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Label Dependence II

What do we mean when we speak of dependence (correlation,
relationships, etc.)?

Unconditional dependence

The joint is not the product of the marginals.

p(Yj ,Yk) 6= p(Yj)p(Yk)

(i.e., there is dependence between the j-th and k-th labels)

Conditional dependence

. . . conditioned on the inputs x.

p(Yj ,Yk |x) 6= p(Yj |x)p(Yk |x)

(i.e., there is conditional dependence between the j-th and k-th labels)
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Label Dependence II

Example

A joint distribution p(X ,Y1,Y2).
x y1 y2 p(x , y1, y2)
0 0 0 0.25
0 0 1 0
0 1 0 0
0 1 1 0.25
1 0 0 0
1 0 1 0.25
1 1 0 0.25
1 1 1 0

p(yj = 1) =
∑

x p(yj |x) 0.5 0.5 1.0

Example from [Dembczyński et al., 2010].
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Label Dependence II

Example

A joint distribution p(X ,Y1,Y2).
x y1 y2 p(x , y1, y2)
0 0 0 0.25
0 0 1 0
0 1 0 0
0 1 1 0.25
1 0 0 0
1 0 1 0.25
1 1 0 0.25
1 1 1 0

p(yj = 1) =
∑

x p(yj |x) 0.5 0.5 1.0

Is there unconditional independence?
p(y1 = 0, y2 = 0) = p(y1 = 0)p(y2 = 0) = 0.25 (YES!)
Example from [Dembczyński et al., 2010].
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Label Dependence II

Example

A joint distribution p(X ,Y1,Y2).
x y1 y2 p(x , y1, y2)
0 0 0 0.25
0 0 1 0
0 1 0 0
0 1 1 0.25
1 0 0 0
1 0 1 0.25
1 1 0 0.25
1 1 1 0

p(yj = 1) =
∑

x p(yj |x) 0.5 0.5 1.0

Is there conditional independence?
px=1(y1 = 0, y2 = 0) = 0 6= ∏

j px=1(yj = 0) = 0.5 (NO!)
Example from [Dembczyński et al., 2010].
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Measuring and Making Use of Label Dependence

Measuring unconditional label dependence: just look at frequencies,
use e.g., mutual information:

I (Yj ; Yk) =
∑

yj∈{0,1}

∑
yk∈{0,1}

log
( p(yj , yk)

p(yj)p(yk)

)
Measuring conditional label dependence . . . more difficult . . .

I many/noisy input variables (x = [x1, x2, . . . , . . . , . . . , xD ])
I few examples per label

. . . although perhaps the most appropriate, how to measure it?
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Measuring and Making Use of Label Dependence

Measuring conditional label dependence.

Proposition

Suppose we have labels Yj and Yk . . .

If conditionally independent, best to model separately
e.g., train BR on Yj ∈ {0, 1},Yk ∈ {0, 1}; predict
[yj , yk ] = [hj(x), hk(x)]

If not conditionally independent, best to model together
e.g., Train LP on Yj ,k ∈ {00, 01, 10, 11}; predict [yj , yk ] = hj ,k(x)

Therefore, if LP performs [significantly] better than BR for modelling
these labels, there is conditional label dependence between them, and
we should learn them together!

Jesse Read (UC3M) Multi-label Classification II MLKDD. July 16, 2013 5 / 45



Measuring and Making Use of Label Dependence

The best result is often somewhere in between BR and LP
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Figure : The best and worst predictive performances for the Music (left) and
Parkinson’s (right) data for L, . . . , 1 classes, i.e., from BR to LP.

For example, 3 classes: {Y1,3,Y4,Y2,5}
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Measuring and Making Use of Label Dependence

LPBR [Tenenboim et al., 2010]:

1 Build BR model, e.g., h : (h1, h2, h3, h4, h5, h6)

2 Cluster the most (unconditionally) dependent pair of labels, e.g., Y2

and Y5, together

3 Build this model, e.g., h′ : (h1, h2,5, h3, h4, h6), compare with h (on
some internal evaluation)

4 If h′ performs better, then h← h′

5 Return to Step 2 (Or finish with h)

Example

h(x̃) ≡
[
h1,3(x̃), h4(x̃), h2,5(x̃), h6(x̃)

]
Y1,3 Y4 Y2,5 Y6

ŷ 0, 1 0 0, 0 1
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Binary Relevance (BR): A Probabilistic View

BR model: h = (h1, . . . , hL)

each hj : X → {0, 1}
for x̃, predict

ŷj = hj(x̃)

≡ argmax
yj∈{0,1}

p(yj |x̃)

predictions made independently

x

�� !! (( **y1 y2 y3 y4

h(x̃) ≡ [h1(x̃), . . . , hL(x̃)]

OK, if labels are independent . . . but they are not!

p(y|x) 6=
L∏

j=1

p(yj |x)
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Classifier Chains1 (CC)

build h = (h1, . . . , hL)

each hj : X × {0, 1}j−1 → {0, 1}
and, for any x̃, predict

ŷj = hj(x̃, ŷ1, . . . , ŷj−1)

≡ argmax
yj∈{0,1}

p(yj |x̃, ŷ1, . . . , ŷj−1)

models label dependencies

x

�� !! (( **y1 //
77 ;;

y2 //
77y3 // y4

h(x̃) = [h1(x̃), h2(x̃, ŷ1), . . . , hL(x̃, ŷ1, . . . , ŷL−1)]

Inspiration from the chain rule (a greedy approximation):

p(y|x) = p(y1|x)
L∏

j=2

p(yj |x, y1, . . . , yj−1)

1
[Read et al., 2009]
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Example

0

0

0

1

1

0

1

1

0

0

1

1

0

1

ŷ = h(x̃) = [?, ?, ?]

1 ŷ1 = h1(x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = 0

3 ŷ3 = h3(x̃, ŷ1, ŷ2) = 1

similar time complexity to BR in practice (if L < D)

better performance than BR

can improve (a lot) with Bagging Ensembles of CC (ECC):
M CC models, each with a random chain and sample of D.
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ŷ = h(x̃) = [1, ?, ?]

1 ŷ1 = h1(x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = 0

3 ŷ3 = h3(x̃, ŷ1, ŷ2) = 1
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Example

0

0

0

1

1

0

1

1

0

0

1
0.7

1

0

1

0.3

0.6

ŷ = h(x̃) = [1, 0, ?]

1 ŷ1 = h1(x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = 0

3 ŷ3 = h3(x̃, ŷ1, ŷ2) = 1

similar time complexity to BR in practice (if L < D)

better performance than BR

can improve (a lot) with Bagging Ensembles of CC (ECC):
M CC models, each with a random chain and sample of D.
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ŷ = h(x̃) = [1, 0, 1]

1 ŷ1 = h1(x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = 0

3 ŷ3 = h3(x̃, ŷ1, ŷ2) = 1

similar time complexity to BR in practice (if L < D)

better performance than BR

can improve (a lot) with Bagging Ensembles of CC (ECC):
M CC models, each with a random chain and sample of D.
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1 ŷ1 = h1(x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = 0
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Bayes Optimal Probabilistic Classifier Chains2 (PCC)

Issue with CC:

errors may be propagated down the chain

Bayes-optimal Probabilistic CC, recovers the chain rule:

ŷ = argmax
y∈{0,1}L

p(y|x)

= argmax
y∈{0,1}L

p(y1|x)
L∏

j=2

p(yj |x, y1, . . . , yj−1)

2
[Cheng et al., 2010]
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Bayes Optimal Probabilistic Classifier Chains2 (PCC)

Test all possible paths (y = [y1, y2, . . . , yL] ∈ 2L in total)

Example

0
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0.5

10.5
0.2

1

0

0.9

10.1
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0.4

1

0

0

0.4

10.6
0.7

1

0

0.5

10.5

0.3

0.6

1 p(y = [0, 0, 0]) = 0.040

2 p(y = [0, 0, 1]) = 0.040

3 p(y = [0, 1, 0]) = 0.288

4 . . .

5 p(y = [1, 1, 1]) = 0.090

return argmaxy p(y|x)

better accuracy than CC, but only appropriate for L . 15
2

[Cheng et al., 2010]
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Monte-Carlo search for Classifier Chains (MCC)

MCC [Read et al., 2013]: Sample the tree.

For t = 1, . . . ,T iterations:

I sample yt ∼ p(y|x) where, for j = 1, .., L,

yj ∼ p(yj |x, y1, . . . , yj−1)

Predict
ŷ = argmax

yt |t=1,...,T
p(yt |x)
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Monte-Carlo search for Classifier Chains (MCC)

MCC [Read et al., 2013]: Sample the tree.

Example
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Sample T times . . .

p([1, 0, 1]) = 0.6 · 0.7 · 0.6 = 0.252

p([0, 1, 0]) = 0.4 · 0.8 · 0.9 = 0.288

return argmaxy p(y|x)
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Monte-Carlo search for Classifier Chains (MCC)

Example
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1
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Sample T times . . .

p([1, 0, 1]) = 0.6 · 0.7 · 0.6 = 0.252

p([0, 1, 0]) = 0.4 · 0.8 · 0.9 = 0.288

return argmaxy p(y|x)

Tractable, unlike PCC (for T � 2L), but similar accuracy!
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Is the Sequence of Labels in the Chain Important?

Example

p(Romance|x̃)

p(Comedy |¬Romance, x̃)

p(Action|¬Romance,¬Comedy , x̃)

⇒[Action,¬Comedy ,¬Romance]

p(Action|x̃)

p(Comedy |¬Action, x̃)

p(Romance|¬Action,Comedy , x̃)

⇒[¬Action,Comedy ,Romance]

Different prediction for the same x̃ (only chain sequence is different)?
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Is the Sequence of Labels in the Chain Important?

Example

p(Romance|x̃)

p(Comedy |¬Romance, x̃)

p(Action|¬Romance,¬Comedy , x̃)

⇒[Action,¬Comedy ,¬Romance]

p(Action|x̃)

p(Comedy |¬Action, x̃)

p(Romance|¬Action,Comedy , x̃)

⇒[¬Action,Comedy ,Romance]

Different prediction for the same x̃ (only chain sequence is different)?

Define hs; a Chain Classifier that creates the chain in order s.

e.g., s1 = [1, 3, 2]

e.g., s2 = [2, 1, 3]

Can we obtain different results for s1 and s2?
(Yes! [Read et al., 2013, Kumar et al., 2012])
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Is the Sequence of Labels in the Chain Important?

Define hs; a Chain Classifier that creates the chain in order s.

e.g., s1 = [1, 3, 2]

e.g., s2 = [2, 1, 3]

Can we obtain different results for s1 and s2?
(Yes! [Read et al., 2013, Kumar et al., 2012])

We have, e.g.,
ysj = argmax

{0,1}
p(ysj |x, ys1 , . . . , ysj−1)

Different s give different results due to finite and noisy data.

We can walk through the chain sequences space; build models
{hs1}Uu=1, test against some loss / payoff function J (s)
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MCC with s-Search (MsCC)

Monte Carlo Walk through the chain sequences space; s1, . . . , sU ; build
models {hs1}Uu=1, test against some loss / payoff function, e.g.:

J (s) := ExactMatch3(Y,hs(X))

Example

Scene data

u su J (su)
0 [4, 2, 0, 1, 3, 5] 0.623
1 [4, 2, 0, 3, 1, 5] 0.628
2 [4, 2, 0, 3, 5, 1] 0.638
3 [4, 0, 2, 3, 5, 1] 0.647
5 [4, 0, 5, 2, 3, 1] 0.653
18 [5, 1, 4, 3, 2, 0] 0.654
23 [5, 4, 0, 1, 2, 3] 0.664
128 [3, 5, 1, 0, 2, 4] 0.668
176 [5, 3, 1, 0, 4, 2] 0.669
225 [5, 3, 1, 4, 0, 2] 0.670

31 - [0/1 Loss]
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MCC with s-Search (MsCC)

Example

Scene data

u su J (su)
0 [4, 2, 0, 1, 3, 5] 0.623
1 [4, 2, 0, 3, 1, 5] 0.628
2 [4, 2, 0, 3, 5, 1] 0.638
3 [4, 0, 2, 3, 5, 1] 0.647
5 [4, 0, 5, 2, 3, 1] 0.653
18 [5, 1, 4, 3, 2, 0] 0.654
23 [5, 4, 0, 1, 2, 3] 0.664
128 [3, 5, 1, 0, 2, 4] 0.668
176 [5, 3, 1, 0, 4, 2] 0.669
225 [5, 3, 1, 4, 0, 2] 0.670

Use the best su for the final model.
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MCC with s-Search (MsCC)

Example

Scene data

u su J (su)
0 [4, 2, 0, 1, 3, 5] 0.623
1 [4, 2, 0, 3, 1, 5] 0.628
2 [4, 2, 0, 3, 5, 1] 0.638
3 [4, 0, 2, 3, 5, 1] 0.647
5 [4, 0, 5, 2, 3, 1] 0.653
18 [5, 1, 4, 3, 2, 0] 0.654
23 [5, 4, 0, 1, 2, 3] 0.664
128 [3, 5, 1, 0, 2, 4] 0.668
176 [5, 3, 1, 0, 4, 2] 0.669
225 [5, 3, 1, 4, 0, 2] 0.670

Use the best su for the final model.

The space is L! large, . . . but a little search can go a long way.
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MCC with s-Search (MsCC)

Use the best su for the final model.

Improvements:

Add temperature to freeze s from left to right (s1 to sL) over time u
I only need to rebuild hs from the first node changed

su = [3, 2, 1, 4, 6, 5]

su+1 = [3, 2, 1, 5, 4, 6]

I progressively faster to build each hs

Select a population: s
(1)
u , . . . , s

(M)
u

I improved predictive performance
I if each s

(m)
u is random, we recover Ensembles of Classifier Chains (ECC)

[Read et al., 2011]
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Why not . . .

?

Why not order the chain based on:

easiest-to-predict labels first

most-frequent labels first

unconditional label dependencies: most-‘dependent’ labels last

conditional dependencies

← this is basically what MsCC does!
I it’s a bit slow . . .
I is there another way to avoid ordering the chain?
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Conditional Dependency Networks (CDN)

A fully connected undirected version (no chain sequence)
[Guo and Gu, 2011]:

x

�� !! (( **y1 oo //ff 77cc ;;
y2 oo //ff 77y3 oo // y4

Problem transformation:

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1
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Conditional Dependency Networks (CDN)

x

�� !! (( **y1 oo //ff 77cc ;;
y2 oo //ff 77y3 oo // y4

Problem transformation:

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

How to do prediction? (where to start from?)
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Conditional Dependency Networks (CDN)

x

�� !! (( **y1 oo //ff 77cc ;;
y2 oo //ff 77y3 oo // y4

Problem transformation:

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

Gibbs sampling, for t = 1, . . . ,T iterations:

yj ∼ p(yj |x̃, y1, . . . , yj−1, yj+1, . . . , yL)

collect the marginals y1, . . . , yL at iterations t = Tcollect, . . . ,T :
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Conditional Dependency Networks (CDN)

x

�� !! (( **y1 oo //ff 77cc ;;
y2 oo //ff 77y3 oo // y4

Problem transformation:

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

Avoids need for chain order (no s-search, faster training), but

Inference more expensive.
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An Empirical Look

Table : Average predictive performance (5 fold CV, exact match3)

BR CC ECC PCC CDN MCC MsCC

params: M = 10 T = 1000 T = 100 U = 50,M = 10

Music 0.30 0.29 0.31 0.35 0.30 0.35 0.37
Scene 0.54 0.55 0.61 0.64 0.53 0.64 0.68
Yeast 0.14 0.15 0.19 0.07 0.21 0.23
Genbase 0.94 0.96 0.94 0.94 0.96 0.96
Medical 0.58 0.62 0.64 0.60 0.63 0.62
Enron 0.07 0.10 0.11 0.07 0.10 0.09
Reuters 0.29 0.35 0.36 0.27 0.37 0.37
avg. rank 6.14 4.29 3.57 6.43 2.00 1.71

MCC = PCC’s result, but tractable to larger datasets.
MsCC � MCC: the chain order makes a difference
and � CDN: can lead to better/faster inference than in a fully
connected network
and � ECC (M = 10 random chains), but with ≈ 10× less memory

3
1-[0/1 loss]
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An Empirical Look

Table : Average running time (5 fold CV, seconds)

L BR CC ECC PCC CDN MCC MsCC

params: M = 10 T = 1000 T = 100 U = 50,M = 10

Music 6 0 0 2 1 6 5 18
Scene 6 12 11 44 15 92 90 684
Yeast 14 11 11 66 88 149 731
Genbase 27 11 8 56 573 1695 774
Medical 45 9 11 86 1546 3420 1038
Enron 53 102 92 349 3091 3884 2986
Reuters 101 106 120 1259 14735 1837 4890

MCC = PCC’s result, but tractable to larger datasets.

MsCC � MCC: the chain order makes a difference

and � CDN: can lead to better/faster inference than in a fully
connected network

and � ECC (M = 10 random chains), but with ≈ 10× less memory

Jesse Read (UC3M) Multi-label Classification II MLKDD. July 16, 2013 16 / 45



From a Chain to a Tree

Why a chain? CC (and MCC, PCC, etc.) can be formulated as:

ŷ = p(y|x̃) = argmax
y=[y1,...,yL]

L∏
j=1

p(yj |paj , x̃)

If paj (parents of node j) ≡ {y1, . . . , yj−1} we recover CC

If paj := s and we recover MsCC

But can define any structure, for example:

y1 // y2 //
77y3 y4

How do we find a good structure?

label dependencies!

difficult, but important speed-ups at training and test time!
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Bayesian Chain Classifiers (BCC)

[Zaragoza et al., 2011]

1 Weight all edges with label dependencies

2 Find a Maximum Spanning Tree (MST)

y1 y2 y3

y4

3 Choose some directionality (root node)

y1 y2oo

  

// y3

y4

4 Employ a CC-type classifier
Ensembles of BCC: L models, with root notes j = 1, . . . , L
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Building Graphs Based on Label Dependency

Example

y1 y2oo

  

// y3

y4

This is a suitable structure if:

Y4 ⊥⊥ Y1|Y2

Y4 ⊥⊥ Y3|Y2

i.e., P(Y4|Y2) ≡ P(Y4|Y1,Y2,Y3)
But what about conditional label dependencies?

Px(Y4|Y2)

MsCC already does this (for chains)

Too slow (for large L) !
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A Faster Way to Measure Conditional Dependence

LEAD: Learning by Exploiting lAbel Dependency [Zhang and Zhang, 2010]

Proposition

Given two classification problems:

y1 = h1(x) + e1

y2 = h2(x) + e2

Then: y1 and y2 are conditionally independent if e1 and e2 are (1)
independent from each other and (2) independent from x.

(2) ≈ holds by fitting the model with maximum likelihood

if (1) two holds, we can claim conditional dependence
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A Faster Way to Measure Conditional Dependence

LEAD: Learning by Exploiting lAbel Dependency [Zhang and Zhang, 2010]

1 Train BR h : (h1, . . . , hL), measure errors e1, . . . , eL
2 Learn the Bayesian network structure G based on e1, . . . , eL
3 Construct CC-type h, to predict each ŷj given paj , x

Example

y1 y2oo

  

// y3

y4
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Structured Output Learning as a Multi-label Learning

What if we have many, many labels . . .

Example

A structured output problem:
detecting the relevant ‘pixels’
occupied by an object, given
some observations

0
0
.2

0
.4

0
.6

0
.8

1
1
.2

1
.4

1
.6

1
.8

2
2
.2

2
.4

2
.6

2
.8

3
3
.2

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

2
.2

2
.4

2
.6

2
.8 3

3
.2

3
.4

3
.6

3
.8 4

4
.2

4
.4

4
.6

4
.8 5

5
.2

5
.4

5
.6

5
.8 6

h : X → Y just a multi-label problem!

x = [x1, . . . , xD ] observations / input

y = [y1, . . . , yL], where yj = 1⇔ j-th pixel is ‘segmented’/relevant
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Structured Output Learning as a Multi-label Learning

Example

A structured output problem:
detecting the relevant ‘pixels’
occupied by an object, given
some observations

0
0
.2

0
.4

0
.6

0
.8

1
1
.2

1
.4

1
.6

1
.8

2
2
.2

2
.4

2
.6

2
.8

3
3
.2

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

2
.2

2
.4

2
.6

2
.8 3

3
.2

3
.4

3
.6

3
.8 4

4
.2

4
.4

4
.6

4
.8 5

5
.2

5
.4

5
.6

5
.8 6

It does not make sense to use CC here!

Other methods (BCC, LEAD) may not scale well . . .

Use

y1 //

��

y2 //

��

y3

��
y4 //

��

y5 //

��

y6

��
y7 // y8 // y9

y1

  ��

y2

  ��

y3

��
y4

  ��

y5

  ��

y6

��
y7 y8 y9

y1

��

y2

��

y3

y4 y5 y6

y7

FF

y8

FF

y9

FF

. . . ???
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Real-world Considerations for Multi-label Learning

Much of the multi-label literature avoids many real-world issues:

Scalability. We have a lot of data and/or limited resources to spare

Incremental. We have to update a model incrementally, we may
never see a ‘final’ training example

Concept Drift. The labelling scheme may change over time (number
of labels, label dependencies)

Limited Labelled Data. Multi-Labelled data can be expensive to
obtain, even more so than single-labelled data (whereas unlabelled
data is usually easy to get, by the millions . . . ). No label (yj = 0)
may not imply negative example of this label
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Scalability: Large L (many labels)

L > 100 . . .

L > 1000 . . .

more is not so typical (it becomes another problem)

How to deal with many labels.

Use a learner/base learner that scales well with L
I i.e., not LP
I BR can be distributed easily

Only model some (the most important) label dependencies

Take advantage of redundancy in the learning space
I problem transformation methods may make many copies (e.g., BR/CC:

L times) of X (D × N)
I ensemble methods make a further M copies (for each model)
I e.g., [Yan et al., 2007, Read et al., 2011]: random subsets of D, X

Compress label space, (uncompress after classification)

Use a hierarchy to break up a problem into smaller subproblems
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Hierarchical multi-label classification.

Some datasets define a hierarchy, e.g., FunCat, Enron, Reuters, 20
Newsgroups:

root

comp religion rec sci politics misc_forsale

ms_win sys gfx win_x rmisc christian atheism sport autos moto

baseball hockey

space med crypt elec

mac_hw ibm_pc_hw

pmisc mideast guns

We can use this predefined hierarchy
I Classifier at each node, e.g., [Kiritchenko et al., 2006], classifications

propagate to the leaves;

hroot(x̃) ⊆ {comp, religion, rec, sci, politics, misc forsale}
hsci(x̃) ⊆ {space, med, crypt, elec}

I Induction of decision trees for hierarchical multi-label classification
[Vens et al., 2008]

Or, make up your own hierarchy! HOMER: Hierarchy Of Multilabel
ClassifiERs [Tsoumakas et al., 2008]
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HOMER: Hierarchy Of Multilabel ClassifiERs

For Y = {λ1, λ2, λ3, λ4, λ5, λ6}
Y

��

h1

�� %%zz
λ1, λ4

��

λ5 λ2, λ3, λ6

��

h2

{{ ��

h3

�� %%yy
λ1 λ4 λ2 λ4 λ6

Either standard, or balanced k-means clustering
Solving several sub problems easier that one big problem
If well-chosen, little loss in accuracy compared to ‘flat’ problem
and can be even be better than pre-defined hierarchy
(. . . which is just some pre-defined label-dependency information!)
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Scalability: Large N (many instances)

1 Use a fast base-classifier
I e.g., PW with perceptrons [Loza Menćıa and Fürnkranz, 2008]
I warning: sometimes behaviour changes unexpectedly under large N

F for example, the extra input features in CC can cause
imbalance/overfitting on some problems

2 Multi-label Hoeffding tree

3 Windowed methods
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Scalability: Large N (many instances)

1 Use a fast base-classifier
2 Multi-label Hoeffding tree

I [Read et al., 2012]: Combining the multi-label entropy of ML-C4.5
with incremental Very Fast Decision Trees

I A multi-label incremental classifier (e.g., h := PS3 with NB) at the leaves

x1

>0

~~

≤0

!!
h x2

=1

~~

=2

��

=3

  
x3

=A

~~

=B

  

h h

h h

I Can handle up to 10 million instances in hours (single core)

3 Windowed methods
3Reminder: a tractable version of LP
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Scalability: Large N (many instances)

1 Use a fast base-classifier

2 Multi-label Hoeffding tree
3 Windowed methods

I e.g., 2BR with C4.5 in batches [Qu et al., 2009]
I e.g., multi-label kNN on a window of as many instances as

possible/appropriate
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Scalability: Large N (many instances)

1 Use a fast base-classifier

2 Multi-label Hoeffding tree

3 Windowed methods

But scalability may not be the only consideration . . .
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Classification in Data Streams

In data streams, there are additional considerations:

New data instances arrive continually, in sequence;
I we need a prediction now!
I we need to update the model incrementally
I including threshold calibration, etc.

And potentially infinitely;
I but resources are finite
I there is no ‘final’ training/test instance

The concept is usually dynamic, and may change over time.
I label dependencies may change
I new labels may be created / eliminated
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Examples of Multi-label Data Streams

E-mail

News

Forums

Labels for music, images, documents, etc.

In fact, most of the data we deal with already fits the characteristics of a
data stream, even personal document collections:

X (data inst.) Y (labels) L N D LC
Music audio data emotions 6 593 72 1.87
Scene image data scene labels 6 2407 294 1.07
Yeast genes biological fns 14 2417 103 4.24
Genbase genes biological fns 27 661 1185 1.25
Medical medical text diagnoses 45 978 1449 1.25
Enron e-mails labels, tags 53 1702 1001 3.38
Reuters news articles categories 103 6000 500 1.46
TMC07 textual reports errors 22 28596 500 2.16
Ohsumed medical articles disease cats. 23 13929 1002 1.66
IMDB plot summaries genres 28 120919 1001 2.00
20NG posts news groups 20 19300 1006 1.03
MediaMill video data annotations 101 43907 120 4.38
Del.icio.us bookmarks tags 983 16105 500 19.02
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Classification in Data Streams

Data-stream classifiers should

Learn in an online/incremental fashion
I May include “batch-incremental” methods (maintain a set of batches)

but these can have serious disadvantages

Be efficient

Detect concept drift, e.g., changes in:
I P(x)
I P(yj)
I P(yj |x)
I P(y)
I P(yj , yk)
I P(yj , yk |x)
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Detecting and Dealing with Concept Drift in Multi-label
Data Streams

Detection methods:

Don’t bother – just forget old information regularly
I ‘batch-incremental’: drop old batches/models
I kNN sliding window: keep w instances in memory

Use an off-the-shelf drift detection monitor, e.g., [Read et al., 2012]
using ADWIN [Bifet and Gavaldà, 2007]

I Feed this monitor some statistic, e.g., Accuracy
I Use an ensemble; replace a model when drift is detected

F weakest model
F oldest model

I BR-based methods: Replace model of the poorly-performing label

Multi-label Bayesian Network Classifier [Borchani, 2013]
I Page-Hinkley test to detect drift
I adapts the network around each changed node, or starts anew

Jesse Read (UC3M) Multi-label Classification II MLKDD. July 16, 2013 31 / 45



Open Questions in Multi-label Data Streams

Modelling label dependency over time

Addition of new labels arrive / phasing out old labels

Getting more real-world data
I we may not have access to the data
I time consuming to parse
I difficult to obtain labelled data, most data is unlabelled!
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Future Directions in Multi-label Classification

Predictive performance starting to plateau, even for datasets with a small
number of labels, e.g., on the Music data:

≈ year 2007 2010 2013
≈ state-of-the-art exact match 0.30 0.35 0.37

This suggests that

at this rate we will not reach/surpass human performance

modelling label dependencies has its limits

we need to learn more about features

Where to next?

learn better features

semi-supervised learning

We can borrow from other areas . . .
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What we want

Ŷ = {beach, foliage}

beach urban foliage

sand water leaves roads sky

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5 x6 x7

Predicting the labels should be easy (given the right features)!

We should integrate features in our model, not just label dependency

We already have BPMLL, but it’s not particularly competitive
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Deep Learning with Restricted Boltzmann Machines3

Useful to Multi-label Classification?

A Restricted Boltzmann Machine (RBM). From D input units x1, . . . , xD ,
produce H hidden units z1, . . . , zH :

z1 z2 z3

x1 x1 x2 x3 x5

Stack together to make deep belief networks.

Unsupervised (learns from unlabelled examples)

Learns a better / more compact feature space

Incremental (contrastive divergence, similar to gradient descent)

3See, e.g., [Hinton and Salakhutdinov, 2006]
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Deep Belief Networks for Multi-label Classification (?)

1 Learn any multi-label classifier h ontop of new
feature space (to predict labels)

2 Run h ≡ BPMLL-type algorithm, back propagation
of error through weights Ws

3 Model the features and labels together

y1, . . . , yL

z1, . . . , zH

z1, . . . , zH

x1, . . . , xD

W1

W2

h

Possible contribution to multi-label classification:

memory reduction (from D to H units) – especially beneficial to
multi-label problem transformation methods like BR, PW!

learn incrementally

learn from unlabelled examples

Although, currently:

tuning for hyper parameters is fiddly

doesn’t work well on all datasets
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z1, . . . , zH

x1, . . . , xD

W1

W2

h

Possible contribution to multi-label classification:

memory reduction (from D to H units) – especially beneficial to
multi-label problem transformation methods like BR, PW!

learn incrementally

learn from unlabelled examples

Although, currently:

tuning for hyper parameters is fiddly

doesn’t work well on all datasets
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Summary of Current / Future Trends

The days of:

“Our novel algorithm X beats BR [or algorithm Y ] by modelling
label correlations [more efficiently].”

are becoming more difficult.

We may see more intersection with other areas

graphical models

feature generation

structured output learning

transfer learning

semi-supervised learning

data-stream mining

and application to more challenging problems.
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Summary

Multi-label Data

Multi-label Classification
I problem transformation
I algorithm adaptation

Multi-label Evaluation

Label Dependency

Advanced Methods

Advanced Topics

Open Questions and Future Directions
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Conclusions

Multi-label Classification

A hot topic in machine learning

Many real-world applications

Connections to many related areas
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Resources

Software:

Mulan (Weka-based library):
I http://mulan.sourceforge.net

Meka (Weka-based framework):
I http://meka.sourceforge.net

Clus (Decision-Tree/Rule Learning):
I http://clus.sourceforge.net

Matlab Code (MLkNN, BPMLL):
I http://lamda.nju.edu.cn/datacode/MLkNN.htm

Moa (Data Streams):
I http://moa.cs.waikato.ac.nz/
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Resources

Datasets:

http://mulan.sourceforge.net/datasets.html

http://meka.sourceforge.net/#datasets

Tutorials:

Min-Ling Zhang, MLA’10
http://lamda.nju.edu.cn/conf/mla10/files/zhangml.pdf

Eyke Hüllermeier, MLD’10 http:

//cse.seu.edu.cn/conf/mld10/files/mld10_invitedtalk.pdf

Concha Bielza, Pedro Larrañaga, U.P.M. http://ocw.upm.es/
ciencia-de-la-computacion-e-inteligencia-artificial/

machine-learning/contenidos/11.Multilabel.pdf

This one! http://www.tsc.uc3m.es/~jesse/
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End of Part 2

Multi-label Classification

Jesse Read

Department of Signal Theory and Communications
Madrid, Spain
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