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This paper investigates approaches to parallelizing Bounded Model Checking (BMC) for shared
memory environments as well as for clusters of workstations. We present a generic framework for
parallelized BMC namedTarmo. Our framework can be used with any incremental SAT encoding
for BMC but for the results in this paper we use only the current state-of-the-art encoding for full
PLTL [4]. Using this encoding allows us to check both safety and liveness properties, contrary to an
earlier work on distributing BMC that is limited to safety properties only.

Despite our focus on BMC after it has been translated to SAT, existing distributed SAT solvers
are not well suited for our application. This is because solving a BMC problem is not solving a set of
independent SAT instances but rather involves solving multiple related SAT instances, encodedincre-
mentally, where the satisfiability of each instance corresponds to the existence of a counterexample
of a specific length. Our framework includes a generic architecture for a shared clause database that
allows easy clause sharing between SAT solver threads solving various such instances.

We present extensive experimental results obtained with multiple variants of our Tarmo imple-
mentation. Our shared memory variants have a significantly better performance than conventional
single threaded approaches, which is a result that many users can benefit from as multi-core and
multi-processor technology is widely available. Furthermore we demonstrate that our framework can
be deployed in a typical cluster of workstations, where several multi-core machines are connected by
a network.

1 Introduction

Bounded Model Checking(BMC) is a symbolic model checking technique [3, 4] which attempts to
leverage the existence of efficient solvers for thepropositional satisfiability problem(SAT), so-called
SAT solvers(e.g. [15, 8]). SAT is the problem of finding a truth assignment to the Boolean variables of a
propositional logic formula in such a way that the formula evaluates totrue, or determining that no such
assignment exists. This classifies the formula as respectively satisfiableor unsatisfiable.

The main idea behind BMC is to encode a system modelM, propertyφ and integerk called the
boundinto a propositional logic formula in such a way that it is satisfiable iff there exists an execution
of lengthk of systemM which violates the propertyφ . Such an execution is called acounterexample. A
conventional scheme for BMC is to have a SAT solver test the existence of a counterexample of lengthk,
and if its existence is disproven (i.e. the solver returns “unsatisfiable”)k is increased after which the test
is repeated. A typical instance of this process is to start with k = 0 and on every iteration incrementk by
one. The process ends whenever a counterexample is found or time or memory resources available run
out. We will call this approachCONV for conventional. Notice that BMC in this basic form, to which
we limit ourselves in this paper, is an incomplete method as it cannot prove a propertyφ correct for all
possible executions of systemM. For a survey into complete BMC methods see Section 7 of [4].

http://dx.doi.org/10.4204/EPTCS.14.5
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Although SAT is an NP-complete problem current state-of-the-art SAT solvers can solve many in-
stances of SAT efficiently. Conventional SAT solvers are based on the DPLL framework [7], which
requires the input formula to be inconjunctive normal form(CNF). A propositional logic formula is in
this form if it is a conjunction ofclauses. A clause is a disjunction ofliterals. A literal is an atomic
proposition, i.e. either a Boolean variablexi or its negation¬xi . Note that a clause is satisfied by a truth
assignment in which any one of its literals is assigned the value true, and a CNF formula is satisfied if
all of its clauses are satisfied. For the remainder of this paper whenever we speak of a formula we mean
an instance of SAT in CNF. Note that such a formula can be represented as a set of clauses.

A SAT solver based on the DPLL framework repeatedly selects an unassigned variable as thebranch-
ing variablewhich it assigns to eithertrue or false. After this the solver searches for a satisfying assign-
ment in the reduced search space. If no such assignment exists the procedure backtracks and assigns the
branching variable to the opposite value.

The default SAT solver used by Tarmo is MiniSAT 2.0 without the simplifier [8] but it can easily be
replaced with any otherconflict drivenSAT solver which supportsincremental SAT. A conflict driven
SAT solver derives, orlearns, new clauses as it is working its way through the problem’s search space.
Theselearned clausescan be seen as additional lemmas that help the solver to avoidparts of the search
space that contain no solutions. In a typical SAT solver the clauses of the input formula are kept in the
problem clause database, whereas the learned clauses are in thelearned clause database.

1.1 Incremental SAT

In a number of applications, including BMC, SAT solvers are used to solve a set of formulas that share
a large number of clauses. If we were to solve these independently each solving process may make the
same inferences, expressed as learned clauses, about the common subset of the formulas. To avoid this
repeated effort it would be desirable to reuse learned clauses between the consecutively executed solving
processes, which is what anincrementalSAT solver is good for.

Example 1.1 Assume that we wish to sequentially solve the formulas〈 F1, F2, . . . , Fn 〉 for which
Fi =

⋃i
j=1P j , i.e. each formulaFi equals the union of the previous formulaFi−1 and a new set of clauses

Pi. Exploiting the incrementality of the sequence to reuse learned clauses is easy in this case: We can
simply place the clausesF1 in the solver, solve, report the result forF1, addP2 to the solver, solve, report
the result forF2, add P3 and so on. All learned clauses remain logical consequences of the problem
clauses throughout this sequence, so all learned clauses can be reused in consecutive runs.

Unfortunately, for most applications, including ours, it does not hold that each formula is a superset
of the preceding formula as in Example 1.1. If we want to solvetwo consecutive formulas we may
not only need to add clauses to the solver, we also may need to remove some. However, if we remove
clauses from the problem clause database the clauses in the learned clause database may no longer be
implied by the problem clauses. The concept ofassumptionswas first introduced in [9] and it offers a
way around this problem. Only a simple modification to a standard SAT solver is required; the addition
of the possibility to solve the formula in the problem clausedatabase under a set ofassumptions. An
assumption is simply a variable assignment. We will show next why this is sufficient.

Example 1.2 Assume again that we wish to sequentially solve the formulas〈 F1, F2, . . . , Fn 〉 but now
eachFi = Qi ∪

⋃i
j=1 P j , i.e. each formulaFi now contains a subset of clausesQi that is contained only in

Fi. Let{ x1, x2, . . . , xn } be a set offreevariables, i.e. a set of variables that do not occur in any clause
in any of the formulas in the sequence. LetQ′

i = {Cj ∨xi |Cj ∈ Qi }. Note that if xi is assigned the value
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false then formulaQ′
i becomes equivalent toQi. If, however, xi is assigned the valuetrue, then formula

Q′
i becomes equivalent totrue. As xi occurs only in the clauses ofQ′

i and its negation¬xi does not occur
in any clause, the solver may freely choose to assign xi the valuetrue unless we force it otherwise, which
we may do by means of an assumption.

We proceed in almost the same way as in Example 1.1: simply place the clausesP1 and Q′
1 in the

solver, solve under the assumption x1 = false, report the result forF1, addP2 andQ′
2 to the solver, solve

under the assumption x2 = false, report the result forF2, addP3 andQ′
3 and so on.

As we never actually remove a clause from the problem clause database, we do not affect the consis-
tency of the learned clause database.

We use the BMC encoding of [12, 4] to generate the SAT instances. For the remainder of this
paper we will represent an encoded BMC instance as a sequenceof formulas〈 F1

Mφ , F2
Mφ , . . . , Fn

Mφ 〉

for which Fi
Mφ ⊆ Fk

Mφ for any k > i. Furthermore there exists a corresponding sequence of variables
〈 x1, x2, . . . , xn 〉 such thatFi

Mφ ∧¬xi is satisfiable iff there exists a counterexample of lengthi against
propertyφ in modelM.

Corollary 1.1 If Fi
Mφ |= Cj then for any k> i it holds thatFk

Mφ |= Cj .

From experiments in the early stages of this project we foundout that it is not uncommon for the
separate SAT instances in a formula sequence to take severalminutes to solve while the whole sequence
could have been solved using an incremental SAT solver in less than one minute. The use of incremental
SAT is thus crucial for performance when solving BMC instances, which makes general purpose dis-
tributed SAT solvers unsuitable for solving them. In this paper we present approaches to parallelizing
the solving of BMC instances while maintaining the efficiency of incremental SAT. One of our main con-
tributions is the introduction of a generic architecture for a shared clause database which allows sharing
clauses between incremental SAT solver threads, allowing solvers to easily pick only those clauses from
the database that are implied by their own problem clauses, while requiring only a small amount of book-
keeping. We demonstrate the feasibility of our design in environments where multiple solver threads can
access shared memory, as well as for environments where solver threads communicate through a net-
work.

In contrary to the approach presented for distributed bounded model checking of safety properties in
[1] the correctness of our clause sharing mechanism is not dependent on the chosen encoding of BMC
instances into incremental SAT. Our framework can thus always benefit from future improvements in
such encodings. We chose to use the current state-of-the-art encoding presented in [4] which allows us
to check for safety as well as liveness properties, thus removing an important limitation of the mentioned
earlier work.

2 Multithreaded BMC

Our multithreaded environment is one where multiple solverthreadsS= { s0, s1, . . . , sn } are run on a
single shared memory system. All the solver threads attemptto find a counterexample against property
φ in modelM, but they are not necessarily looking for counterexamples of the same length. This means
that in each solver threadsi the problem clause databasecontains exactly the clauses inFsbnd(si)

Mφ for
some boundsbnd(si), the solver bound. Furthermore, letminbnd(S) = min{ sbnd(si) | si ∈ S } and
maxbnd(S) = max{ sbnd(si) | si ∈ S} be the smallest respectively the largest solver bound amongst any
of the solver threads inS.
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Let LDsi be thelearned clause databaseof solver threadsi . By definition each clause in the learned
clause database is implied by the clauses in the problem clause database, so for eachCj ∈ LDsi it holds

thatFsbnd(si)
Mφ |= Cj .

The shared clause databaseis a data structure accessible by each solver thread for the purpose of
sharing learned clauses between solver threads.

2.1 Approaches

In our framework solver threadsi attempts to solve the formulaFsbnd(si)
Mφ . Two solver threadssi ,sj ∈ S

may have the same solver bound, i.e. it may hold thatsbnd(si) = sbnd(sj ), in which case both solver
threads are solving the same formula. A related approach in which no two threads are ever searching
for a counterexample of the same length is presented in [1] for the checking of safety properties. The
restriction that no two threads must be solving the exact same formula may seem like it can only have
positive effects, but this is not the case. The reason is the lack of robustness of a SAT solving process.
Modern SAT solvers usually use some randomization, and due to this randomization the run time of a
SAT solver may vary greatly for multiple runs of the same solver on the same formula when a different
random seedis used. Recent work on distributed SAT solving [13, 14] has confirmed that this can be
exploited to achieve remarkable reductions in the expectedrun times by simply running the same ran-
domized SAT solver on the same formula multiple times in parallel with different random seeds until one
of them finishes. By sharing clauses amongst these solver threads those results can be further improved.
The authors of [11] use a similar method for distributed SAT solving where they also consider using
different search strategies in different threads (e.g. different solver parameter settings or even completely
different SAT solvers).

A simple analogue to the described simple distribution methods for SAT that fits our framework
is to make each solver thread independently act just like theconventional single-threaded approach
CONV that we described earlier. We will call this approachMULTICONV.

An approach similar to the one proposed in [1] in which each solver that has finished starts to search
for a counterexample of the smallest length that no thread has started searching for (i.e.maxbnd(S)+1)
we call MULTIBOUND. In that approach the cores individually no longer follow the same scheme as
CONV.

2.2 Clause bound

For a clauseCj let theclause bound cbnd(Cj ) be a number such thatFcbnd(Cj )
Mφ |= Cj . We use this clause

bound for sharing learned clauses between solver threads. The clause bound can be used to ensure that
a solver threadsi only receives those shared clauses that are implied by the clauses in its problem clause
database, as this holds at least for all clausesCj for which cbnd(Cj) ≤ sbnd(si). To allow clause sharing
whenever possible we would likecbnd(Cj) to always be theminimal bound at whichCj is implied
by the problem clauses, but this is hard to calculate and not required for correctness. In fact, a safe
approximation for the clause bound of any clause that is either in the problem clause database of solver
threadsi , or learned by that thread, would besbnd(si).

In our implementation we calculate a clause bound for each clause only once, after which it is stored
with the clause. With all clausesCj in the problem clause database we storecbnd(Cj ) = min{ k | Cj ∈
Fk

Mφ }, i.e. the first bound at which the clause appeared in the set ofclauses. Note that a learned clause
is always derived from a number of other clauses. For a learned clauseCj derived from the set of clauses
P, we storecbnd(Cj ) = max{ cbnd(Ck) |Ck ∈ P }, i.e. the maximum clause bound stored with any of the
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clauses inP. Finding the maximum clause bound of all clauses in the typically small setP takes only a
negligible amount of time.

2.3 Shared clause database organization

The shared clause database is organized as a set of queues{ Q0, Q1, . . . , Qmaxbnd(S) }. As the number of
queues is dependent onmaxbnd(S) a new queue must be created whenevermaxbnd(S) increases. This
means that whenever a solver threadsi ∈ Sstarts to solve the problem for a bound that no other solver
had reached up to that point it has to create a new queue in the shared clause database.

Each clauseCj ∈ LDsi that solver threadsi wants to enter into the shared clause database should be
pushed into queueQcbnd(Cj ). Note that this is the queue corresponding to clauseCj ’s clause bound. Each
clauseCj in queueQk has aclause index q(Qk,Cj). The first clause to be pushed into an empty queue
gets clause index 1, and every clause pushed into a non-emptyqueue gets the number of its predecessor
incremented by 1. Furthermore we definep(Qk,si) as the highest clause index amongst the clauses in
Qk that solver threadsi knows about. If solversi has never read from nor written to queueQk then
p(Qk,si) = 0.

Each queue can be locked separately. Furthermore there exists one readers-writer lockL for the
whole shared clause database. A readers-writer lock can be acquired by multiple threads at the same
time for reading or exclusively by one thread for writing. Ifa thread wants to add a queue to the shared
clause database it must acquire the lockL for writing. Threads that want to lock a separate queue for any
type of access must first acquire lockL for reading. This mechanism is required because existing queues
may be relocated in memory when a new queue is added to the database.

Example 2.1 Assume an environment in which two simultaneously working solver threads S= { s0, s1 }
exist, let sbnd(s0) = 21 and sbnd(s1) = 22. A possible state of the shared clause database in this envi-
ronment is the one depicted in Fig. 1. The pointers p(Q20,s0) and p(Q20,s1) indicate that both solver
threads have seen all clauses in queue Q20. Solver thread s0 has also seen all clauses from queue Q21,
but as its solver bound is smaller than22 it is not allowed to synchronize with queue Q22 so it knows
none of the clauses in there. One may also observe that as solver thread s1 has not seen the clauses3−5
in queue Q21 they must have been put there by solver thread s0.

...
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Figure 1: Shared clause database example
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2.4 Synchronizing with the shared clause database

As explained in Subsection 2.2, all clausesCj for whichcbnd(Cj )≤ sbnd(si) are implied by the problem
clauses in solver threadsi , which means thatsi can safely introduce all clauses from the queuesQk for
k≤ sbnd(si) to its shared clause database. As it does this it only has to read clauses it has not read before,
so it can start reading from the clause with clause indexp(Qk,si)+1.

A clauseCj can be removed from the queueQk by the last solver threadsi ∈ Sthat reads it, i.e. when
si finds after reading that for allsm ∈ S it holds thatp(Qk,sm) ≥ q(Qk,Cj). If a solver threadsi wishes to
insert a set of clauses into queueQk it must first lock that queue, then read all the clausesCj from it for
which q(Qk,Cj) > p(Qk,si). Only after this it may write the new clauses to the queue and finally it may
proceed to unlock it. It is necessary thatsi reads unread clauses fromQk before writing anything to it as
otherwise the queue ends up in a state where clauses not knownby si precede clauses known bysi . In
such a state we would no longer be able to use the clause index mechanism to identify which clauses in
the queue the solver does not yet know.

Each solver threadsi ∈ Shas a local clause stackLSsi ⊆ LDsi that contains all clauses learned bysi

that have not yet been placed in the shared clause database. The clauses in stackLSsi can be moved to the
shared clause database at regular intervals. As we have to read clauses from the database before writing
to it, these points form the synchronization points of solver threadsi with the shared clause database.
The pseudocode for the synchronization procedure is statedin Algorithm 2.1. We chose to execute this
synchronization at everyrestart (see e.g. [15]), as restarts happen regularly but only afterlearning a
substantial amount of new clauses, and because they are goodpoints for introducing new learned clauses
as all assignments of branching variables are undone.

Algorithm 2.1 Synchronizing solver thread si with the shared clause database.

1. lock readers-writer lockL for reading
2. for all Qk such thatk≤ sbnd(si)
3. lock queueQk

4. Read clauses{ Cj | Cj ∈ Qk, q(Qk,Cj) > p(Qk,si) } from the database
5. Push clauses{ Cj | Cj ∈ LSsi , cbnd(Cj ) = k } into Qk

6. newmin:= min{ p(Qk,sm) | sm ∈ S}
7. Remove all clauses{ Cj | Cj ∈ Qk, q(Qk,Cj) ≤ newmin} from the database
8. unlock queueQk

9. end for
10. unlock readers-writer lockL
11. LSsi := /0

As an optimization to this basic scheme our implementation pushes clausesCj for whichcbnd(Cj ) <

minbnd(S) into Qminbnd(S) instead of intoQcbnd(Cj ). This means that no clauses are pushed into queues
corresponding to bounds that are no longer being solved by any solver thread. As a result the queuesQk

for k < minbnd(S) will eventually become empty after which they may be completely discarded.

2.5 Benchmarks

We obtained the benchmark set used in [4], to which we will refer as LMCS06, and the benchmark suites
L2S, TIP and Intel from the set of benchmarks used for the Hardware Model Checking Competition in
2007 (HWMCC07) [5]. Each of the benchmarks represents a model M and propertyφ , which can serve
as input to, for example, the model checker NuSMV [6].
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This model checker includes an implementation of the encoding presented in [4]. Unfortunately
NuSMV is linked to an incremental SAT solver directly (e.g. MiniSAT) and thus the actual encoding of
a benchmark into clauses that are fed to that solver does not become visible to its users.

We use a modified version of NuSMV version 2.4.3 which streamsthe sequence of formulas encod-
ing a benchmark into a file rather than attempting to solve those formulas with its linked-in SAT solver.
For benchmarks from HWMCC07 for which it was known beforehand that the shortest existing coun-
terexample was of lengthk, a formula sequence of lengthk+ 11 was generated, i.e. the largest formula
represented in the file corresponds to the existence of a counterexample of lengthk+ 10. For all other
benchmarks the sequence was generated up to length 501, i.e.the largest formula represented in the file
corresponds to the existence of a counterexample of length 500. As no suitable file format existed for
these incremental SAT problems we defined our own format, called iCNF1.

All of the obtained benchmarks were translated into a sequence of formulas as described. iCNF is
Tarmo’s input file format, so in the remainder of this paper whenever we speak of a benchmark we mean
these translations. We consider a benchmark solved when a formula in the sequence is found satisfiable,
which corresponds to the existence of a counterexample, or when all formulas in the sequence are found
unsatisfiable, which corresponds to the nonexistence of a counterexample of length at most 500. We
removed all benchmarks from our benchmark set that can be solved within 10 seconds by the single-
threadedCONV approach. The resulting set contains 134 benchmarks.

2.6 Experiments

In this subsection we present experimental results with different approaches to exploiting multi-core
environments for BMC. All results in this subsection were obtained using a single workstation from the
set of 20 workstations found in our department’s cluster. Each workstation is equipped with two Intel
Xeon 5130 (2 GHz) Dual Core processors and 16 GB of RAM.

Figures 2 and 3 are “cactus plots”: such plots are traditionally used by the organizers of the SAT
competitions [2] for comparing SAT solvers. In a cactus plot, time is on the vertical axis and the number
of instances solved is on the horizontal axis. From Fig. 2 onecan, for example, see that for 97 benchmarks
in the set the run time ofCONV is under twenty minutes, and that for 105 benchmarks the run time of
CONV is under one hour.

The execution of the single-threadedCONV obviously required the use of only a single core of
one of our workstations, but, as will become clear later, it is important to note that care was taken to
keep the other three available cores in that same workstation idle. The results presented forCONV are
the run times of a single execution, butCONV was executed in total four times for each benchmark.
4xCONV is an artificial variant that reports the fastest of those four results for each benchmark. This is
meant to illustrate how the run time of a SAT solver varies perrun due to the random choices it makes,
and how this can be exploited to achieve reductions in the expected run time, as can be clearly seen from
Fig. 2.

Unfortunately if we execute the four independent runs ofCONV in parallel on the same four core
workstation the results are not as positive. This is becausethe cores slow each other down as they share
resources like the memory bus and parts of the cache. The negative result can be clearly seen in the
scatterplot presented in Fig. 4 as well as in the cactus plot presented in Fig. 2. From that cactus plot
it can be seen how the result of this naive parallelization, which we will refer to asMULTICONV-
SIMPLE, is even slower than the single-threaded variantCONV for many of the simpler benchmarks.

1For a detailed description, and tools for handling iCNF files, please checkhttp://www.tcs.hut.fi/~swiering/icnf/

http://www.tcs.hut.fi/~swiering/icnf/
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Figure 2: Cactus plot showing the effects of multithreading.
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Figure 4: Scatterplot illustrating the artificial variant4xCONV.
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Figure 6: Scatterplot comparingMULTICONV with MULTIBOUND.

However, it does manage to solve a couple of benchmarks thatCONV could not solve within an hour.
Fortunately we can extendMULTICONV-SIMPLE with clause sharing to improve its performance.

MULTICONV-FULL is a version which implements shared clause database synchronizations by every
solver thread as described in Subsection 2.4. Although one can see from the cactus plot presented in
Fig. 2 that the average performance improves after adding clause sharing, the scatterplot in Fig. 5 shows
that sharing clauses sometimes harms performance. This wasnot unexpected as too many learned clauses
are not beneficial to any SAT solver. In fact, to reduce the negative effects of large learned clause
databases SAT solvers occasionally delete learned clauses.

In distributed SAT solvers various ways of limiting the number of shared clauses can be found. A
common approach, found for example in [11], is to share only clauses whose length is shorter than
some constant. This crude approach is justified by the observation that shorter clauses represent stronger
constraints. We have tried several such constants in our distributed BMC framework but we achieved
better average results with variantMULTICONV-ADAPTIVE which uses an adaptive heuristic to limit
clause sharing. It shares only clauses whose length is smaller than or equal to the continuously recalcu-
lated average length of all clauses it ever learned. The performance improvement can be clearly seen in
Fig. 3.

In all of our MULTICONV variants presented so far the search space is pruned differently on each
core only because of the effect of the randomization used by the SAT solvers. To force a more diversified
search we can use different search parameters in different threads.

One of MiniSAT’s search parameters is thepolarity modewhich can be eithernegativeor positive.
The default isnegative, meaning that for every branching variable MiniSAT tries toassign the value
false first. In any case, MiniSAT selects the same value first consequently for each branching variable,
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which seems to be surprisingly effective [16]. The default polarity modenegativeworks best in practice
for “industrial” SAT instances, which is solely caused by the way people tend to encode their problems.

We obtained the best results in our four-threaded environment with a variant we callMULTICONV-
TARMO. It is the same asMULTICONV-ADAPTIVE except that in one of the four solver threads we
use the polarity modepositive. This further diversifies the search, which causes a clear improvement
of the performance as can be seen from Fig. 3. Using polarity mode positivein two of the four solver
threads performed less well for our benchmarks.

We have also tested theMULTIBOUND approach. Just as forMULTICONV we tested variants us-
ing full clause sharing, using our adaptive clause sharing heuristic, and with one solver using the opposite
polarity mode setting. In the cactus plot presented in Fig. 3only this last variant, calledMULTIBOUND-
TARMO, is plotted. One can see that this version performs on average quite similarly to the equivalent
MULTICONV variant. Surprisingly enough the average performance of each MULTIBOUND variant
was similar to that of the equivalentMULTICONV variant. This similar average performance is espe-
cially interesting since the performance for individual benchmarks is very different, as can be seen from
the scatterplot presented in Fig. 6. It thus seems that theMULTICONV andMULTIBOUND approach
are both useful, but complementary, approaches.

3 BMC for workstation clusters

Now that we have demonstrated the significant speed-ups thatwe can obtain using our multithreaded
variants of Tarmo we will discuss approaches which distribute runs of Tarmo over several multithreaded
workstations. A distributed SAT solver for a similar environment is presented in [17]. The workstations
in our department’s computing cluster that were already mentioned in Subsection 2.5 are all connected
by 1 gigabit Ethernet connections through a cluster switch.

Our environment can be defined as a setT = { D, S0, S1, . . . , Sn } in which D refers to the single-
threadedDatabase Interface Process(DIP), and eachSi is a worker, which is simply a set of solver
threads on a single multi-core workstation as defined in Section 2. Each multithreaded environmentSi

uses one of our multithreaded Tarmo variants to find a counterexample against propertyφ in modelM.

The DIP is a process which stores theglobal shared clause database, and provides an interface to it
for the solver threads. It does not manipulate the database by itself.

For the remainder of this section letQi
k refer to queueQk in the local shared clause database of worker

Si , andQD
k refer toQk in the global shared clause database stored in the DIP. Furthermore, letLi be the

readers-writer lock for the local shared clause database ofworkerSi .

3.1 Global shared clause database organization

The global shared clause database is a data structure which is almost identical to the shared clause
database found in each worker process. The difference is that it is accessed by the workers, rather
than by their individual solver threads. For each queue-worker pair(QD

k ,Si) the clause database stores
p(QD

k ,Si) which is the highest clause index of the clauses inQD
k which workerSi knows about.

Only one worker can access the global shared clause databaseat the same time because the DIP is
single-threaded. This simplifies the design as well as preventing possible network congestion due to
multiple workers accessing the database simultaneously.
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3.2 Global database synchronization

Whenever a worker wishes to share clauses with other workers, one of its threads performs a synchro-
nization with the global shared clause database through theDIP. This synchronizes the worker’s local
shared clause database with the global shared clause database.

Recall from Subsection 2.3 that we have for each threadsm ∈ Si and queueQi
k a clause index

p(Qi
k,sm). The local database of each workerSi is extended withp(Qi

k,D) for each queueQi
k, where

p(Qi
k,D) is defined as the highest clause index amongst all clauses inQi

k that are known to the DIP.
The synchronization process begins with a workerSi sending a message to the DIP, informing it that

it is prepared for a synchronization. The DIP gathers for allQD
k the clauses{Cj | Cj ∈ QD

k , q(QD
k ,Cj) >

p(QD
k ,Si) } and places all of them in a buffer. The whole buffer is then sent to workerSi at once.
When the worker has received the clause buffer from the DIP itstarts a synchronization procedure

which is described in Algorithm 3.1. As with local synchronizations, care must be taken to ensure that
writing new clauses to a queue always follows a lock and a read, in order to prevent unknown clauses
preceding known clauses in the queue.

Algorithm 3.1 Synchronizing worker Si with the global shared clause database.

1. LetRbe the set of clauses received fromD
2. B := /0
3. lock readers-writer lockLi for reading
4. for all Qi

k such thatk≤ maxbnd(Si)
5. lock queueQi

k
6. Read clauses{ Cj | Cj ∈ Qi

k, q(Qi
k,Cj) > p(Qi

k,D) } and append them toB
7. Push clauses{ Cj | Cj ∈ R, cbnd(Cj ) = k } into Qi

k
8. newmin:= min

(

{ p(Qi
k,sm) | sm ∈ Si } ∪ { p(Qi

k,D) }
)

9. Remove all clauses{ Cj | Cj ∈ Qi
k, q(Qi

k,Cj) ≤ newmin}
10. unlock queueQi

k
11. end for
12. unlock readers-writer lockLi

13. SendB to D

Upon receiving the worker’s learned clauses after the localsynchronization has taken place, the DIP
can write them to the global shared clause database. The process is completed and the DIP awaits another
request.

3.3 Experiments

We have tried several approaches to distributing Tarmo overmore than one workstation. Our best multi-
threaded variants turned out to be very robust. Simply running the same multithreaded variant multiple
times with different seeds in parallel on several workstations and reporting the result when the first one
finishes hardly decreases the expected run time. From the experiments in Subsection 2.6 we concluded
that ourMULTICONV-TARMO andMULTIBOUND-TARMO variants both have good average per-
formance but are complementary. This observation inspiredus to a simple distribution over two work-
stations where the two different approaches are each run on asingle workstation. In this way we obtain
a result for each benchmark in exactly the amount of time it takes for the fastest of the two to finish.
We have named this variantMULTICONVxMULTIBOUND. It was calculated from the earlier single
workstation results rather than actually executed on two workstations in parallel. In this case this should,
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however, not make any difference to the result, as two workstations can function completely indepen-
dently, at least assuming that they both already have the input file stored locally before starting the run.
From Fig. 7 an improvement on the number of instances solved within an hour can be seen. When one
takes another look at Fig. 6 in Section 2.6 one realizes that for many individual benchmarks the speed-up
is significant as the achieved performance is the best of the two variants plotted there.

The cactus also shows the variantDISTRIBUTED. This is a truly distributed program that uses
MPI version 2.0 [10] for communication between workstations. To obtain each result for that variant
we used three workstations in total: one runningMULTICONV, one runningMULTIBOUND, and
one running the DIP. The single-threaded DIP was run on a single workstation in which the other three
available processor cores were kept idle for the purpose of obtaining these results. In a practical setting
one will most likely not want to reserve an entire workstation for the single-threaded DIP, but as the DIP’s
computational load is not very high, relaxing that restriction should not cause a significant performance
decrease. It may even be a good choice in practice to run the DIP on the cluster’sfront-end, which in a
typical cluster setup is a single workstation through whichall communication with machines outside the
cluster takes place.

Note that in variantDISTRIBUTED we use the global shared clause database stored in the DIP
to share clauses between a workstation runningMULTICONV-TARMO and a workstation running
MULTIBOUND-TARMO. Our clause database design ensures that this does not causeany complica-
tions. After testing several approaches we chose to have a worker initiate a synchronization with the
global shared clause database whenever one of its solver threads increases its solver bound, i.e. every
time a solver thread finds a formula unsatisfiable. From Fig. 7it can be seen that this simple global
clause sharing setup improves the average performance.

This performance can probably be improved more by introducing a clever heuristic for limiting the
number of clauses shared as we did for the multithreaded approaches. We chose not to further investigate
such variants in this paper. The performance increase obtained is mainly due to using two complemen-
tary multithreaded approaches. As those are very robust approaches the performance of this distributed
version of Tarmo will not scale beyond two workstations. Onecould try to define more multithreaded
approaches with good average performance to obtain more complementary approaches that can be run
in parallel but this is unlikely to scale much further.

This distributed framework with its generic shared clause database architecture will be very useful to
our future work. We plan to investigate approaches that use search space splitting amongst the worksta-
tions, in order to allow our system to scale to larger numbersof workstations. A possible way of doing
this would be to split the formulas usingguiding paths[18].

4 Conclusion

In this paper we have presented the Tarmo framework for bounded model checking using multi-core
workstations as well as clusters of them. One novel feature of our framework for distributed BMC is
that it allows using any encoding of BMC instances into incremental SAT. In our experiments we use the
encoding presented in [4], which means that we are able to check safety as well as liveness properties
with all variants of Tarmo discussed in this paper.

An important contribution found in this work is our generic architecture for a shared clause database
for multiple incremental SAT solver threads working on parts of the same incremental SAT encoding of
a BMC instance. Together with our definitions forclause boundandsolver bound, it allows the sharing
of clauses while requiring very little bookkeeping to make sure that solver threads only obtain those
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Figure 7: Performance of the multiple workstation Tarmo variants.

clauses that are are actually implied by their set of problemclauses. It has been demonstrated how the
architecture can be employed for solver threads operating in shared-memory environments as well as for
solver threads that communicate through a network using MPI.

Our multi-core variants of Tarmo obtained good speed-ups over the conventional single-threaded
approach. This is an important result as multi-core hardware is now widely available, and thus many
BMC users can benefit from this. Furthermore the two multi-core variants presented asMULTICONV-
TARMO andMULTIBOUND-TARMO turned out to be complementary approaches which both have
good average performance.

We exploited these complementary variants in a setting which uses multiple workstations. We ob-
tained a speed-up over the single workstation versions, butpossibly more interestingly showed the feasi-
bility of clause sharing between workstations using our shared clause database architecture. This will be
a very useful result for future distributed versions of Tarmo or even other distributed BMC approaches.
To improve the rate at which the performance scales with the number of workstations used such future
versions may, for example, split the search space into multiple disjoint parts. Such techniques are easy
to implement within our framework, as our shared clause database architecture allows clause sharing
between any solver thread that is working on parts of the sameincremental SAT problem, regardless of
the solving strategy it uses.

Our Tarmo implementation is available at:http://www.tcs.hut.fi/~swiering/tarmo/.
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