SGN-6156, Lecture 9
 Modeling biological regulatory networks:
 Bayesian networks

Harri Lähdesmäki, harri.lahdesmaki@tut.fi
(Slides by Juha Kesseli 25.4.2007, updated by Harri Lähdesmäki)
Department of Signal Processing,
Tampere University of Technology
29.04.2008

Motivation

- Graphical models in general are a common way of representing qualitative biological information
- E.g. regulatory interactions can be visualized by a graph in which the nodes represent genes and (directed) arcs the interactions: transcription factor A activates gene B
- Graphical models may be learned from limited data - a systematical approach of assessing the reliability is needed
- Bayesian networks provide a solution and can be used to model the interactions quantitatively as well
- Including non-linearity and stochasticity

Figure from (Sachs et al., 2005)

Probability factorization

- Given a set of random variables $X=\left(X_{1}, \ldots, X_{n}\right)$, a Bayesian network is defined as a pair (S, θ), where
- S is a directed acyclic graph (DAG), which is a graphical representation of the conditional independencies between variables in X
- θ is the set of parameters for the conditional probability distributions of these variables
- In a Bayesian network, the probability of a state $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is factored as

$$
p(x)=p\left(x_{1} \mid \operatorname{pa}\left(x_{1}\right)\right) p\left(x_{2} \mid \mathrm{pa}\left(x_{2}\right)\right) \cdot \ldots \cdot p\left(x_{n} \mid \mathrm{pa}\left(x_{n}\right)\right)
$$

where $\mathrm{pa}(x)$ denotes the parents of node x in the graph S

- This probability factorization represents the conditional (in)dependencies of the variables.

Graph modeling problems

- After observing a set of data, denoted by D, we may want to learn a graphical model
- Estimate parameters θ for interactions of interest, given our a priori knowledge (knowledge before observing the data) about the structure (easier)
- Estimate the structure of the network, S (more difficult)
- Estimate both structure and parameters
- With a graphical models, we can also do inference, i.e. compute a posteriori probabilities for values of variables not seen in the data. In addition to the parameters, these could be future values in a dynamical model or variables simply not measured at all.
- Note that in most other contexts, inference refers only to what is here called learning

Dynamic Bayesian networks

- Note that nowhere in the previous formulation was there any mention of time t
- Bayesian networks, by default, are static - they do not consider time or causality but only conditional dependency of observations
- Static networks, including Bayesian networks, are directed acyclic graphs (DAGs), which can be restricting
- Dynamic Bayesian Networks (DBNs) are temporal extensions of BNs, in which the probability factorization is performed for a discrete-time stochastic process $X(t)=\left(X_{1}(t), \ldots, X_{n}(t)\right)^{T}$
- In the simplest case, we assume the process can be modeled as an unrolled version of a standard static Bayesian network
- Parents of each node $X_{i}(t), \mathrm{pa}\left(X_{i}(t)\right)$, are among the nodes at the previous time slice $X(t-1)$
- Process becomes a first order process
- For discrete-valued networks, this corresponds to a discrete-state Markov chain
- Both static and dynamic networks can be considered for e.g. gene regulation

An illustration of the DBN model structure.

Dynamic Bayesian networks (cont.)

- In a first-order DBN, the probability factorization for a time series of length T can be written as

$$
\begin{aligned}
& p(x(1), \ldots, x(T))=p(x(1)) \prod_{t=2}^{T} p(x(t) \mid x(t-1)) \\
& \quad=p(x(1)) \prod_{t=2}^{T} \prod_{i=1}^{n} p\left(x_{i}(t) \mid \operatorname{pa}\left(x_{i}(t-1)\right)\right),
\end{aligned}
$$

where the parents of $x_{i}(t)$ show the conditional dependencies between the consecutive time steps

The Bayes formula

- Recall that the Bayes formula (Bayes' theorem) relates the conditional and marginal probabilities of events A and B :

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Alternatively, this can be viewed as updating prior probability $P(A)$ to posterior probability $P(A \mid B)$
- Similarly, in the case of two random variables x and y we have a connection between the conditional and marginal distributions (for continuous distributions as well as discrete):

$$
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}
$$

Bayesian framework

- In the Bayesian framework, both the data D and the parameters included in θ and structure S are modeled as random variables
- Contrast with traditional estimation, where the parameters to be estimated are assumed to be unknown constants
- The traditional approach can also be used to learn graphical models, resulting in Maximum Likelihood (ML) estimation
- We need to select probability distributions $p(S)$ and $p(\theta \mid S)$ to describe our a priori knowledge about the possible solutions

On learning the parameters

- The variables are independent conditioned on their parents
- In the simplest case, the conditional distributions (and their parameters) are assumed to be independent
- The estimation problems for the parameters of each distribution are independent if we observe complete data
- The posterior $p(\theta \mid D)$ of the parameters can be computed separately for each parameter
- For more complicated models, the computation of posteriors becomes more difficult

A discrete model

- Even though the amount of mRNA or protein levels, for example, can vary in a scale that is most conveniently modeled as continuous, we can still model the system by assuming that it operates with functionally discrete states
- "activated"/"not activated" (2 states)
- "under expressed"/"normal"/"over expressed" (3 states)
- Discretization of data values can be used to compromise between the
- averaging out of noise
- accuracy of the model
- complexity/accuracy of the model/parameter learning
- Qualitative models can be learned even when the quality of the data is not sufficient for more accurate model classes
- As will be seen, with the discrete-valued observations the Bayesian network learning is relatively simple (in principle)
- For now we assume here that the structure of the model is known

Summarizing the data

- Let $N_{i j k}$ be the number of times we observe variable/node i in state k given parent node configuration j
- Summarize the number of total number of observations for variable i with parent node configuration j,

$$
N_{i j}=\sum_{k=1}^{r_{i}} N_{i j k}
$$

- In frequentist setting, the well known ML estimate of multinomial probabilities is obtained by the normalized counts

$$
\hat{\theta}_{i j k}=\frac{N_{i j k}}{N_{i j}}
$$

- For the Bayesian estimation, we need a parameter prior

Dirichlet prior

- A convenient prior distribution to choose for the parameters in θ is given by the Dirichlet distribution,

$$
\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right) \sim \operatorname{Dirichlet}\left(\alpha_{i j 1}, \ldots, \alpha_{i j r_{i}}\right)
$$

- The Dirichlet distribution has PDF

$$
f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}} ; \alpha_{i j 1}, \ldots, \alpha_{i j r_{i}}\right)=\frac{1}{B\left(\alpha_{i j}\right)} \prod_{i=1}^{r_{i}} \theta_{i j r_{i}}^{\alpha_{i j r_{i}}-1}
$$

with $\theta_{i j r_{i}} \geq 0, \sum_{i} \theta_{i j r_{i}}=1$, and hyperparameters $\alpha_{i j r_{i}} \geq 0$. $\alpha_{i j}$ summarizes the pseudocounts, $\alpha_{i j}=\sum_{k} \alpha_{i j k}$.

- The normalization constant, the Beta function, can be expressed using the gamma function,

$$
B\left(\alpha_{i j}\right)=\frac{\prod_{k=1}^{r_{i}} \Gamma\left(\alpha_{i j r_{i}}\right)}{\Gamma\left(\alpha_{i j}\right)}
$$

Conjugate prior

- The convenience arises from the fact that the distribution is conjugate to the multinomial distribution, i.e., if $p(\theta)$ is Dirichlet and $p(x \mid \theta)$ is multinomial, then $p(\theta \mid x)$ is Dirichlet as well
- The multinomial distribution is given (for $\sum_{k} N_{i j k}=N_{i j}$) by

$$
f\left(N_{i j 1}, \ldots, N_{i j r_{i}} \mid N_{i j}, \theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)=\frac{N_{i j}!}{N_{i j 1}!\ldots N_{i j r_{i}}!} \theta_{i j 1}^{N_{i j 1}} \ldots \theta_{i j r_{i}}^{N_{i j r_{i}}}
$$

and is the distribution of observations in r_{i} classes if $N_{i j}$ observations are selected as outcomes of independent selection from the classes with probabilities $\theta_{i j k}, k=1, \ldots, r_{i}$

Closed form solutions

- The a posteriori -distribution for the parameters $\theta_{i j k}$ is Dirichlet with updated hyperparameters $\alpha_{i j k}=\alpha_{i j k}+N_{i j k}$
- The maximum a posteriori and posterior mean parameter estimates are given as

$$
\begin{aligned}
\tilde{\theta}_{i j k} & =\frac{\alpha_{i j k}+N_{i j k}-1}{\alpha_{i j}+N_{i j}-r_{i}} \\
\bar{\theta}_{i j k} & =\frac{\alpha_{i j k}+N_{i j k}}{\alpha_{i j}+N_{i j}}
\end{aligned}
$$

- Using the Dirichlet prior we can obtain a Bayes score for the network structure analytically

Bayes scoring of networks

- In Bayesian context, the most natural score for a network structure S is the posterior probability given the observed data D :

$$
P(S \mid D)=\frac{P(D \mid S) P(S)}{P(D)}
$$

where we have made use of the Bayes formula

- Since probability $P(D)$ is not dependent on the structure, it is not needed to compare the scores of different networks
- What remains is thus

$$
P(S \mid D) \propto P(D \mid S) P(S)
$$

containing a term describing our a priori knowledge of the structure and the marginal likelihood of the data which needs to be evaluated

Learning the network structure

- If we are only interested in the structures, we can obtain an analytically tractable form of the marginal likelihood (for the data given structure S):

$$
\begin{aligned}
P(D \mid S) & =\int_{\theta} p(D \mid \theta, S) p(\theta \mid S) d \theta \\
& =\cdots \\
& =\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)} \prod_{k=1}^{r_{i}} \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}
\end{aligned}
$$

- Efficient algorithms for finding optimal structures exist only for the simplest cases, e.g., a tree with at most one parent per node $\left(O\left(n^{2} \log n\right)\right)$
- Finding the structure with maximal Bayes score is an NP hard problem even if we set a bound $k>1$ for the maximum number of parents. Inference of variables given others is in general difficult as well
- For example, greedy optimization algorithms that change the structure towards a local optimum are often used as a heuristic solution
- Having an accurate structure makes a difference to the rest of the estimation
- Missing edges in the model give a poor fit to data
- Spurious edges lead to unnecessary parameters to estimate and lower estimation and predictive performance

Problems in practice

- As mentioned earlier, an exhaustive search and scoring approach for the different models will not work in practice (the number of networks increases super-exponentially, $2^{\left(n^{2}\right)}$ for dynamic Bayesian netwokrs
- Heuristics are used to e.g. add parents to a node one at a time as long as the Bayesian score increases
- In addition, the case we have considered is simple in that all the variables are assumed to be observable
- Particularly in small sample settings the a posteriori -distribution may be rather flat
- Looking for a single optimal model is not a good idea - we should consider the entire distribution, or in practice, several models with a good fit

Bayesian approach to structural properties

- In order to get more reliable results we can focus on features that can be inferred the most reliably
- for example, we can define a feature, an indicator variable f with value 1 if and only if the structure of the model contains a path between nodes A and B
- Looking at a set of models \mathcal{S} with a good fit we can approximate the posterior probability of feature f by

$$
P(f \mid D)=\sum_{S \in \mathcal{S}} f(S) P(S \mid D)
$$

- With gene regulatory networks, one can look for only the most significant edges based on the scoring

A Model inference resultPhospho-Proteins
Perturbed in data

Figure from (Sachs et al., 2005)

Markov Chain Monte Carlo

- Since structures cannot be enumerated in general to compare their scores and posteriors can be difficult to compute, Markov Chain Monte Carlo (MCMC) sampling is often used
- A Markov chain is defined over Bayesian nets so that it approaches a steady-state distribution as it is being run, and the probabilities of the states (networks) correspond to their posterior probability
- Individual nets are created as states in the chain and after (assumed) convergence, samples S_{i} are taken
- Posterior probability of an edge can then be approximated with $P(f(S) \mid D) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(S_{i}\right)$
- To get robust results (convergence of the chain), special methods need to be used. Real biological pathways have been reconstructed using Bayesian nets (with a subset of genes, hundreds of microarrays)

Hidden variables

- Hidden (non-observed) variables make the learning significantly more difficult
- Finding out hidden variables can significantly decrease the amount of parameters we need to estimate
- Incomplete data means that the marginal likelihood does not have an analytically tractable form and that the likelihood can have multiple maxima
- Expectation Maximization (EM) algorithm can be used to deal with incomplete data, iterating the following steps:
- Generate expected data values for the hidden variables given observed data and current model parameters
- Utilizing the complete data set thus obtained, learn parameters as with complete data

References

- Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A., \& Nolan, G. P. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science, Vol. 308, No. 5721, pp. 523-529.

