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Abstract Predictive modeling on data streams plays an important role in modern data anal-
ysis, where data arrives continuously and needs to be mined in real time. In the stream setting
the data distribution is often evolving over time, and models that update themselves during
operation are becoming the state-of-the-art. This paper formalizes a learning and evalua-
tion scheme of such predictive models. We theoretically analyze evaluation of classifiers on
streaming data with temporal dependence. Our findings suggest that the commonly accepted
data stream classification measures, such as classification accuracy and Kappa statistic, fail
to diagnose cases of poor performance when temporal dependence is present, therefore they
should not be used as sole performance indicators. Moreover, classification accuracy can be
misleading if used as a proxy for evaluating change detectors with datasets that have tempo-
ral dependence. We formulate the decision theory for streaming data classification with tem-
poral dependence and develop a new evaluation methodology for data stream classification
that takes temporal dependence into account. We propose a combined measure for classifi-
cation performance, that takes into account temporal dependence, and we recommend using
it as the main performance measure in classification of streaming data.

Keywords data streams - evaluation - temporal dependence - classification

1 Introduction

Data recording capabilities in our urban and natural environment is rapidly increasing. Sen-
sors, cameras, counters are installed in many places, our mobile devices are equipped with
sensors and the range of things we can record is increasing. All these devices generate data
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Table 1 Different settings considering temporal dependence.

Problem Operation Prediction Instances Main predictive
mode task and labels information
Sequence classification offline classification per sequence other than target
Sequential supervised learning offline classification per observation same as target
Time series forecasting real time regression per observation same as target

Classification of streaming data  real time classification  per observation other than target

that arrives in a stream and needs to be analyzed in real time. Predictive models, built on such
data, have wide application in monitoring of the environment (e.g. detecting traffic jams),
urban planning (e.g. on demand bus transport), personal assistance and recommendation
(e.g. smart homes), industrial production (e.g. quality control), and many other applications.

Predictive models on data streams differ from standard predictive modeling in several
key aspects [27,19]. First, instead of a fixed size data sample we have a continuous flow
of data, hence, models need to be built and updated on the fly, they need to fit into limited
memory and use fixed processing time. Second, the data distribution is expected to evolve
over time, hence, models need to be equipped with diagnostic mechanisms and be able to
update themselves over time in order to maintain accuracy.

Although there is much research in the data stream literature on detecting concept drift
and adapting to it over time [21,31,37], most work on stream classification assumes that data
is distributed not identically, but still independently. Let X be an observation at time ¢ and
y¢ its true label. Identical distribution means that the joint probability of an observation and
its label is the same at any time P(X+,,yt,) = P(Xt,,yt, ), When t1 # ta. Independent
distribution means that the probability of a label does not depend on what was observed
earlier P(y:) = P(yt|ye—1).

Temporal dependence (also known as serial correlation or autocorrelation) is often en-
countered in other fields, such as control theory, statistical analysis, or traditional time series
analysis [10], where regression modeling is the main task, and the previous values of the sig-
nal present the main (or often the only) source of predictive information. In the data streams
setting typically multi-dimensional input variables, not the past values of the target vari-
able, contain the main predictive information. Machine learning considers two classification
scenarios in similar settings [14], which are also different from the data streams scenario.
Firstly, in sequence classification, the task is to predict a single label that applies to an entire
input sequence, while in data streams the task is to predict a label for each observation. Sec-
ondly, in sequential supervised learning the entire sequence is available before making any
predictions about the labels, whereas in data streams observations come in portions, pre-
dictions need to be made immediately, the entire sequence is never available and predictive
models are continuously updated. Table 1 summarizes the main differences in the settings
in the related problem areas.

Temporal dependence is very common in data streams coming from data recording de-
vices, such as video surveillance, environment sensors, mobile sensors (accelerometers),
consumption data (e.g. electricity, food sales). Overall, any smart sensing applications are
very likely to produce temporally dependent data streams. On the other hand, in behavioral
domains where each observation is a person coming from different locations and contexts
(e.g. web site visitors, web searches) the problem of temporal dependence is not that promi-
nent. The majority of data streams classification research (see e.g. [23]); however, has ad-
vanced with the assumption (often implicit) that data does not contain temporal dependence.
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This paper focuses on evaluation peculiarities of streaming data classification with tem-
poral dependence, accompanied with the decision theory, which explains, what optimization
criteria should be used for building classifiers, why they need to be built this way, and which
baselines should be used under such conditions. Except for our brief technical report [43]
and a conference publication [9], we are not aware of any work in data stream classification
analyzing the effects temporal dependence can have on model evaluation. This paper ex-
tends the above mentioned work. A recent publication [22] presented a study on evaluating
stream algorithms focusing on error estimation and comparing two alternative classifiers.
The aspect of temporal dependence was mentioned, but the effects of temporal dependence
have not been analyzed and not included in the evaluation, the proposed evaluation implic-
itly assumes independent distributions.

This paper presents two main contributions: a decision theory for predictive modeling
on data streams with temporal dependence, and a methodology for evaluating classifiers
on data streams with temporal dependence. We argue, that firstly, the optimization criteria
needs to be correct, and secondly, the evaluation and comparison needs to be complete. The
paper presents the methodology for achieving that. New contributions with respect to our
conference paper [9], which is being extended, are as follows: decision theory and asso-
ciated theoretical arguments, Temporal Correction classifier, large parts of the theoretical
arguments on evaluation and all the material on drift detection with temporal dependence.
In addition, the experimental evaluation has been largely revised and extended.

The paper is organized according to different issues related to temporal dependence
in predictive modeling on data streams: classification decision making, evaluation of clas-
sifiers, drift detection, and availability of past labels. In Section 2 we formulate decision
theory for data streams with temporal dependence and in Section 3 we propose temporal
classifiers. In Section 4 we discuss the issues of evaluation of classifiers with respect to
baselines when temporal dependence is present in the data. Section 5 focuses on change
detection under temporal dependence. Section 6 presents experimental analysis. In Section
7 we give recommendations for practitioners with respect to predictive modeling on data
streams with temporal dependence. Section 8 concludes the study.

2 Decision theory for data streams with temporal dependence
2.1 Problem setting for data stream classification

A classification problem in the classical (non data stream setting) is: given a previously
unseen r-dimensional observation vector X predict its class y € {1,...,k} using a clas-
sification model y = h(X). The classification model A is constructed beforehand using a
training dataset consisting of pairs of observations with known labels (X, y). It is assumed
that the data is identically independently distributed (iid), which means that the joint prob-
ability P(X,y) is the same for any observation and that each observation is sampled from
this distribution independently from other observations.

Classification in the data stream setting has several key differences. Observations arrive
in a sequence over time and this sequence is open-ended X1, X2, ..., Xy, .... A prediction
needs to be made for each observation X; individually as soon as it arrives. The true label
y; arrives some time later after casting the prediction.

In the data stream setting there is no separate training set for constructing a model h
beforehand, the model needs to be constructed and updated on the fly along with incoming



4 Indré Zliobaité et al.

data. Therefore, we have a sequence of models A1, ..., h;.... A model is constructed in-
crementally taking into account all or a subset of the previous model, previous observations,
and true labels h; = f(hi—1,X1,...,Xi—1,91,...,%i—1). Here f is the algorithm for
model update.

Finally, in the data stream setting, data is expected to evolve over time, the data distribu-
tion is not identical at different times (not iid). Thus, the relationship between an observation
and its label y = h(X') may change over time. Therefore, the algorithm for model update f
needs to include some forgetting mechanisms such that the model can adapt to the new data
distribution over time.

In the last decade many such adaptive learning algorithms have been developed (see
e.g. an overview [41]). The majority of existing works implicitly or explicitly assume that
data in a stream is distributed not identically but still independently, i.e. observations X; and
X1 are sampled independently. This study offers an extension to data stream classification
theory and practice when the independence assumption is relaxed.

2.2 Bayesian decision theory

Bayesian decision theory [18] suggests to classify an observation X such that the expected
loss is minimized. Let A(4, j) be the loss function specifying the loss of predicting class 4
when the true class is j. Then the expected loss of predicting g is

L(g) = 25:1 A, y)P(y|observation) where k is the number of classes. The optimal
prediction is the one that minimizes L.

For simplicity in the following analysis we assume a zero-one loss function, where the
costs of misclassification are A(g,y) = 0if § = y and 1 otherwise. In that case the expected
loss of predicting ¢ reduces to L(§) = 1 — P(§|observation).

The loss L is minimized if we predict the ¢ that has the maximum posterior probability
given the observation. Hence, if we observe an r-dimensional observation vector X, our
best strategy is to predict

g = argmax P(y = i|X). 40

This is how predictions are typically made in the classical classification setting as well
as the streaming data classification scenario. The posterior probability P(y|X) is estimated
directly using discriminative classification models, such as a decision tree, SVM, logistic
regression, or alternatively, the likelihood P(X|y) is estimated using generative classifica-
tion models, such as Naive Bayes or linear discriminant, and the posterior probability is
computed using Bayes’ theorem of inverse probability P(y|X) = P(X|y)P(y)/P(X).

2.3 Decision theory for streams with temporal dependence

Temporal dependence in data streams means that observations are not independent from
each other with respect to time of arrival.

Definition 1 First order temporal dependence is present when an observation is not inde-
pendent from the previous observation, i.e. P(yy,yt—1) # P(yt)P(yi—1), where t is the
time index, ys, ys—1 € {1,...,k}, where k is the number of classes. An ('"* order temporal
dependence is present if P(yt|ys—1,...,Yt—e) # P(yt|yt—1,. -, Yt—1—¢)-
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(a) independently distributed (b) temporal dependence
data stream
Fig. 1 Data stream classification models for: (a) data streams without temporal dependence, (b) with temporal
dependence and known previous labels. Black circles denote the observed variables.

The temporal dependence for class ¢ is positive if P(ys,yt—1) > P(y:)P(yt—1), in
this case labels are likely to follow the same labels more often than the prior probability.
A negative temporal dependence P(y:,y¢—1) < P(y¢)P(yt—1) makes the labels alternate.
This study focuses on positive temporal dependence, which is often observed in real world
data streams.

Suppose we need to make a prediction §; at time ¢. By that time we will have already
seen observations X1, ..., X¢—1 and after casting the predictions we will have seen their
labels y1, . .., y+—1, assuming immediate arrival of the true labels after casting predictions,
which is a standard assumption in data stream classification. As we observe the observation
vector X, our best strategy is to use all the available evidence and predict

gt :argmlaxp(yt=i|Xt,yt_1,...,y1). (2)

If there is no temporal dependence in the data, then Eq. (2) reduces to Eq. (1), since then

Plys = ilXe g, o) = PEREEGETE R = Pl = ilX0).

In practice the order of temporal dependence to be considered is often manually re-
stricted to the £ order. Then the prediction becomes
g¢ = argmax; P(y: = 4| X¢,ye—1,...,yt—e), where £ is the length of the history taken
into account. This study primarily focuses on first order temporal dependence.

3 Classifiers for taking into account temporal dependence

We propose two approaches for incorporating temporal information into data stream classi-
fication. The first assumes a model behind temporal dependence and introduces a correction
factor to the predictive model, which allows a probabilistic treatment. The second is based
on data preprocessing and does not require any modification in the predictive models; hence,
can be used with any off the shelf tools.

3.1 Temporal Correction classifier

One way to estimate P(y; = 4| X¢, y¢t—1,...,yt—¢) foralli € {1,...,k}, which is needed
for classification decision making, is to assume a model on how temporal dependence hap-
pens and then use that model for estimating the posterior probabilities. Considering only
first order temporal dependence we propose to model this dependence and estimate
P(ys = i|X¢,yt—1) as illustrated in Figure 1.

Figure 1 (a) presents a standard data stream classification model, where y; is assumed to
be independent from y:—1, hence P(y: = | X¢, y+—1) = P(y+ = ¢|X¢). The dependence is
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modeled from label y to observation vector X (not the other way around), since we suppose
that data is generated as follows: first an object belonging to a certain class is sampled and
then the observations about this object are made.

Figure 1 (b) presents our model for classification with temporal dependence when the
previous label y;—1 is assumed to be known. This is a common assumption in data stream
classification, since the previous label is required for error estimation and change detection,
as well as model update, which are often executed at every time step. The classification
decision is §: = i fori € {1,...,k}, which gives the maximum posterior probability that
can be expressed according to the proposed model as

P(y: =i, X, ye— P(yt—1)P(y: = i|lys—1)P(Xe|lye = @
Py = i|Xe,y 1) = PO =0 Xeym1)  Plye)Plye = ily1) PG|y = 9)
P(X,ye-1) P(X:)P(ys—1)
Py: = ilyt—1) ,
= —————-P(ys = i|Xy). 3
Plyr=1) (ye = 1| X¢) (©)
Bayes’ theorem is used to achieve the final step. Given the resulting expression, P(y:|X+)

can be estimated using an ordinary classifier that does not take into account temporal de-
P(yelys—1)
P(y:

pendence and is the term that corrects for temporal dependence, P(y:|y:—1) and

P(y¢) can be estimated incrementally from the streaming data.

3.2 Temporally Augmented classifier

The model approach is theoretically elegant, but limited in assuming first order temporal
dependence and the directions of the dependencies between the observed vector X and the
label y. We propose an alternative heuristic approach that can incorporate a higher order
temporal dependence into a predictive model by augmenting the observation vector X with
the previous class labels y¢—1,...,y:—, and training a classifier on the augmented input
vectors. The prediction for the observation X; becomes a function of the original input
attributes and the recent class labels

Gt = he(Xe,Yt—1, -, Yt—0)- @

The larger /¢, the longer temporal dependence is considered. h: is a trained classification
model that can output an estimate of the posterior probability, index ¢ indicates that the clas-
sifier can be updated over time. Any data stream classifier can be used as a base classifier
with this strategy. Depending on the base classifier used, the Temporally Augmented clas-
sifier can take into account dependences between input features, the dependence between
the input features and the past labels, as well as the dependence between past labels at dif-
ferent times. This approach is not new, it is common in time series forecasting, particularly
using neural networks (e.g. [36]), where the main predictive information is given by the past
values of the target variable.

By taking into account the dependence of the previous class label, the process can be
seen as a discrete-time Markov chain, where the prediction for y; is dependent on step y¢—1.
If we take into account other labels, y:—2, y:—3, this becomes a second-order, third-order
(and so on) Markov chain. The Temporally Augmented classifier is therefore conceptually
related to the filtering task of Hidden Markov Models [35,14] (indeed a strong similarity is
seen with Figure 1 (b)), where the probability of a classification is estimated, given historical
and current evidence. In scenarios where the predictive variables y; are continuous, then
instead there is an analogous conceptual connection to the Kalman filter [29] (where it is
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possible to assume linear and normally-distributed variables) and particle filter (for other
distributions). The typical prediction task of these models is that of time series forecasting,
see Table 1, i.e., predicting p(y¢|z+—1, yt—1) wWhere x+ is not yet available.

4 Baselines for performance evaluation over streaming data

In this section we discuss evaluation of classification performance with respect to baselines.
A baseline classifier is a classifier that does not use any information about observations X,
only the class labels y. When designing an intelligent classifier it is important to establish
performance baselines for the minimum meaningful performance, otherwise a lot of design
and computational effort may be wasted. It may happen that we compare several intelligent
classifiers, find one to be significantly better than the others, but if all are worse than naive
baselines, then none is good. In this section we discuss baselines for evaluating classification
performance over streaming data when temporal dependence is present.

This section does not cover comparing the performance of several intelligent classifiers,
which has been the subject of several recent studies. The interested reader is referred to [13,
22] for guidelines.

4.1 Baseline classifiers

The following baseline classifiers can be established using different information about the
probabilities of class labels:

1. classification with no information about data distribution;
2. classification with prior probabilities of the classes (Majority Class classifier);
3. classification with transition probabilities of the classes (Persistent classifier).

If we do not have any information about the data at all and we know that the task is to
classify an observation into one of k classes, our best strategy is to assign a label at random
9 € {1,...,k}, P(§ = i) = £. The accuracy of such classification would be

k k
N 1 . 1
PoZZP(?JZZ)P(?JZZ):Ezp(yzl):? )
i=1 i=1

Most often we have at least some sample observations before putting a classifier in op-
eration, and we can estimate at least the prior probabilities. If we have no other information
about a given observation at all, our best strategy is to predict the class that has the maximum

prior probability § = arg max; P(y = i), where i is a class.
Definition 2 The Majority Class classifier is a classifier that predicts §y = arg max; P(y =

i) for any observation X.

Let M denote the majority class. Then the accuracy of the Majority Class classifier is equal
to the prior probability of class M

Pmaj = P(y= M)14 > P(y=1i)0=P(y = M). (©)
iAM

If a temporal dependence is expected, we need a baseline that takes into account the
temporal information. If no information about the observation is available, our best strategy
is to predict §; = arg max; P(y: = i|ye—1).
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Definition 3 The Persistent classifier is a classifier that predicts the same label as previ-
ously observed, i.e. §i = yi—1, for any observation X.

The accuracy of the Persistent classifier is equal to the prior weighted probability of observ-
ing the same class in two consecutive observations

k

Pper = P(ye = ye—1) = > Plye = ) Pye = ilye—1 = 0). D
=1

In the case when there is no temporal dependence in the data, then P(y: = i|yt—1 = i) =
P(y¢ = i) and the accuracy becomes

k
Prer = 3 _ Pye = i)%. (8)
=1

The Persistent classifier is based on the same principle that is often used as a baseline in
time series forecasting: the next forecast value is equal to the last observed value. In autore-
gressive time series it can be expressed as an ARMA(1,0) model [10].

Observe that the three baseline accuracies po, Pma; and pper take as input only the true
labels of the underlying dataset. There is one more baseline that is sometimes considered
(e.g. in the Kappa statistic [12]), that takes as input the true labels of the underlying dataset
as well as the prior probabilities of the predictions produced by an intelligent classifier,
that is being assessed (a reference classifier). This baseline is a random permutation of the
predictions of an intelligent classifier.

Definition 4 The Random classifier is a classifier that predicts a label at random from the
probability distribution of predictions of a reference classifier h, i.e. P(§ = i) = Py (§ = 1)
for any observation X.

The accuracy of the Random classifier is

k
Pran :ZP(y:Z)Ph(y:Z) (9)
=1

While po, pma; and pper depend only on the dataset, pr.n depends on the dataset and
the predictions of the classifier under evaluation.

4.2 Theoretical analysis of baseline accuracies

In this section we analyze how the baseline accuracies compare theoretically to each other.
For brevity we denote the prior probability P(y: = i) as P(%) and the probability

P(y: = ilyt—1 = i) of observing class ¢ immediately after observing class i as P(ii). Let
M € {1,...,k} denote the majority class, such that P(M) > 1/k.

Proposition 5 The accuracy of the Majority Class classifier is greater or equal to the accu-
racy of the Random classifier and is greater or equal to the accuracy of classification with
no information, i.e. Pmaj > Pran and Pmaj > Po and these accuracies are the same whether
there is temporal information in the data or not.
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Table 2 Summary of theoretical performance of the baselines.

Data distribution
independent temporal dependence

balanced Pmaj = Pper i i
imbalanced | pmaj > Pper Pper > Pmaj» i 22 P(it, it—1) > P(M)

Classes

The proof can be found in Appendix A.
Hence, we do not need to compare to all the baselines po and pye, if we find that a
classifier under consideration outperforms piq;.

Proposition 6 If data is distributed independently, then the accuracy of the Majority Class
classifier is greater or equal to the accuracy of the Persistent classifier; i.e. Pmaj > Pper-
The accuracies are equal when the prior probabilities of the classes are equal.

Proof Since data is distributed independently, P(i|¢) = P(¢) foralli € {1,...,k}. Then
the accuracy of the Persistent classifier is pper = le P(i)2. The accuracy of the Majority
Class classifier is pper = P(M). Substituting in the expressions for accuracies gives pmaj —

Pper = P(M) = Y5, P(i)? = P(M) — P(M)* = ¥, 5 P(i)? =

P(M) Y40 P(0) = Yipns P(0)? = Xiuns P(i)(P(M) — P(i)) > 0. The inequality
follows from the definition of the majority class, where P(M) > %, which implies that
P(i) < 1 forall i # M. The equality holds only if P(A) = P(B). O

From Proposition 6 we can conclude that if data is distributed independently, then we can
safely use the majority class classifier as a baseline.

Proposition 7 If data has a temporal dependence such that Zle P(i i) > P(M), where
k is the number of classes and M is the majority class, then the Persistent classifier is more
accurate than the Majority Class classifier, i.e. Pper > Pmaj-

Proof For brevity denote P(y: = 1) as P(i+). Then

Prer — Pmaj = o1y Plie) P(itlis—1) — P(M) = 7y P(ie) P(is,ie—1)/P(ic—1) —
P(My) = 325 P(i)P(it,it-1)/P(i) = P(M) = 331 P(ir,ir—1) — P(M) > 0. The
inequality follows from the theorem condition. a

Table 2 summarizes the performance of the Majority Class and Persistent classifiers un-
der different conditions. We conclude that none of the baselines alone can take all aspects of
performance into account, therefore if nothing is known about the data we need to compare
at least to pper and Pra;.

4.3 Cohen’s Kappa statistic

The Kappa statistic due to Cohen [12] is a popular measure for benchmarking classifica-
tion accuracy under class imbalance and is used in static classification scenarios as well as
streaming data classification. The Kappa statistic « is defined as

_ D — Dran

K =
1 — Pran

) (10)

where p is the accuracy of the classifier under consideration (reference classifier) and prqs, is
the accuracy of the Random classifier, as defined in Eq. (9). If the predictions of the classifier
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are perfectly correct then x = 1. If its predictions coincide with the correct ones as often
as by chance, then x = 0. Note that s can theoretically be negative, this may happen if, for
instance, an adversary on purpose tries to make errors.

An approximation to the standard error of the Kappa statistic is given by [12]

_ p(1-p)
O = N(L = pran)?’ (1)

where N is the testing sample size. With large [N the sampling distribution of « will be
approximately normal.

To test the obtained « for significance, i.e. to test the null hypothesis that any correct
prediction is due to chance (true x = 0), we need to replace p with pr4, in Eq. (11)

Pran
do N = pran)” (12)
The significance test is then a Z-test with the test statistic z = x/do. For example, at 5%
level of significance the null hypothesis is rejected if z > 1.65.

In practice the & statistic is often used without significance testing, even relatively low
values of kappa can be significantly different from zero but, on the other hand, not of suffi-
cient magnitude for an application at hand.

Next, let us analyze the Kappa statistic for the baseline Majority Class and Persistent
classifiers. The Majority Class classifier predicts the class with maximum prior probability
for any observation, hence p = P(M). Since all the predictions are the same, there is noth-
ing to permute, hence, prqan, = p. Thus, kK = % = 0. This indication (x = 0) corresponds
to our expectations, that the Majority Class classifier achieves its accuracy merely by chance
rather than as a result of informative input features and a good model.

Next we analyze the values of the Kappa statistic for the Persistent classifier in two cases.
First, suppose that there is no temporal dependence in the data, then p = ?:1 P(i)Q.
Observe that in this case Py, (i) = P(i), hence pran = S.*_, P(i)? = p, and therefore

_ p=p _
K—lip—o.

If there is positive temporal dependence such that Zle P(it,it—1) > P(M), then
p = Zle P(it)P(it|it—1) > Pmaj (Proposition 7), and ppmaj > Pran (Proposition 5).
Therefore, by the property of transitivity x = ¥ :g > b Tfj;i = = (. In this case we may
observe a positive x, while a reference classifier would be performing equally badly as a
naive baseline Persistent classifier. This is not a desired behavior of the x indicator, hence

we need another indicator to capture the effects of temporal dependence.

4.4 New evaluation measure — Kappa-Temporal statistic

Considering the presence of temporal dependencies in data streams we propose a new mea-
sure the Kappa-Temporal statistic, defined as

P — Pper (13)

K =
per )
L = pper

where pper is the accuracy of the Persistent classifier.

The Kappa-Temporal statistic may take values from 1 down to —oo. The interpretation
is similar to that of . If the classifier is perfectly correct then xper = 1. If the classifier
is achieving the same accuracy as the Persistent classifier, then kper = 0. Classifiers that
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outperform the Persistent classifier fall between 0 and 1. Sometimes it may happen that
Kper < 0, which means that the reference classifier is performing worse than the Persistent
classifier baseline.

We want the measures to capture the performance with respect to the baseline classifiers.
Let us analyze the values of the Kappa-Temporal statistic for the baseline Majority Class and
Persistent classifiers.

The Kappa-Temporal statistic for the Persistent classifier would be xpe, = 22— Prer —

1—pper
0, as desired, independently of whether there is temporal dependence in the data or not.

However, the Kappa-Temporal statistic for the Majority Class classifier would be differ-
ent, depending on the data:

— if there is temporal dependence such that Zle P(i,3) > P(M), then pper > Pmaj
and thus Kper < 0 (Proposition 7);

— if there is no temporal dependence and the prior probabilities of the classes are equal,
then pper = Pmaj and thus Kper = 0 (Proposition 6);

— if there is no temporal dependence and the prior probabilities of the classes are not equal,
then pmaj > Pper and thus Kper > 0 (Proposition 6).

Therefore, using ke instead of x, we will be able to detect misleading classifier per-
formance for data that has temporal dependence. For highly imbalanced, but independently
distributed data, the majority class classifier may beat the Persistent classifier and thus us-
ing Kper Will not be sufficient. Overall, Kper and x measures can be seen as orthogonal,
since they measure different aspects of performance. Hence, for a thorough evaluation we
recommend measuring and combining both.

4.5 The Combined measure

To evaluate both aspects of the performance we propose to combine the x and Kper by taking
the geometric average as follows

Kt = \/max(O, k) max(0, Kper)- (14)

This way if any measure is zero or below zero, the combined measure will give zero. This is
to avoid the situation, when both input measures are negative, but their product is positive,
suggesting that the classifier performs well, while actually it performs very badly.

Alternatively, an arithmetic average of the two measures could be considered. However,
in such a case a good performance in one criteria could fully compensate for a bad perfor-
mance in other criteria. The desired performance is that a good classifier should perform well
on both. Taking the geometric average punishes large differences in the two input measures,
therefore it is more suitable.

4.6 Computing statistics over a data stream

For estimating x and Kper We need to compute the accuracy of the evaluated classifier p,
and the reference accuracies prqn and pper Over streaming data.

For estimating pr.» we need to store the prior probabilities of the predictions Py, (%) for
i = 1,...,k, and the prior probabilities of the data P (i) fori = 1, ..., k. For estimating
Pper We need to store the joint probabilities of the classes P(i,4) fori = 1,...,k, and the
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prior probabilities of the data P(7) for¢ = 1,. .., k (which are already stored for estimating
Pran ). Hence, to calculate both statistics for a k£ class problem, we need to maintain only
3k + 2 estimators, where +-2 is for storing the accuracy of the classifier p and storing the

previous true label.

In the data stream setting p can be estimated recursively following the prequential proto-
col [22]. The same protocol can be used for calculating the reference statistics. The idea is at
every time step to weigh the estimators using a decay factor « € (0, 1). Large « implies fast
forgetting. From our practical experience, for smooth estimation we recommend o = 0.01
for binary classification tasks with more or less equal class priors. The larger the number of
classes and the larger the expected class imbalance, the smaller o should be to ensure slower
forgetting to produce smooth estimates. Algorithm 1 describes the estimation procedure.

Data: o € (0,1)
Result: up-to-date estimate of p = 0, P(3), Py, (¢), P(¢|3) for all ¢
initialization p = 0, P (i), Py (3), P(i|1) =
for every instance in the stream do
make a prediction g, receive the true label y if § = y then
| pea+p(l-a)
end
else
| p<p(l-0)
end
fori=1— kdo
if i=y then
P(i) < a+ P>E)(1 — a);
if - = Yprev then
| P(ili) = a+ P(ili)(1 - )
end
else
| P(ili) = P(ili)(1 — a)
end
end
else
| P(i)+ P@E)(1—a)
end
if i = g then
| Pn(i) < a+ Pp(i)(1 —a)
end
else
‘ P}L(i)HPlL(i)(lfa)
end

end
Yprev < Y

end

% for all ¢, Yprev = 1;

Algorithm 1: Computing performance estimators.

5 Performance evaluation with change detection

Many classification algorithms for data streams use change (drift) detection tests (e.g. [21,
2,3,37]) that signal when the data distribution changes and it is time to update the predictive
model. In this section we discuss two important issues with change detection to be aware of

when there is a temporal dependence in data.
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First, we show that when there is a temporal dependence, it is very likely that the as-
sumptions of current drift detection methods are violated, hence the statistical tests are ap-
plied incorrectly. In practice this means that at least a different confidence interval is applied
than is assumed. In many cases drift can still be detected with reasonable accuracy, but the
theoretical guarantees of the tests (if any) are not valid anymore. We give indications on how
to correct the tests, leaving development of actual algorithmic solutions, out of the scope of
this paper, to be taken as separate future work.

Second, in this section we show that independent of whether a change detection test
is applied correctly or not, false alarms may actually increase classification accuracy. This
happens if the temporal dependence is not taken into account directly by a classifier. We give
theoretical arguments why this happens. The implication is that one should take this effect
into consideration when evaluating drift detectors and overall classification performance.

5.1 Change detection with temporal dependence

Current drift detection methods including [21,2,3,37] make an assumption that input data
is independent from each other, the goal is to detect a change in data distribution. Typically,
drift detection methods operate on a binary stream of prediction errors. Next we demonstrate
that if the observations have a temporal dependence, then the streaming error resulting from
predicting the labels for those observations, also have a temporal dependence, unless certain
specific conditions are satisfied by the predictor. We will consider a binary classification
case, since it is enough to make the point while the math is simpler.

Proposition 8 The errors produced by a classifier on a streaming data binary classification
task are distributed independently in a stream if

1. the observations in a stream are distributed independently, or
2. the probabilities of an error given a class are equal (i.e. P(error|A) = P(error|B),
where A, B are the classes), or
3. the ratio between the error probabilities given the class is equal to the ratio between tem-
. . P(error|A) _ P(B¢|Bi_1)—P(By)
poral dependencies of the classes (i.e. Plerror|B) = P(AA, )—P(A)’ here P(Bt)

denotes the probability of class B at time t).

The proof can be found in Appendix A.

The implication of this proposition is that the statistical tests in current drift detection
methods operate under conditions where their assumptions are violated. As a result, if the
sample for performing a statistical test is small, false alarms may be raised. We have noticed,
however, that in practice the impact of violation of this assumption is small, especially if 50
or more observations are used to perform the tests.

Change detection taking into account temporal dependence has been studied in statistics
and related disciplines (see e.g. [30,40,32]), which could be used as a starting point in
developing change detection tests that take into account temporal dependence.

5.2 The effect of false alarms on classification accuracy

In this section we demonstrate that false alarms in drift detection may actually increase clas-
sification accuracy if there is a temporal dependence in the data. False alarms may happen
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due to various reasons, for instance, if alarm thresholds in the change detection tests are set
too low.

If a drift alarm is raised, adaptive learning algorithms would typically replace an old
classifier with a new one built on recent data (see e.g. [21,2]). Suppose a data stream is
stationary (there is no true drift). In such a case a false alarm is beneficial if the classifier
trained on a smaller dataset is in expectation more accurate than a classifier trained on a
larger training set. This can happen if data has a temporal dependence, as the following
proposition illustrates.

Proposition 9 If a data stream has a positive temporal dependence, for small training sam-
ple sizes the accuracy of the Majority Class classifier approaches the accuracy of the Per-
sistent classifier; i.e. limp 1 Dper — Pmaj = 0, where n is the training sample size for the
Majority Class classifier.

The proof can be found in Appendix A.

6 Experimental analysis

This experimental evaluation has two major goals. The first goal is to demonstrate how cur-
rent evaluation practices may be misleading and how they can be improved using the pro-
posed measures. The second goal is to assess the performance of the proposed Temporally
Augmented and Temporal Correction classifiers that take into account temporal dependence.

6.1 Datasets

We experiment with four real datasets often used in evaluating data stream classification.

The Electricity dataset (Elec2) [26] is a popular benchmark for testing adaptive classi-
fiers. A binary classification task is to predict a direction of electricity price change with
respect to the moving average of the last 24 hours in the Australian New South Wales Elec-
tricity Market. Input variables are recorded every 30 minutes and cover the period from
1996 May to 1998 December (45 312 instances in total). The data has 5 numeric input vari-
ables: day of the week, hour, NSW demand, Victoria demand and scheduled transfer. The
data is subject to concept drift due to changing consumption habits, unexpected events and
seasonality. For instance, during the recording period the electricity market was expanded
to include adjacent areas, which allowed production surpluses from one region to be sold to
another.

The Forest Covertype (Cover) [1] records cartographic variables in four wilderness areas
located in the Roosevelt National Forest of northern Colorado, US. The classification task
is to predict the type (out of seven types) of forest cover for a given observation (30 x 30
meters cell). This dataset has no time stamps, but it is originally presented in the geograph-
ical (spatial order), which can be considered as a stream; this dataset has been a popular
benchmark for data stream classification. The dataset contains 581, 012 instances with 54
attributes.

The KDD cup intrusion detection dataset (KDD99) [1] records intrusions simulated in a
military network environment. The task is to classify network traffic into one of 23 classes
(normal or some kind of intrusion) described by 41 features. The dataset contains 494 020
instances. The problem of temporal dependence is particularly evident here. Inspecting the
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Table 3 Characteristics of stream classification datasets. P (M) is the prior probability of the majority class,

P(T) = Zle P(i, 1) characterizes temporal dependence as in Proposition 7.

Dataset  #instances  #attributes  #classes P(M) P(T)

Elec2 45312 5 2 0.58 0.85
Cover 581012 54 7 0.49 0.95
KDD99 494 020 41 23 0.56 0.99
Ozone 2536 72 2 0.97 0.95

raw dataset confirms that there are time periods of intrusions rather than single instances of
intrusions.

The Ozone dataset (Ozone) [1] records daily temperature, humidity and windspeed mea-
surements (72 numeric variables), the goal is to predict high ozone days (binary classifica-
tion task). The data is collected from the Houston, Galveston and Brazoria areas, US, and
covers the period from 1998 to 2004 (2 536 instances in total). This dataset is very highly
imbalanced, ozone days make up only 3%, the rest are normal. There is no temporal depen-
dence in this data, we include it for benchmarking in order to illustrate what happens when
classes are highly imbalanced.

The characteristics of the datasets are summarized in Table 3. As we see from P(T") >
P(M), the first three datasets exhibit strong temporal dependence, while there is no tempo-
ral dependence in Ozone and this dataset has a high class imbalance.

6.2 Classifiers

Along with the baseline classifiers we test five intelligent classifiers, out of which the first
two are non-adaptive, and the remaining three have adaptation mechanisms. Here non-
adaptive classifiers learn from data streams incrementally with new incoming data, however,
they do not have forgetting mechanisms. Our goal is to illustrate the issue of selecting proper
baselines for evaluation, and potential improvement in accuracy of intelligent classifiers due
to taking into consideration temporal dependence. The theoretical findings of this study and
the proposed kper measure are not base classifier specific, hence we do not aim at exploring
a wide range of classifiers. We select several representative data stream classifiers represent-
ing different models and adaptation mechanisms for experimental illustration, summarized
in Table 4.

Table 4 Classifiers used in the experiments.

Adaptation Base classifier =~ Number of models
Naive Bayes (NB) non-adaptive Naive Bayes one
Hoeftding Tree (HT) [16] non-adaptive ~ Hoeffding Tree one
Drift detection (DDM) [21] adaptive Naive Bayes one
Hoeffding Adaptive Tree (HAT) [4] adaptive Hoeftding Tree one

Leveraged Bagging (LBAG) [6] adaptive Hoeffding Tree ensemble
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Table 5 Accuracies of adaptive classifiers on the Electricity dataset reported in the literature.

Algorithm name Accuracy (%)  Reference Algorithm name  Accuracy (%) Reference
DDM 89.6* [21] Local detection 80.4 [20]
Learn++.CDS 88.5 [15] Perceptron 79.1 [7]
KNN-SPRT 88.0 [37] AUE2 77.3 [11]
GRI 88.0 [39] ADWIN 76.6 [3]
FISH3 86.2 [42] EAE 76.6 [28]
EDDM-IB1 85.7 [2] Prop. method 76.1 [33]
Persistent classifier 85.3 Cont. A-perc. 74.1 [34]
ASHT 84.8 [8] CALDS 72.5 [24]
bagADWIN 82.8 [8] TA-SVM 68.9 [25]
DWM-NB 80.8 [31]

* tested on a subset

6.3 Experimental protocol

We run all experiments using the MOA software framework [5] that contains implementa-
tions of several state-of-the-art classifiers and evaluation methods and allows for easy repro-
ducibility.

We use the test-then-train experimental protocol, which means that every instance is first
used for testing and then as a training instance for updating the classifier. For estimation of
parameters (e.g. the prior probabilities) we use exponential moving average. The higher the
number of classes and the larger the class imbalance, the lower the estimation weight needs
to be in order to achieve sufficiently smooth estimates. We used the following smoothing
parameters, which were selected via visual inspection of the resulting prior probability esti-
mates: for Elec data o = 0.001, for Cover data o = 0.0001, for KDD99 data o« = 0.00001.

6.4 Limitations of the current benchmarking practices: an illustrative example

The Electricity dataset has been perhaps the most popular benchmark for evaluating stream
classifiers. It has been used in over 70 experiments on data stream classification (according
to Google scholar as of December 2013), for instance, [21,31,8,37]. To illustrate the impor-
tance of using proper baselines, we retrospectively survey new stream classifiers reported in
the literature that were tested on the Electricity dataset.

Table 5 presents the accuracy results reported in papers on this dataset (sorted according
to the reported accuracy). Only 6 out of 18 reported accuracies outperformed a naive baseline
Persistent classifier. This suggests that current evaluation and benchmarking practices need
to be revised.

6.5 New evaluation measures and benchmarking practices

In this section we compare the accuracies of five intelligent classifiers (NB, DDM, HT, HAT,
LBAG) with two established baselines Majority Class and Persistent classifiers, which give
important indications about the performance of intelligent classifiers with respect to class
imbalance and temporal dependence in the data, as argued in Section 4. The goal of this
experiment is to analyze, how indicative the currently used Kappa statistic and the new
evaluation measures Kappa-Temporal statistic and Combined measure are about classifier
performance.
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We experiment with two versions of the datasets: the original datasets that potentially
contain temporal dependence and randomly shuffled datasets. Random shuffling makes
datasets independently and identically distributed (iid) over time. Based on our theoreti-
cal considerations, we expect the currently used statistics to be indicative in the case of iid
data, but not informative in the case of temporally dependent data (the original datasets).

Figure 2 plots the accuracies of the intelligent classifiers, the baselines and the three
statistics of interest. We see that the Kappa statistic is high and indicates good performance
for all datasets except Ozone, which is highly imbalanced and the Kappa statistic captures
that the high accuracy in Ozone is mainly due to class imbalance, as expected. We see that
the Kappa statistic fails to capture the fact that in the original datasets Elec2, Cover and
KDD99, where temporal dependence is present, the naive baseline Persistent classifier per-
forms better than any intelligent classifier. On the other hand, the proposed Kappa-Temporal
statistic captures this aspect of the performance and shows negative indications in all these
cases.

However, as demonstrated theoretically in Section 4, using the Kappa-Temporal statis-
tic alone is not enough to benchmark the performance of data stream classifiers, since the
Kappa-Temporal statistic does not capture the effects of class imbalance. Such a situation
can be observed in Ozone shuffled, where there is no temporal dependence, while the class
imbalance is very high such that the intelligent classifiers can hardly outperform the Major-
ity Class classifier. We see that the Kappa-Temporal statistic gives good indications and the
Kappa statistic signals poor performance, as expected.

We see that the Combined measure that combines both aspects of the performance (class
imbalance and temporal dependence) gives a good summary indication about the perfor-
mance in a single number.

Two conclusions can be made from this experiment. First, the proposed statistic captures
the characteristics of classifier performance with respect to naive baselines as expected. Sec-
ond, the state-of-the-art data stream classifiers fail and perform worse than the baselines on
the data streams that contain temporal dependence, since they do not have mechanisms
for taking into account temporal information even though this information is available in a
stream (these data stream classifiers use previous labels for incrementally updating them-
selves). Hence, there is a need for our proposed approaches for taking into account temporal
dependence, which we experimentally analyze next.

6.6 Performance of proposed approaches for taking into account temporal dependence

We compare the performance of the proposed Temporal Correction and Temporally Aug-
mented classifiers with the performance of ordinary stream classifiers (that do not take tem-
poral dependence into account) and with the Persistent classifier that takes into account only
temporal dependence on the four original datasets. Recall that Temporal Correction and
Temporally Augmented classifiers can be used as wrappers to any data stream classifier. We
test the same five state-of-the-art data stream classifiers as in the previous experiments (NB,
DDM, HT, HAT, LBAG).

Figure 3 presents the resulting accuracies. We see that both the Temporal Correction and
the Temporally Augmented classifiers strongly outperform the ordinary classifiers on Elec2
and Cover datasets, and to some extent on the KDD99 dataset. These two classifiers are
clearly benefiting from leveraging the temporal dependence in these datasets (p(y¢|yi—1))-
The relatively smaller improvement on KDD99 dataset can be explained by the already-high
accuracy of the ordinary classifiers. The performance on the Ozone dataset of the ordinary
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Fig. 2 Accuracy and performance statistics on the original and shuffled (iid) datasets.

classifiers and the new classifiers is very similar, since the Ozone dataset does not contain
much temporal dependence, but rather very high class imbalance. Thus, the absolute ac-
curacy is high (estimating p(y¢) is easy), but the lack of temporal dependence means that
Temporal Correction and Temporally Augmented lose their advantage by modeling it (i.e.,
p(yt) = p(yt|y+—1) in this case).

The Temporally Augmented classifier in most cases performs slightly better than Tem-
poral Correction. This can be explained by the fact that Temporal Correction is modeled

Elec2 shuffled

Cover shuffled

KDD?99 shuffled

Ozone shuffled
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Fig. 3 Predictive performance of the classifiers taking into account temporal dependence.

using certain independence assumptions (see Section 3.1), which may not always hold in
reality.

A major problem, however, is that in the event that the proposed approaches offer an
obvious improvement for the state-of-the-art data stream classifiers, the improvement is
often not enough to significantly outperform the naive baseline Persistent. On the Ozone
dataset the improvement over the baseline Persistent classifier is generally large. This is
expected, since Ozone does not have strong temporal dependence, hence the Persistent clas-
sifier should not perform better than the Random classifier. However, on Elec2, Cover and
KDD99 datasets that contain strong temporal dependence the performance of classifiers
taking into account temporal dependence (Temporally Augmented classifier and Temporal
Correction classifier) is close to or just slightly better than that of Persistent classifier. This is
extremely problematic, it means that the effort of building sophisticated data stream classi-
fiers in these situations may not be worth it. A simple Persistent classifier can do as well. On
the other hand, this points out the current situation and offers an opportunity for researchers
to improve over state-of-the-art classifiers.

6.7 Performance curves

In Figure 3 we see that LBAG achieves the best performance in the ordinary data stream
classification setting, when no temporal dependence is taken into account. Figure 4 plots
the new Combined measure ™ of the performance over time on all four datasets. The plots
present accuracies computed over a sliding window.

Several interesting observations can be made. In the Elec2, Cover and KDD99 datasets
(that have strong temporal dependence) the ordinary LBAG performs poorly and almost



20 Indré Zliobaité et al.

never reaches any significant results as indicated by the Combined measure x* = 0. On
Elec2 and Cover both proposed approaches for taking into account temporal dependence
substantially improve performance reaching positive s+, which means that the naive base-
line Persistent classifier is outperformed, and the good accuracy is not due to class imbal-
ance at random. The KDD99 dataset is a special case, where the accuracy of the baseline
Persistent classifier is already so high (99.9% accuracy) that it becomes nearly impossible
to outperform.

Recall that the Ozone dataset is very highly imbalanced (97%), but contains no positive
temporal dependence, therefore we can expect the ordinary classifier LBAG to perform well,
which happens to be the case as can be seen from the plot. We see that Temporally Aug-
mented classifier has no advantage in performance on this dataset, as expected. However,
we see Temporal Correction performing slightly better. This reveals an interesting advan-
tage of Temporal Correction. We can see from Table 3 that the Ozone dataset has slightly
negative temporal dependence (the proper probability of the majority class is more than the
probability of a majority class instance following a majority class in a sequence). Tempo-
ral Correction classifier estimates the sequential probabilities and successfully captures this
dependence.

Note, that NB and DDM use Naive Bayes as the base classifier. Naive Bayes assumes
independence of inputs. When temporal dependence is present, the labels that are close in
time are not independent from each other. In turn, the input features are not independent
from the past labels. The Temporally Augmented classifier with Naive Bayes technically
violates this assumption. Many studies have shown that Naive Bayes can perform well in
cases when the independence assumption is violated (e.g.[17]). We see from the plots that in
practice the accuracy is not affected noticeably, Temporally Augmented in most of the cases
still outperforms Temporal Correction, which has no violation, but uses a simplified model
of temporal dependence.

6.8 Sensitivity analysis to the order of temporal dependence

In the previous experiments we considered only first order temporal dependence. Next we
analyze the performance of the Temporally Augmented classifier taking into account higher
order temporal dependences. In this analysis we use the Elec2 and Cover datasets, since on
these datasets we saw large improvements due to taking into account first order temporal
dependence, we investigate if incorporating higher order temporal dependence can improve
the performance further.

From Definition 1 it follows that positive dependence of order ¢ is present in data if
adding information about one more past label changes the conditional probability of ob-
serving some of the classes now. To check whether Elec2 and Cover actually contain higher
order temporal dependence, in Figure 5 we plot the difference between conditional probabil-
ities of the classes when taking one more past label into account A(¢) = P(y; = i|lyi—1 =
Gyoosyie = 1) — Py = i|lye—1 = 4,...,ye—0_1 = i). If A(£) # 0 it means that £*"
order temporal dependence is present.

We see that both datasets have strong first order dependence and some second order de-
pendence, while there is almost no higher order dependence. Therefore, we do not expect
to see any major improvements due to taking into account higher than second order depen-
dence. Figure 5 confirms this expectation. It depicts accuracies of Temporally Augmented
with different base classifiers taking into account different windows of past labels (¢). We
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see small improvement in classifiers, particularly DDM, when second order dependence is
taken into account; however, we see no further improvement.

It is interesting to note that Elec2 data has a seasonal component, the consumption pat-
terns tend to recur every 24 hours. However, the added value of taking such a long history
into account is not necessarily worthwhile, for instance, A(48) = 0.02. Even though a la-
bel 48 observations ago (24 hours ago) may be strongly correlated with the current label,
this does not necessarily provide extra predictive information, since this information may
already be in the input features or labels at other lags. Experimenting with the Temporally
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Fig. 6 Accuracies of Temporally Augmented classifier as a function of the order of considered temporal
dependence /.

Augmented classifier including long history confirmed this observation. No substantial ben-
efits in accuracy due to including longer history were observed.

6.9 Problems with drift detection

In the last experimental section we analyze drift detection when temporal dependence is
present, as discussed in Section 5. We use the DDM classifier for analysis of the perfor-
mance, the same as in our preceding experiments. This classifier is equipped with a change
detection mechanism, that drops the old portion of data when a change is detected, and
starts training from scratch. To test the effect of false positives, we use DDM-random where
instead of an intelligent change detection we put a random change detector, that does not
consider any data and simply alarms a change at every time step with probability p. Note
that DDM is using a warm-up period of 30 instances, during which change alarms are not
allowed. We keep this constraint. It means that for DDM-random if p = 1 change is alarmed
at every 30" instance. Our goal is to analyze if increasing probability of an alarm gives a
higher accuracy, as theoretically argued in Section 5. For comparison we also plot NB. The
difference between NB and DDM is only in the fact that DDM uses change detection and
NB does not. We expect NB and DDM to perform the same on the identically distributed
datasets where no change detections should occur (all the changes detected on such datasets
would be false alarms).

We experiment with two datasets, Elec2 and Cover, that contain temporal dependence as
well as concept drift. We use three versions of these datasets. The first version is the original
dataset. The second dataset is shuffled in such a way that the order of the labels (and thus the
temporal dependence) is preserved, but within each class data is randomly permuted such
that the class conditional distribution becomes uniform over time. This way we expect to
get rid of concept drift, but preserve the original temporal dependence. The third dataset is a
random permutation of the original dataset over time, making the distribution uniform and
dataset itself iid. This procedure was used previously in our experiment with performance
statistics.
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Figure 7 plots the results, note the log scale on the horizontal axis. The plots with origi-
nal datasets and datasets with temporal dependence show clear trends of increasing accuracy
when the probability of false alarms is increasing. This confirms the theoretical results that
false alarms make a classifier that does not take temporal dependence into account behave
like the Persistent classifier. In Elec2 shuffled, Cover shuffled, and Elec2 temporal the accu-
racies of NB and DDM are overlapping, which means that no changes are detected. The ac-
curacies in the plots do not quite reach the theoretical limit of the Persistent classifiers, since
the training set size cannot approach its minimum (1) in this experiment due to the warm-up
constraint (30 instances) imposed by DDM, but the original DDM, which is supposed to
detect only true changes and minimize the number of false alarms, is clearly outperformed
when temporal dependence is present.

The plots with randomly shuffled datasets (no temporal dependence and no concept
drift) confirm that false alarms come at a cost. False alarms reduce the average training set
size for the models. It is well known from statistical learning theory that the generalization
performance of a predictive model depends on the training sample size (see e.g. [18]).

An important conclusion follows from this experiment. Classification accuracy should
not be used as a proxy for evaluating change detectors with datasets that have temporal
dependence. Furthermore, if data contains temporal dependence, false alarms may improve
observed classification accuracy. However, this improvement is not meaningful taking into
consideration the naive baseline Persistent classifier, which presents the theoretical limit for
such an improvement.

7 Recommendations for practitioners

Two main recommendations follow from our analysis. First, one should try to utilize two
sources of information when building predictive models: information contained in descrip-
tive input features, and temporal information contained in past labels. The proposed ap-
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proaches Temporal Correction and Temporally Augmented present simple means for taking
temporal information into account.

In the data stream setting running an online experiment just to test whether there is a
temporal dependence may be impractical or sometimes even infeasible. An easy test whether
there is a temporal dependence (and whether it is worth considering taking it into account)
is to compare the accuracy of the Majority Class classifier to the accuracy of the Persistent
classifier on a small sample of data (100 observations or so). If temporal dependence is
present, then consider wrapping your favorite classifiers into Temporally Augmented and
Temporal Correction classifiers.

Second, we recommend using the Combined measure in any case for data stream clas-
sification (instead of the Kappa statistic), as there is no need to know if there is a temporal
dependence in the data. The Combined measure evaluates the performance of a classifier
with respect to two aspects: whether it is close to random guessing of labels and whether it
is close to a persistent naive prediction always predicting the last seen label. If there is no
temporal dependence in the data, the Combined measure will give the same results as the
Kappa statistic.

8 Conclusion

As researchers, we may have not considered temporal dependence in data stream mining
seriously enough when evaluating stream classifiers. We presented a decision theory for
classification and proposed two generic classification approaches that can be used with any
existing classifiers for taking temporal information into account. We also theoretically ana-
lyzed classifier evaluation peculiarities when temporal dependence is present in the data and
proposed a new evaluation statistic to take temporal dependence into account. Finally, we
pointed out that change detection results should be interpreted with caution when there is
a temporal dependence. We showed that signaling a lot of false positives actually leads to
better prediction accuracy than a correct detection.

This study opens interesting directions for future research. Firstly, we see that the pro-
posed approaches Temporal Correction and Temporally Augmented, while performing much
better than current state-of-the-art approaches, still have a lot of room for improvement in
accuracy. More sophisticated approaches for taking into account temporal dependence could
be investigated. Secondly, in reality previous labels may arrive with a delay, in such a case
classifier update will be delayed. If we take temporal dependence into the predictive model,
there are several non-trivial options of how to make a prediction if labels are delayed. One
could use the previous predicted label, an older label or a combination of both. This calls for
a thorough investigation and is left out of the scope of the present paper for future research.

Acknowledgments. 1. Zliobaité’s research has been supported by the Academy of Fin-
land grant 118653 (ALGODAN).

A Proofs

Proof (of Proposition 5) The accuracies pma;j, Pran and pg do not include conditional probabilities with
respect to the sequence of the data, hence, they are the same whether there is a temporal dependence in the
data or not.
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Fig. 8 The model for joint probability in the proof of Proposition 8.

Next we prove that py,q; > po. For brevity denote P(y = i) as P (i) and Pp,(§ = i) as Py (7). Let
P(M) be the prior probability of the majority class, which implies that P(M) > % Since pg = %, we get
that Pmaj > po.

Finally, we prove that py,q; > Pran. To prove the proposition we need to demonstrate that py,q; —
Pran > 0. Substituting in the expressions for accuracies gives praj —Pran = P(M)— Zle P(i)Pp (i) =
P(M) = P(M)Pp(M) = 35 P(0) P (i) = P(M)(1 = Pp(M)) = 3255 P(0) P (i) >
% Dient Pn(®) = 320 P(O)PR(3) 2 % Diem Pr(@) — X iam %Ph(i) = 0. The second inequality
follows from the observation that for the minority classes 7 7 A the prior probabilities P(z) < % 0O

Proof (of Proposition 8) Let P(Ey) denote the probability of an error at time ¢. If the errors are distributed
independently in a stream, then P(E:|Ey—1) = P(FE¢), we need to prove this under the theorem conditions.
The probability of an error can be expressed as P(Et) = P(E+, At)+P(FE¢, Bt) = P(At)P(E¢|Ay)+
P(B:)P(E¢|Bt) = P(A)P(Bt|At)+P(B:)P(A¢|Bt). where A and B are the true classes (binary clas-
sification task), and A and B are the predicted classes. Similarly, P(E;_1) = P(As_1)P(Bi_1]As_1) +
P(Bt_1)P(At_ 1|Bt—1). Assuming there is no concept drift and the classifier predicts using a fixed rule we
have P(i¢) = P(it—1) = P(i) and P(i¢|ji) = P(tt—1]j¢—1) = P(il4). for i, j € {A, B}. Therefore,
P(E;) = P(F¢_1). Hence, P(E|Et_1) = P(E¢) can be rewritten as P(E;, Fy—1) = P(E¢)2.
The right side is P(E¢)2 = P(A)2P(B|A)2 + 2P(A)P(B)P(A|B)P(B|A) + P(B)2P(A|B)2.
The left side can be expressed as
P(E,Ei—1) = zie{A,B} Zje{A,B} P(E:,Ev—1,yt = i,yt—1 = J), where y denotes the true class
label. Since the error at time ¢ only depends on the true label at time ¢, but not the true label at time ¢t — 1, we
can express the joint probability following the graphical model in Figure 8 as P(Fy, Ey_1) =
Yicqa,By 2jefa,py Pi—1=3)P(Ei-1lyi—1 = §)P(yr = ilye—1 = j) P(Erlye = i) =
P(Atfl)P(B;tfl|At71)P(At‘At—l)P(B;t|At)+P(Bt71)P(AAAAt—1‘Btfl)P(AﬂBt—l)P( :t|At)+
P(Ay—1)P(Bi—1|A4—1)P(Bt| Ay 1) P(A¢| Bt)+P(By—1) P(A¢—1|Bi—1) P(Bt| By —1) P(A¢| By) =
P(A)P(Ar|Ar—1)P(B|A)? + P(B)P(A:|Bi—1)P(A|B)P(B|A) +
P(A)P(Bt|Ay—1)P(A|B)P(B|A) + P(B)P(B:|Bi—1)P(A|B)3.
Having both expressions now we can analyze the difference P(Ey, Ey—1) — P(FE)? =
P(A)P(BJA)? (P(At|Ar—1) = P(A)) + P(B)P(A|B)P(B|A) (P(A|Bi—1) — P(A)) +
P(A)P(A|B)P(B|A)(P(Bt|A¢-1) — P(B)) + P(B)P(A|B)?(P(B| B-1) — P(B))
P(A)P(B|A)*(P(At|As—1) — P(A)) + P(B)P(A|B)P(B|A)(P(B) — P(Bt|Bi-1)) +
P(A)P(A|B)P(B|A)(P(A) — P(Ai| A1) + P(B)P(A|B)*(P(Bt|B,—1) — P(B)) =
(P(At]A¢—1) — P(A)) P(A)P(B|A)(P(B|A) — P(A|B)) +
(P(BiBi—1) — P(B) P(B)P(AIB) (P(AIB) ~ P(B|A) =
(P(B|A)—P(A|B)) (P(A)P(B|A)(P(A¢| A1) — P(A)) = P(B)P(A|B) (P(B:|Bi—1) — P(B))).
We can see that this expression is equal to zero if P(B|A) = P(A|B, which is the proposition condition
#2, or if P(A¢|A¢—1) = P(A) and P(B¢|B¢—1) = P(B), which means that there is no temporal de-
pendence in data, which is the proposition condition #1, or if P(A)P(B|A)(P(A¢|Ai—1) — P(A)) =
P(B)P(A|B)(P(B:|B;-1) — P(B)), which transforms to (5 59— F () = gggggg‘j;,which
is the proposition condition #3. O

Proof (of Proposition 9) Persistent classifier does not depend on training sample size, since only the previous
label is used for making predictions. Its accuracy is given in Eq. (7) as pper = Zi.“:l P(y: = i)P(yt =
i|lyt—1 = ). Majority Class classifier requires knowing the prior probabilities of the classes, which depend
on the sample size used for estimation, as follows. Temporal dependence in data can be represented as a
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Markov chain with the k x k transition matrix R = (r;;), where 75 = P(yt = jlyt—1 = 4), and k

is the number of classes. The transition matrix for a finite state Markov chain is a stochastic matrix'. An

irreducible aperiodic stochastic matrix converges to a stationary distribution lim,,—, ~ and the convergence
P(it)=P()

PGP A

here P(i¢) is the prior probability of seeing class 4 at time ¢ from the start of sampling and p(4) is the

prior probability of class ¢ after seeing infinitely many samples. The prior probability of class 7 in the first

n samples is P(in) = > i~ ; P(it)/n. The sum can be modeled as a geometric progression with ratio Az,
Lo . . N AR —1 .

whichis 31 | P(ir) &= (P(i1) — P(i)) =T+ nP(i).

If a detection alarm is fired, there has been an observation at time 0 immediately before restarting training
of the classifier. This observation may have belonged to any class 7 with a probability P(%). Therefore, at time
1 after restarting the training the observation is class ¢ with the probability P (i¢|it—1). If P(i¢|iz—1) > %,
then ¢ is the majority class at time 1. Then at time n the probability of the class ¢ is
P(in) & (P(it|i—1)—P(3)) #:11)"'13(1) The overall probability of the majority class at time n is then

g N ors 1 AR —1 . AR — R
Pmaj = Zle P(i)P(in) ~ le (P(Z)P(zt\ztfl)m + P(i)(1— m)) Substituting in
the expression for p,,q; at time 7 into the proposition statement gives

liMy—1 Prmaj — Pper = Sor_y P()P(itlie—1) — S8, P(i)P(it|ir—1) = 0. O

rate is exponential in the order of the second largest eigenvalue (see e.g. [38]). Hence
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