SGN-6156, Lecture 9 Modeling biological regulatory networks: Bayesian networks

Harri Lähdesmäki, harri.lahdesmaki@tut.fi

(Slides by Juha Kesseli 25.4.2007, updated by Harri Lähdesmäki)

Department of Signal Processing,

Tampere University of Technology

29.04.2008

Motivation

- Graphical models in general are a common way of representing qualitative biological information
 - E.g. regulatory interactions can be visualized by a graph in which the nodes represent genes and (directed) arcs the interactions: transcription factor A activates gene B
- Graphical models may be learned from limited data a systematical approach of assessing the reliability is needed
- Bayesian networks provide a solution and can be used to model the interactions quantitatively as well
 - Including non-linearity and stochasticity

Figure from (Sachs et al., 2005)

-2-

Probability factorization

- Given a set of random variables $X = (X_1, \ldots, X_n)$, a Bayesian network is defined as a pair (S, θ) , where
 - S is a directed acyclic graph (DAG), which is a graphical representation of the conditional independencies between variables in X
 - θ is the set of parameters for the conditional probability distributions of these variables
- In a Bayesian network, the probability of a state $x = (x_1, x_2, ..., x_n)^T$ is factored as

 $p(x) = p(x_1|\operatorname{pa}(x_1))p(x_2|\operatorname{pa}(x_2)) \cdot \ldots \cdot p(x_n|\operatorname{pa}(x_n)),$

where pa(x) denotes the parents of node x in the graph S

• This probability factorization represents the conditional (in)dependencies of the variables.

Graph modeling problems

- After observing a set of data, denoted by D, we may want to learn a graphical model
 - Estimate parameters θ for interactions of interest, given our a priori knowledge (knowledge before observing the data) about the structure (easier)
 - Estimate the structure of the network, S (more difficult)
 - Estimate both structure and parameters
- With a graphical models, we can also do inference, i.e. compute a posteriori probabilities for values of variables not seen in the data. In addition to the parameters, these could be future values in a dynamical model or variables simply not measured at all.
 - Note that in most other contexts, inference refers only to what is here called learning

Dynamic Bayesian networks

- Note that nowhere in the previous formulation was there any mention of time t
 - Bayesian networks, by default, are static they do not consider time or causality but only conditional dependency of observations
 - Static networks, including Bayesian networks, are directed acyclic graphs (DAGs), which can be restricting
- Dynamic Bayesian Networks (DBNs) are temporal extensions of BNs, in which the probability factorization is performed for a discrete-time stochastic process $X(t) = (X_1(t), \dots, X_n(t))^T$

- In the simplest case, we assume the process can be modeled as an unrolled version of a standard static Bayesian network
 - Parents of each node $X_i(t)$, $pa(X_i(t))$, are among the nodes at the previous time slice X(t-1)
 - Process becomes a first order process
 - For discrete-valued networks, this corresponds to a discrete-state Markov chain
- Both static and dynamic networks can be considered for e.g. gene regulation

An illustration of the DBN model structure.

Dynamic Bayesian networks (cont.)

• In a first-order DBN, the probability factorization for a time series of length T can be written as

$$p(x(1),...,x(T)) = p(x(1))\prod_{t=2}^{T} p(x(t)|x(t-1))$$

$$= p(x(1)) \prod_{t=2}^{T} \prod_{i=1}^{n} p(x_i(t) | pa(x_i(t-1)))),$$

where the parents of $x_i(t)$ show the conditional dependencies between the consecutive time steps

The Bayes formula

• Recall that the Bayes formula (Bayes' theorem) relates the conditional and marginal probabilities of events A and B:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Alternatively, this can be viewed as updating prior probability P(A) to posterior probability P(A|B)
- Similarly, in the case of two random variables x and y we have a connection between the conditional and marginal distributions (for continuous distributions as well as discrete):

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Bayesian framework

- In the Bayesian framework, both the data D and the parameters included in θ and structure S are modeled as random variables
 - Contrast with traditional estimation, where the parameters to be estimated are assumed to be unknown constants
 - The traditional approach can also be used to learn graphical models, resulting in Maximum Likelihood (ML) estimation
- We need to select probability distributions p(S) and $p(\theta|S)$ to describe our a priori knowledge about the possible solutions

On learning the parameters

- The variables are independent conditioned on their parents
- In the simplest case, the conditional distributions (and their parameters) are assumed to be independent
 - The estimation problems for the parameters of each distribution are independent if we observe complete data
 - The posterior $p(\boldsymbol{\theta}|D)$ of the parameters can be computed separately for each parameter
- For more complicated models, the computation of posteriors becomes more difficult

A discrete model

- Even though the amount of mRNA or protein levels, for example, can vary in a scale that is most conveniently modeled as continuous, we can still model the system by assuming that it operates with functionally discrete states
 - "activated"/"not activated" (2 states)
 - "under expressed"/"normal"/"over expressed" (3 states)
- Discretization of data values can be used to compromise between the
 - averaging out of noise
 - accuracy of the model
 - complexity/accuracy of the model/parameter learning
- Qualitative models can be learned even when the quality of the data is not sufficient for more accurate model classes

- As will be seen, with the discrete-valued observations the Bayesian network learning is relatively simple (in principle)
 - For now we assume here that the structure of the model is known

Summarizing the data

- Let N_{ijk} be the number of times we observe variable/node i in state k given parent node configuration j
- Summarize the number of total number of observations for variable *i* with parent node configuration *j*,

$$N_{ij} = \sum_{k=1}^{r_i} N_{ijk}$$

• In frequentist setting, the well known ML estimate of multinomial probabilities is obtained by the normalized counts

$$\hat{\theta}_{ijk} = \frac{N_{ijk}}{N_{ij}}$$

• For the Bayesian estimation, we need a parameter prior

Dirichlet prior

• A convenient prior distribution to choose for the parameters in θ is given by the Dirichlet distribution,

$$(\theta_{ij1},\ldots,\theta_{ijr_i}) \sim \text{Dirichlet}(\alpha_{ij1},\ldots,\alpha_{ijr_i}).$$

• The Dirichlet distribution has PDF

$$f(\theta_{ij1}, ..., \theta_{ijr_i}; \alpha_{ij1}, ..., \alpha_{ijr_i}) = \frac{1}{B(\alpha_{ij})} \prod_{i=1}^{r_i} \theta_{ijr_i}^{\alpha_{ijr_i}-1},$$

with $\theta_{ijr_i} \ge 0$, $\sum_i \theta_{ijr_i} = 1$, and hyperparameters $\alpha_{ijr_i} \ge 0$. α_{ij} summarizes the pseudocounts, $\alpha_{ij} = \sum_k \alpha_{ijk}$.

• The normalization constant, the Beta function, can be expressed using the gamma function,

$$B(\alpha_{ij}) = \frac{\prod_{k=1}^{r_i} \Gamma(\alpha_{ijr_i})}{\Gamma(\alpha_{ij})}$$

Conjugate prior

- The convenience arises from the fact that the distribution is conjugate to the multinomial distribution, i.e., if $p(\theta)$ is Dirichlet and $p(x|\theta)$ is multinomial, then $p(\theta|x)$ is Dirichlet as well
- The multinomial distribution is given (for $\sum_k N_{ijk} = N_{ij}$) by

$$f(N_{ij1}, \dots, N_{ijr_i} | N_{ij}, \theta_{ij1}, \dots, \theta_{ijr_i}) = \frac{N_{ij!}}{N_{ij1}! \dots N_{ijr_i}!} \theta_{ij1}^{N_{ij1}} \dots \theta_{ijr_i}^{N_{ijr_i}}$$

and is the distribution of observations in r_i classes if N_{ij} observations are selected as outcomes of independent selection from the classes with probabilities θ_{ijk} , $k = 1, ..., r_i$

Closed form solutions

- The a posteriori -distribution for the parameters θ_{ijk} is Dirichlet with updated hyperparameters $\alpha_{ijk} = \alpha_{ijk} + N_{ijk}$
- The maximum a posteriori and posterior mean parameter estimates are given as

$$\tilde{\theta}_{ijk} = \frac{\alpha_{ijk} + N_{ijk} - 1}{\alpha_{ij} + N_{ij} - r_i}$$
$$\overline{\theta}_{ijk} = \frac{\alpha_{ijk} + N_{ijk}}{\alpha_{ij} + N_{ij}}$$

• Using the Dirichlet prior we can obtain a Bayes score for the network structure analytically

Bayes scoring of networks

• In Bayesian context, the most natural score for a network structure S is the posterior probability given the observed data D:

$$P(S|D) = \frac{P(D|S)P(S)}{P(D)},$$

where we have made use of the Bayes formula

- Since probability P(D) is not dependent on the structure, it is not needed to compare the scores of different networks
- What remains is thus

$$P(S|D) \propto P(D|S)P(S),$$

containing a term describing our a priori knowledge of the structure and the marginal likelihood of the data which needs to be evaluated

Learning the network structure

 If we are only interested in the structures, we can obtain an analytically tractable form of the marginal likelihood (for the data given structure S):

$$P(D|S) = \int_{\theta} p(D|\theta, S) p(\theta|S) d\theta$$

= ...
$$= \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

- Efficient algorithms for finding optimal structures exist only for the simplest cases, e.g., a tree with at most one parent per node $(O(n^2 \log n))$
- Finding the structure with maximal Bayes score is an NP hard problem even if we set a bound k > 1 for the maximum number of parents. Inference of variables given others is in general difficult as well

- For example, greedy optimization algorithms that change the structure towards a local optimum are often used as a heuristic solution
- Having an accurate structure makes a difference to the rest of the estimation
 - Missing edges in the model give a poor fit to data
 - Spurious edges lead to unnecessary parameters to estimate and lower estimation and predictive performance

Problems in practice

- As mentioned earlier, an exhaustive search and scoring approach for the different models will not work in practice (the number of networks increases super-exponentially, $2^{(n^2)}$ for dynamic Bayesian netwokrs
 - Heuristics are used to e.g. add parents to a node one at a time as long as the Bayesian score increases
- In addition, the case we have considered is simple in that all the variables are assumed to be observable
- Particularly in small sample settings the a posteriori -distribution may be rather flat
 - Looking for a single optimal model is not a good idea we should consider the entire distribution, or in practice, several models with a good fit

Bayesian approach to structural properties

- In order to get more reliable results we can focus on features that can be inferred the most reliably
- for example, we can define a feature, an indicator variable f with value

 if and only if the structure of the model contains a path between
 nodes A and B
- Looking at a set of models \mathcal{S} with a good fit we can approximate the posterior probability of feature f by

$$P(f|D) = \sum_{S \in \mathcal{S}} f(S)P(S|D).$$

• With gene regulatory networks, one can look for only the most significant edges based on the scoring

Figure from (Sachs et al., 2005)

Markov Chain Monte Carlo

- Since structures cannot be enumerated in general to compare their scores and posteriors can be difficult to compute, Markov Chain Monte Carlo (MCMC) sampling is often used
- A Markov chain is defined over Bayesian nets so that it approaches a steady-state distribution as it is being run, and the probabilities of the states (networks) correspond to their posterior probability
- Individual nets are created as states in the chain and after (assumed) convergence, samples S_i are taken
- Posterior probability of an edge can then be approximated with $P(f(S)|D)\approx \frac{1}{n}\sum_{i=1}^n f(S_i)$
- To get robust results (convergence of the chain), special methods need to be used. Real biological pathways have been reconstructed using Bayesian nets (with a subset of genes, hundreds of microarrays)

Hidden variables

- Hidden (non-observed) variables make the learning significantly more difficult
- Finding out hidden variables can significantly decrease the amount of parameters we need to estimate
- Incomplete data means that the marginal likelihood does not have an analytically tractable form and that the likelihood can have multiple maxima
- Expectation Maximization (EM) algorithm can be used to deal with incomplete data, iterating the following steps:
 - Generate expected data values for the hidden variables given observed data and current model parameters
 - Utilizing the complete data set thus obtained, learn parameters as with complete data

References

• Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. *Science*, Vol. 308, No. 5721, pp. 523-529.