy and number of kernels used with ðkPfamE2kTAP2kPhys2kGen2kExpG2kSW Þ

combination.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171 169
Fig. 5 compares MKL, RMKL, EMKL, and RWKL methods with
(kL–kP–kG) combination on the bioinformatics data sets. We see
that RMKL obtains better or similar accuracy results, compared to
MKL on these data sets except POLYADENYLATION. RMKL, EMKL, and
RWKL obtain similar results for all data sets. However, RMKL
always uses fewer or as many kernels on all tasks.

Fig. 6 compares MKL, RMKL, EMKL, and RWKL methods with
(kFAC–kFOU–kKAR–kMOR–kPIX–kZER) combination on the MULTIFEAT data
set. We see that RMKL obtains statistically similar accuracy
results, compared to other methods on these two tasks, by using
fewer or as many kernels.
When we compare MKL, RMKL, EMKL, and RWKL on the
protein function prediction problem with ðkPfam2kTAP2

kPhys2kGen2kExpÞ combination, we see in Fig. 7 that RMKL, EMKL,
and RWKL generally obtain better accuracy results than MKL.
However, there are significant differences between the number of
used kernels by RMKL and other methods on almost all tasks.
RMKL obtains smaller kernel ensembles due to the regularization
and sparsity effects of MKL and eliminates the redundant kernels/
data sources.

When we make the same comparison for ðkPfamE2kTAP2

kPhys2kGen2kExpG2kSW Þ combination, Fig. 8 shows that all

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13
0

5

10

15

20

25

30

35

Task

Ite
ra

tio
n

C
ou

nt

RMKL
RWKL

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13
0

5

10

15

20

25

30

35

Task

Ite
ra

tio
n

C
ou

nt

Fig. 9. The number of iterations performed by RMKL and RWKL with ðkPfam2kTAP2kPhys2kGen2kExpÞ and ðkPfamE2kTAP2kPhys2kGen2kExpG2kSW Þ combinations. Dashed lines

show the number of iterations required to initialize RSM. (a) P¼5. (b) P¼6.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171170
methods obtains comparable accuracy results on almost all tasks.
RMKL again uses fewer kernels compared to the other three
methods without diminishing accuracy.

The running time of the proposed method is directly related to
the running time of the MKL solver and the convergence speed of
RSM. The convergence time can be long especially with large
number of kernels (in practice, we see convergence in terms of
iterations) but it will always be faster and more detailed than
exhaustive grid search. The running time can be decreased by
using a subset of training points in the intermediate steps of RSM;
once the best fdmg

P
m ¼ 1 set is found, the whole training set can be

used for final training before test. Fig. 9 shows the number of
iterations performed by RMKL and RWKL for all tasks of protein
function prediction problem. The running time of RMKL and EMKL
is directly related to the number of times the MKL solver is called.
RMKL calls the MKL solver 15–35 times for all tasks of protein
function prediction problem, whereas EMKL calls the solver 11
times for the different g values (0,0.1,0.2,y,1.0) we try. However,
RWKL calls a canonical SVM solver at each iteration and 15–30
times in total. Clearly, the running time of RWKL is smaller than
both RMKL and EMKL due to the complexity difference between
the optimization problems of SVM and MKL.

RSM converges in 1–14 additional iterations for RMKL after the
initialization phase and requires much fewer iterations than grid
search, whereas grid search requires 81 (34) and 243 (35) iterations
for the cases of P¼5 and 6, respectively, if we use three levels for
fdmg

P
m ¼ 1 parameters and arbitrarily fix one of them. When P, the

number of kernels, is high, RMKL has an advantage over grid
search in terms of computational complexity. Fitting a quadratic
approximation in RSM requires OðP2Þ sample points which may be
costly when P, the number of kernels, is large. One can fit a first-order
RSM model using OðPÞ sample points to initialize and use gradient-
descent to find the next point to be sampled. Still, the behavior and
comparison of RSM and grid search, when P is on the order of tens or
hundreds, remain a future study.
6. Conclusions

This work introduces a model selection procedure for selecting
the regularization parameters in MKL by considering the
cross-validation performance. We see that the newly introduced
regularization parameters should not be set equal arbitrarily; our
experimental results show that they have an effect on accuracy
and we propose to use RSM to have a regularized variant of MKL
to search for the best set using validation data. Our proposed
method, RMKL, is tested on several bioinformatics and digit
recognition data sets and we see that it eliminates some of the
kernel functions or decreases the support vector count, some-
times also improves accuracy, but never sacrifices from accuracy.

Optimizing the regularization parameter of each kernel allows
us to obtain more robust decision functions for the classification
task at hand. Some of the kernels are eliminated as a side effect of
regularization on validation data. Kernels which do not help
increase the classification accuracy are pruned by selecting their
regularization parameters accordingly, obtaining smoother dis-
criminants and storing fewer support vectors. Eliminating some of
the kernels directly or decreasing the number of stored support
vectors reduces the testing time for new instances. In an
application where there is a single source and multiple kernels,
determining which kernels are favored and which are not needed
gives us information, indicating which notions of similarity are
valid. When different kernels use information from different
sources, pruning kernels corresponds to pruning redundant
information sources; after all, not all sources may be necessary.

Though our results are for binary classification, our approach is
also applicable to combining multiple kernels in regression and
outlier detection by suitably modifying the objective function and
the constraints.
Acknowledgements

This work was supported by the Turkish Academy of Sciences
in the framework of the Young Scientist Award Program under
EA-TÜBA-GEB_IP/2001-1-1, the Boğazic- i University Scientific Re-
search Project 07HA101, and the Scientific and Technological
Research Council of Turkey (TÜB_ITAK) under Grant EEEAG
107E222. The work of M. Gönen was supported by the Ph.D.
scholarship (2211) from TÜB_ITAK.
References

[1] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, 1995.
[2] V.N. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.
[3] B. Schölkopf, A.J. Smola, Learning with Kernels, Support Vector Machines,

Regularization, Optimization, and Beyond, The MIT Press, 2002.
[4] J.M. Moguerza, A. Muñoz, Support vector machines with applications,

Statistical Science 21 (3) (2006) 322–336.

M. Gönen, E. Alpaydın / Pattern Recognition 44 (2011) 159–171 171
[5] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, C. Watkins, Text
classification using string kernels, Journal of Machine Learning Research 2
(2002) 419–444.

[6] B. Schö lkopf, K.TsudaJ.P. Vert, Kernel Methods in Computational Biology, The
MIT Press, 2004.

[7] G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, M.I. Jordan, Learning
the kernel matrix with semi-definite programming, in: Proceedings of the
19th International Conference on Machine Learning, 2002.

[8] F.R. Bach, G.R.G. Lanckriet, M.I. Jordan, Multiple kernel learning, conic duality,
and the SMO algorithm, in: Proceedings of the 21st International Conference
on Machine Learning, 2004.

[9] S. Sonnenburg, G. Rätsch, C. Schä fer, B. Schölkopf, Large scale multiple
kernel learning, Journal of Machine Learning Research 7 (2006) 1531–1565.

[10] F.R. Bach, R. Thibaux, M.I. Jordan, Computing regularization paths for learning
multiple kernels, in: Advances in Neural Information Processing Systems
(NIPS), 2004.

[11] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods, Cambridge University Press,
2000.

[12] P. Pavlidis, J. Weston, J. Cai, W.N. Grundy, Gene functional classification from
heterogeneous data, in: Proceedings of the 5th Annual International
Conference on Computational Molecular Biology, 2001.

[13] J.M. Moguerza, A. Muñoz, I.M. de Diego, Improving support vector classifica-
tion via the combination of multiple sources of information, in: Proceedings
of Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR
International Workshops, 2004.

[14] G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, M.I. Jordan, Learning
the kernel matrix with semidefinite programming, Journal of Machine
Learning Research 5 (2004) 27–72.

[15] G.R.G. Lanckriet, T.D. Bie, N. Cristianini, M.I. Jordan, W.S. Noble, A statistical
framework for genomic data fusion, Bioinformatics 20 (16) (2004)
2626–2635.

[16] R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and
Product Optimization using Designed Experiments, Wiley-Interscience, 2002.
[17] Mosek, 2010, The MOSEK Optimization Tools Manual Version 6.0 (Revision
66), MOSEK ApS, Denmark.

[18] E. Alpaydın, Combined 5�2 cv F test for comparing supervised classification
learning algorithms, Neural Computation 11 (1999) 1885–1892.

[19] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics 1
(1945) 80–83.

[20] D. Kulp, D. Haussler, M.G. Reese, F.H. Eeckman, A generalized hidden Markov
model for the recognition of human genes in DNA, in: Proceedings of 4th
International Conference on Intelligent Systems for Molecular Biology, 1996.

[21] A.G. Pedersen, H. Nielsen, Neural network prediction of translation initiation sites
in eukaryotes: perspectives for EST and genome analysis, in: Proceedings of the
5th International Conference on Intelligent Systems for Molecular Biology, 1997.

[22] H. Liu, H. Han, J. Li, L. Wong, An in-silico method for prediction of
polyadenylation signals in human sequences, in: Proceedings of the 14th
International Conference on Genome Informatics, 2003.

[23] H.W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase, A. Kaps, K. Lemcke, G.
Mannhaupt, F. Pfeiffer, C. Schüller, S. Stocker, B. Weil, MIPS: a database for
genomes and protein sequences, Nucleic Acid Research 28 (2000) 37–40.

[24] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parameters
for support vector machines, Machine Learning 46 (2002) 131–159.

[25] M. Momma, K.P. Bennett, A pattern search method for model selection of
support vector regression, in: Proceedings of the SIAM International
Conference on Data Mining, 2002.

[26] B. Blum, M.I. Jordan, D. Kim, R. Das, P. Bradley, D. Baker, Feature selection
methods for improving protein structure prediction with Rosetta, in:
Advances in Neural Information Processing Systems (NIPS), 2007.

[27] C.A. Micchelli, M. Pontil, Learning the kernel function via regularization,
Journal of Machine Learning Research 6 (2005) 1099–1125.

[28] C.A. Micchelli, M. Pontil, Feature space perspectives for learning the kernel,
Machine Learning 66 (2007) 297–319.

[29] F. Bach, Consistency of the group Lasso and multiple kernel learning, Journal
of Machine Learning Research 9 (2008) 1179–1225.

[30] M. Gönen, E. Alpaydın, Localized multiple kernel learning, in: Proceedings of
the 25th International Conference on Machine Learning, 2008.
Mehmet Gönen received the B.Sc. degree in industrial engineering, the M.Sc. and the Ph.D. degrees in computer engineering from Boğazic- i University, _Istanbul, Turkey, in
2003, 2005, and 2010, respectively. He is a Teaching Assistant at the Department of Computer Engineering, Boğazic- i University. His research interests include support
vector machines, kernel methods, Bayesian methods, and real-time control and simulation of flexible manufacturing systems.
Ethem Alpaydın received his B.Sc. from the Department of Computer Engineering of Boğazic- i University in 1987 and the degree of Docteur es Sciences from Ecole
Polytechnique Fédérale de Lausanne in 1990. He did his postdoctoral work at the International Computer Science Institute, Berkeley, in 1991 and afterwards was appointed
as Assistant Professor at the Department of Computer Engineering of Boğazic- i University. He was promoted to Associate Professor in 1996 and Professor in 2002 in the
same department. As visiting researcher, he worked at the Department of Brain and Cognitive Sciences of MIT in 1994, the International Computer Science Institute,
Berkeley, in 1997 and IDIAP, Switzerland, in 1998. He was awarded a Fulbright Senior scholarship in 1997 and received the Research Excellence Award from the Boğazic- i
University Foundation in 1998, the Young Scientist Award from the Turkish Academy of Sciences in 2001 and the Scientific Encouragement Award from the Scientific and
Technological Research Council of Turkey in 2002. His book Introduction to Machine Learning was published by The MIT Press in October 2004. Its German edition was
published in 2008, its Chinese edition in 2009, and its second edition in 2010. Its Turkish edition is in preparation. He is a senior member of the IEEE, an editorial board
member of The Computer Journal (Oxford University Press) and an associate editor of Pattern Recognition (Elsevier).

	Regularizing multiple kernel learning using response surface methodology
	Introduction
	Kernel combination methods
	Regularizing multiple kernel learning via response surface methodology
	Experiments
	Combining general purpose kernels
	Combining domain-specific kernels

	Related work and discussions
	Conclusions
	Acknowledgements
	References

