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Motivation

• Graphical models in general are a common way of representing qual-

itative biological information

– E.g. regulatory interactions can be visualized by a graph in which

the nodes represent genes and (directed) arcs the interactions:

transcription factor A activates gene B

• Graphical models may be learned from limited data — a systematical

approach of assessing the reliability is needed

• Bayesian networks provide a solution and can be used to model the

interactions quantitatively as well

– Including non-linearity and stochasticity
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Figure from (Sachs et al., 2005)
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Probability factorization

• Given a set of random variables X = (X1, . . . , Xn), a Bayesian net-

work is defined as a pair (S, θ), where

– S is a directed acyclic graph (DAG), which is a graphical represen-

tation of the conditional independencies between variables in X

– θ is the set of parameters for the conditional probability distribu-

tions of these variables

• In a Bayesian network, the probability of a state x = (x1, x2, . . ., xn)T

is factored as

p(x) = p(x1|pa(x1))p(x2|pa(x2)) · . . . · p(xn|pa(xn)),

where pa(x) denotes the parents of node x in the graph S

• This probability factorization represents the conditional (in)dependencies

of the variables.
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Graph modeling problems

• After observing a set of data, denoted by D, we may want to learn a

graphical model

– Estimate parameters θ for interactions of interest, given our a

priori knowledge (knowledge before observing the data) about the

structure (easier)

– Estimate the structure of the network, S (more difficult)

– Estimate both structure and parameters

• With a graphical models, we can also do inference, i.e. compute a

posteriori probabilities for values of variables not seen in the data. In

addition to the parameters, these could be future values in a dynamical

model or variables simply not measured at all.

– Note that in most other contexts, inference refers only to what is

here called learning
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Dynamic Bayesian networks

• Note that nowhere in the previous formulation was there any mention

of time t

– Bayesian networks, by default, are static — they do not consider

time or causality but only conditional dependency of observations

– Static networks, including Bayesian networks, are directed acyclic

graphs (DAGs), which can be restricting

• Dynamic Bayesian Networks (DBNs) are temporal extensions of BNs,

in which the probability factorization is performed for a discrete-time

stochastic process X(t) = (X1(t), . . ., Xn(t))T

–5–



SGN-6156 – Computational Systems Biology II

• In the simplest case, we assume the process can be modeled as an

unrolled version of a standard static Bayesian network

– Parents of each node Xi(t), pa(Xi(t)), are among the nodes at

the previous time slice X(t − 1)

– Process becomes a first order process

– For discrete-valued networks, this corresponds to a discrete-state

Markov chain

• Both static and dynamic networks can be considered for e.g. gene

regulation
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An illustration of the DBN model structure.
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Dynamic Bayesian networks (cont.)

• In a first-order DBN, the probability factorization for a time series of

length T can be written as

p(x(1), . . ., x(T )) = p(x(1))
T∏

t=2

p(x(t)|x(t − 1))

= p(x(1))
T∏

t=2

n∏
i=1

p(xi(t)|pa(xi(t − 1))),

where the parents of xi(t) show the conditional dependencies between

the consecutive time steps
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The Bayes formula

• Recall that the Bayes formula (Bayes’ theorem) relates the conditional

and marginal probabilities of events A and B:

P (A|B) =
P (B|A)P (A)

P (B)

• Alternatively, this can be viewed as updating prior probability P (A)

to posterior probability P (A|B)

• Similarly, in the case of two random variables x and y we have a

connection between the conditional and marginal distributions (for

continuous distributions as well as discrete):

p(y|x) =
p(x|y)p(y)

p(x)

–9–



SGN-6156 – Computational Systems Biology II

Bayesian framework

• In the Bayesian framework, both the data D and the parameters

included in θ and structure S are modeled as random variables

– Contrast with traditional estimation, where the parameters to be

estimated are assumed to be unknown constants

– The traditional approach can also be used to learn graphical mod-

els, resulting in Maximum Likelihood (ML) estimation

• We need to select probability distributions p(S) and p(θ|S) to describe

our a priori knowledge about the possible solutions
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On learning the parameters

• The variables are independent conditioned on their parents

• In the simplest case, the conditional distributions (and their parame-

ters) are assumed to be independent

– The estimation problems for the parameters of each distribution

are independent if we observe complete data

– The posterior p(θ|D) of the parameters can be computed sepa-

rately for each parameter

• For more complicated models, the computation of posteriors becomes

more difficult
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A discrete model

• Even though the amount of mRNA or protein levels, for example,

can vary in a scale that is most conveniently modeled as continu-

ous, we can still model the system by assuming that it operates with

functionally discrete states

– “activated”/”not activated” (2 states)

– “under expressed”/“normal”/“over expressed” (3 states)

• Discretization of data values can be used to compromise between the

– averaging out of noise

– accuracy of the model

– complexity/accuracy of the model/parameter learning

• Qualitative models can be learned even when the quality of the data

is not sufficient for more accurate model classes
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• As will be seen, with the discrete-valued observations the Bayesian

network learning is relatively simple (in principle)

– For now we assume here that the structure of the model is known
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Summarizing the data

• Let Nijk be the number of times we observe variable/node i in state

k given parent node configuration j

• Summarize the number of total number of observations for variable i

with parent node configuration j,

Nij =

ri∑
k=1

Nijk

• In frequentist setting, the well known ML estimate of multinomial

probabilities is obtained by the normalized counts

θ̂ijk =
Nijk

Nij

• For the Bayesian estimation, we need a parameter prior
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Dirichlet prior

• A convenient prior distribution to choose for the parameters in θ is

given by the Dirichlet distribution,

(θij1, . . ., θijri
) ∼ Dirichlet(αij1, . . ., αijri

).

• The Dirichlet distribution has PDF

f(θij1, ..., θijri
; αij1, ..., αijri

) =
1

B(αij)

ri∏
i=1

θ
αijri

−1

ijri
,

with θijri
≥ 0,

∑
i θijri

= 1, and hyperparameters αijri
≥ 0. αij

summarizes the pseudocounts, αij =
∑

k αijk.

• The normalization constant, the Beta function, can be expressed using

the gamma function,

B(αij) =

∏ri

k=1 Γ(αijri
)

Γ (αij)
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Conjugate prior

• The convenience arises from the fact that the distribution is conjugate

to the multinomial distribution, i.e., if p(θ) is Dirichlet and p(x|θ) is

multinomial, then p(θ|x) is Dirichlet as well

• The multinomial distribution is given (for
∑

k Nijk = Nij) by

f(Nij1, . . ., Nijri
|Nij , θij1, . . ., θijri

) =
Nij !

Nij1! . . . Nijri
!
θ

Nij1

ij1 . . . θ
Nijri

ijri

and is the distribution of observations in ri classes if Nij observations

are selected as outcomes of independent selection from the classes

with probabilities θijk, k = 1, . . ., ri

–16–



SGN-6156 – Computational Systems Biology II

Closed form solutions

• The a posteriori -distribution for the parameters θijk is Dirichlet with

updated hyperparameters αijk = αijk + Nijk

• The maximum a posteriori and posterior mean parameter estimates

are given as

θ̃ijk =
αijk + Nijk − 1

αij + Nij − ri

θijk =
αijk + Nijk

αij + Nij

• Using the Dirichlet prior we can obtain a Bayes score for the network

structure analytically
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Bayes scoring of networks

• In Bayesian context, the most natural score for a network structure S

is the posterior probability given the observed data D:

P (S|D) =
P (D|S)P (S)

P (D)
,

where we have made use of the Bayes formula

• Since probability P (D) is not dependent on the structure, it is not

needed to compare the scores of different networks

• What remains is thus

P (S|D) ∝ P (D|S)P (S),

containing a term describing our a priori knowledge of the structure

and the marginal likelihood of the data which needs to be evaluated
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Learning the network structure

• If we are only interested in the structures, we can obtain an analytically

tractable form of the marginal likelihood (for the data given structure

S):

P (D|S) =

∫
θ

p(D|θ, S)p(θ|S) dθ

= . . .

=
n∏

i=1

qi∏
j=1

Γ(αij)

Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)

Γ(αijk)

• Efficient algorithms for finding optimal structures exist only for the

simplest cases, e.g., a tree with at most one parent per node (O(n2 log n))

• Finding the structure with maximal Bayes score is an NP hard problem

even if we set a bound k > 1 for the maximum number of parents.

Inference of variables given others is in general difficult as well
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• For example, greedy optimization algorithms that change the struc-

ture towards a local optimum are often used as a heuristic solution

• Having an accurate structure makes a difference to the rest of the

estimation

– Missing edges in the model give a poor fit to data

– Spurious edges lead to unnecessary parameters to estimate and

lower estimation and predictive performance
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Problems in practice

• As mentioned earlier, an exhaustive search and scoring approach for

the different models will not work in practice (the number of networks

increases super-exponentially, 2(n2) for dynamic Bayesian netwokrs

– Heuristics are used to e.g. add parents to a node one at a time as

long as the Bayesian score increases

• In addition, the case we have considered is simple in that all the

variables are assumed to be observable

• Particularly in small sample settings the a posteriori -distribution may

be rather flat

– Looking for a single optimal model is not a good idea — we should

consider the entire distribution, or in practice, several models with

a good fit
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Bayesian approach to structural properties

• In order to get more reliable results we can focus on features that can

be inferred the most reliably

• for example, we can define a feature, an indicator variable f with value

1 if and only if the structure of the model contains a path between

nodes A and B

• Looking at a set of models S with a good fit we can approximate the

posterior probability of feature f by

P (f |D) =
∑
S∈S

f(S)P (S|D).

• With gene regulatory networks, one can look for only the most signif-

icant edges based on the scoring
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Figure from (Sachs et al., 2005)
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Markov Chain Monte Carlo

• Since structures cannot be enumerated in general to compare their

scores and posteriors can be difficult to compute, Markov Chain

Monte Carlo (MCMC) sampling is often used

• A Markov chain is defined over Bayesian nets so that it approaches

a steady-state distribution as it is being run, and the probabilities of

the states (networks) correspond to their posterior probability

• Individual nets are created as states in the chain and after (assumed)

convergence, samples Si are taken

• Posterior probability of an edge can then be approximated with

P (f(S)|D) ≈ 1
n

∑n

i=1 f(Si)

• To get robust results (convergence of the chain), special methods

need to be used. Real biological pathways have been reconstructed

using Bayesian nets (with a subset of genes, hundreds of microarrays)
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Hidden variables

• Hidden (non-observed) variables make the learning significantly more

difficult

• Finding out hidden variables can significantly decrease the amount of

parameters we need to estimate

• Incomplete data means that the marginal likelihood does not have an

analytically tractable form and that the likelihood can have multiple

maxima

• Expectation Maximization (EM) algorithm can be used to deal with

incomplete data, iterating the following steps:

– Generate expected data values for the hidden variables given ob-

served data and current model parameters

– Utilizing the complete data set thus obtained, learn parameters as

with complete data
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