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Motivation
e Graphical models in general are a common way of representing qual-
itative biological information

— E.g. regulatory interactions can be visualized by a graph in which
the nodes represent genes and (directed) arcs the interactions:
transcription factor A activates gene B

e Graphical models may be learned from limited data — a systematical
approach of assessing the reliability is needed

e Bayesian networks provide a solution and can be used to model the
interactions quantitatively as well

— Including non-linearity and stochasticity
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Probability factorization

e Given a set of random variables X = (X3,...,X,,), a Bayesian net-
work is defined as a pair (S, 8), where
— S'is a directed acyclic graph (DAG), which is a graphical represen-
tation of the conditional independencies between variables in X
— 0 is the set of parameters for the conditional probability distribu-
tions of these variables

e In a Bayesian network, the probability of a state x = (x1, 2o, ...,2,)7

is factored as

p(z) = p(z1]pa(z1))p(ze|pa(z2)) - . . . - p(@n|palzn)),
where pa(x) denotes the parents of node x in the graph S

e This probability factorization represents the conditional (in)dependencies
of the variables.
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Graph modeling problems

e After observing a set of data, denoted by D, we may want to learn a
graphical model

— Estimate parameters 6 for interactions of interest, given our a
priori knowledge (knowledge before observing the data) about the
structure (easier)

— Estimate the structure of the network, S (more difficult)
— Estimate both structure and parameters

e With a graphical models, we can also do inference, i.e. compute a
posteriori probabilities for values of variables not seen in the data. In

addition to the parameters, these could be future values in a dynamical
model or variables simply not measured at all.

— Note that in most other contexts, inference refers only to what is
here called learning
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Dynamic Bayesian networks

e Note that nowhere in the previous formulation was there any mention
of time ¢

— Bayesian networks, by default, are static — they do not consider
time or causality but only conditional dependency of observations

— Static networks, including Bayesian networks, are directed acyclic
graphs (DAGs), which can be restricting

e Dynamic Bayesian Networks (DBNs) are temporal extensions of BN,
in which the probability factorization is performed for a discrete-time
stochastic process X (t) = (X (t),..., X, ()T




SGN-6156 — Computational Systems Biology Il

e In the simplest case, we assume the process can be modeled as an
unrolled version of a standard static Bayesian network

— Parents of each node X;(t), pa(X;(t)), are among the nodes at
the previous time slice X (¢t — 1)

— Process becomes a first order process
— For discrete-valued networks, this corresponds to a discrete-state

Markov chain

e Both static and dynamic networks can be considered for e.g. gene
regulation
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An illustration of the DBN model structure.
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Dynamic Bayesian networks (cont.)

e In a first-order DBN, the probability factorization for a time series of

length 1" can be written as

T

p(z(1), .., 2(T)) = ple(1) ] [ pl=(®)|z(t - 1))

t=2

=p(x(D) [ [ [ [ p(=:(t)Ipa(z;(t - 1)),

t=2i=1
where the parents of x;(¢) show the conditional dependencies between

the consecutive time steps
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The Bayes formula

e Recall that the Bayes formula (Bayes' theorem) relates the conditional
and marginal probabilities of events A and B:

B|A)P(A)
P(B)

pAB) = 21

e Alternatively, this can be viewed as updating prior probability P(A)
to posterior probability P(A|B)

e Similarly, in the case of two random variables x and y we have a
connection between the conditional and marginal distributions (for
continuous distributions as well as discrete):

_ pzly)p(y)
p(ylx) = ()
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Bayesian framework
e In the Bayesian framework, both the data D and the parameters
included in @ and structure S are modeled as random variables

— Contrast with traditional estimation, where the parameters to be
estimated are assumed to be unknown constants

— The traditional approach can also be used to learn graphical mod-

els, resulting in Maximum Likelihood (ML) estimation

e \We need to select probability distributions p(,S) and p(6|S) to describe
our a priori knowledge about the possible solutions

~10-
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On learning the parameters
e The variables are independent conditioned on their parents
e In the simplest case, the conditional distributions (and their parame-
ters) are assumed to be independent

— The estimation problems for the parameters of each distribution
are independent if we observe complete data

— The posterior p(f|D) of the parameters can be computed sepa-

rately for each parameter

e For more complicated models, the computation of posteriors becomes
more difficult

~11—
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A discrete model

e Even though the amount of mMRNA or protein levels, for example,
can vary in a scale that is most conveniently modeled as continu-
ous, we can still model the system by assuming that it operates with

functionally discrete states
— “activated”/"not activated” (2 states)

— “under expressed”’/“normal”/“over expressed” (3 states)
e Discretization of data values can be used to compromise between the

— averaging out of noise
— accuracy of the model
— complexity/accuracy of the model/parameter learning

e Qualitative models can be learned even when the quality of the data

is not sufficient for more accurate model classes

—12—-
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e As will be seen, with the discrete-valued observations the Bayesian
network learning is relatively simple (in principle)

— For now we assume here that the structure of the model is known

—13-
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Summarizing the data

Let N;;i be the number of times we observe variable/node ¢ in state
k given parent node configuration j

Summarize the number of total number of observations for variable i

with parent node configuration 7,
T
Nij = ZNijk
k=1

In frequentist setting, the well known ML estimate of multinomial
probabilities is obtained by the normalized counts

" N
eijk — Njk

For the Bayesian estimation, we need a parameter prior

—14—
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Dirichlet prior

e A convenient prior distribution to choose for the parameters in 0 is
given by the Dirichlet distribution,

(Gijl, «oey ‘gijm) ~ DiI‘iChlet(&ijl, coey aijm)-

e The Dirichlet distribution has PDF

f(9ij1, ceey eijm; Qjj1y .-y aijm) _

|
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with eijm- > 0, Zz Hijm- = 1, and hyperparameters Qjjr; = 0. QA
summarizes the pseudocounts, a;; = ), k.

e The normalization constant, the Beta function, can be expressed using
the gamma function,

ey L cijr,)
I' (i)

B(aj) =

15—
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Conjugate prior

e The convenience arises from the fact that the distribution is conjugate
to the multinomial distribution, i.e., if p(#) is Dirichlet and p(x|0) is
multinomial, then p(6|x) is Dirichlet as well

e The multinomial distribution is given (for ), N;;i = N;;) by

Nij! Nijt Nij,
f(Nijis .o Nigr; | Nij, 01, - . s 0ir,) = N@'jl!---Nijr-!Hijlj 0,
and is the distribution of observations in r; classes if NV;; observations
are selected as outcomes of independent selection from the classes
with probabilities 0,1, k =1,...,71;

~16—
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Closed form solutions

e The a posteriori -distribution for the parameters 6, is Dirichlet with
updated hyperparameters av;r, = ik + Nijk

e The maximum a posteriori and posterior mean parameter estimates
are given as

Qi i + Nijr — 1

e —
Jk
aij + Nij — 1
g gk Nk
ijk =
aj + Nij

e Using the Dirichlet prior we can obtain a Bayes score for the network
structure analytically

_17-
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Bayes scoring of networks

e In Bayesian context, the most natural score for a network structure S
is the posterior probability given the observed data D:

P(DI|S)P(S)

P(SID) = =5 rpr

where we have made use of the Bayes formula

e Since probability P(D) is not dependent on the structure, it is not
needed to compare the scores of different networks

e What remains is thus
P(S|D) oc P(DI|S)P(S),

containing a term describing our a priori knowledge of the structure
and the marginal likelihood of the data which needs to be evaluated

18—
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Learning the network structure

e If we are only interested in the structures, we can obtain an analytically
tractable form of the marginal likelihood (for the data given structure

S):
P(D|S) = /9 p(DI6, S)p(6]S) db

s

B = NG Ui + Nijk)
- 1l H I'(aij + Nij) [ I(ci)

1=19=1 k=1

e Efficient algorithms for finding optimal structures exist only for the
simplest cases, e.g., a tree with at most one parent per node (O(n?logn))

e Finding the structure with maximal Bayes score is an NP hard problem
even if we set a bound k > 1 for the maximum number of parents.
Inference of variables given others is in general difficult as well

—~19-
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e For example, greedy optimization algorithms that change the struc-
ture towards a local optimum are often used as a heuristic solution

e Having an accurate structure makes a difference to the rest of the
estimation
— Missing edges in the model give a poor fit to data

— Spurious edges lead to unnecessary parameters to estimate and

lower estimation and predictive performance

—20-
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Problems in practice

e As mentioned earlier, an exhaustive search and scoring approach for
the different models will not work in practice (the number of networks
increases super-exponentially, 2(n%) for dynamic Bayesian netwokrs

— Heuristics are used to e.g. add parents to a node one at a time as
long as the Bayesian score increases

e In addition, the case we have considered is simple in that all the
variables are assumed to be observable

e Particularly in small sample settings the a posteriori -distribution may
be rather flat

— Looking for a single optimal model is not a good idea — we should
consider the entire distribution, or in practice, several models with
a good fit

21—
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Bayesian approach to structural properties

In order to get more reliable results we can focus on features that can
be inferred the most reliably

for example, we can define a feature, an indicator variable f with value

1 if and only if the structure of the model contains a path between
nodes A and B

Looking at a set of models S with a good fit we can approximate the
posterior probability of feature f by

P(f|D) = > f(S)P(S|D).

SeS

With gene regulatory networks, one can look for only the most signif-
icant edges based on the scoring

—29—
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A Model inference result
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Markov Chain Monte Carlo

Since structures cannot be enumerated in general to compare their
scores and posteriors can be difficult to compute, Markov Chain
Monte Carlo (MCMC) sampling is often used

A Markov chain is defined over Bayesian nets so that it approaches
a steady-state distribution as it is being run, and the probabilities of
the states (networks) correspond to their posterior probability

Individual nets are created as states in the chain and after (assumed)
convergence, samples S; are taken

Posterior probability of an edge can then be approximated with
P(f(S)|D) =~ & 32—y f(S:)
To get robust results (convergence of the chain), special methods

need to be used. Real biological pathways have been reconstructed
using Bayesian nets (with a subset of genes, hundreds of microarrays)

—24—
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Hidden variables

Hidden (non-observed) variables make the learning significantly more
difficult

Finding out hidden variables can significantly decrease the amount of
parameters we need to estimate

Incomplete data means that the marginal likelihood does not have an
analytically tractable form and that the likelihood can have multiple
maxima

Expectation Maximization (EM) algorithm can be used to deal with
incomplete data, iterating the following steps:

— Generate expected data values for the hidden variables given ob-
served data and current model parameters

— Utilizing the complete data set thus obtained, learn parameters as
with complete data

25—
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