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This paper investigates approaches to parallelizing Bedridodel Checking (BMC) for shared
memory environments as well as for clusters of workstatiofe present a generic framework for
parallelized BMC namedarma Our framework can be used with any incremental SAT encoding
for BMC but for the results in this paper we use only the cursgate-of-the-art encoding for full
PLTL [4]. Using this encoding allows us to check both safetg hveness properties, contrary to an
earlier work on distributing BMC that is limited to safetygmerties only.

Despite our focus on BMC after it has been translated to SAstiag distributed SAT solvers
are not well suited for our application. This is becauseisgla BMC problem is not solving a set of
independent SAT instances but rather involves solvingipialtelated SAT instances, encodedre-
mentally where the satisfiability of each instance correspondsd@iistence of a counterexample
of a specific length. Our framework includes a generic aechiire for a shared clause database that
allows easy clause sharing between SAT solver threadsigpharious such instances.

We present extensive experimental results obtained withipteuvariants of our Tarmo imple-
mentation. Our shared memory variants have a significamtiebperformance than conventional
single threaded approaches, which is a result that mang eser benefit from as multi-core and
multi-processor technology is widely available. Furtherewe demonstrate that our framework can
be deployed in a typical cluster of workstations, where s®vmaulti-core machines are connected by
a network.

1 Introduction

Bounded Model CheckinBMC) is a symbolic model checking technique [3, 4] whicheatpts to
leverage the existence of efficient solvers for ghiepositional satisfiability problen(SAT), so-called
SAT solverge.g. [15] 8]). SAT is the problem of finding a truth assigninerthe Boolean variables of a
propositional logic formula in such a way that the formulaleates tdrue, or determining that no such
assignment exists. This classifies the formula as respécsatisfiableor unsatisfiable

The main idea behind BMC is to encode a system mddieproperty ¢ and integerk called the
boundinto a propositional logic formula in such a way that it isisidble iff there exists an execution
of lengthk of systemM which violates the property. Such an execution is calleccaunterexampleA
conventional scheme for BMC is to have a SAT solver test ti@nxce of a counterexample of lendgth
and if its existence is disproven (i.e. the solver returnssatisfiable”k is increased after which the test
is repeated. A typical instance of this process is to stdtt k= 0 and on every iteration incremekby
one. The process ends whenever a counterexample is fourdeoot memory resources available run
out. We will call this approaclCONV for conventional Notice that BMC in this basic form, to which
we limit ourselves in this paper, is an incomplete method aarinot prove a property correct for all
possible executions of systeMh. For a survey into complete BMC methods see Section [7] of [4].
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Although SAT is an NP-complete problem current state-efdht SAT solvers can solve many in-
stances of SAT efficiently. Conventional SAT solvers areedasn the DPLL framework [7], which
requires the input formula to be sonjunctive normal fornfCNF). A propositional logic formula is in
this form if it is a conjunction otlauses A clause is a disjunction dfterals. A literal is an atomic
proposition, i.e. either a Boolean variabjeor its negation-x;. Note that a clause is satisfied by a truth
assignment in which any one of its literals is assigned thaevaiue, and a CNF formula is satisfied if
all of its clauses are satisfied. For the remainder of thiepaenever we speak of a formula we mean
an instance of SAT in CNF. Note that such a formula can be septed as a set of clauses.

A SAT solver based on the DPLL framework repeatedly selattsassigned variable as theanch-
ing variablewhich it assigns to eithdrue or false. After this the solver searches for a satisfying assign-
ment in the reduced search space. If no such assignmerg thegprocedure backtracks and assigns the
branching variable to the opposite value.

The default SAT solver used by Tarmo is MiniSAT 2.0 without gimplifier [8] but it can easily be
replaced with any otheronflict drivenSAT solver which supportsicremental SATA conflict driven
SAT solver derives, olearns new clauses as it is working its way through the problem&de space.
Theselearned clausesan be seen as additional lemmas that help the solver to padisl of the search
space that contain no solutions. In a typical SAT solver thases of the input formula are kept in the
problem clause databasehereas the learned clauses are inl¢faened clause database

1.1 Incremental SAT

In a number of applications, including BMC, SAT solvers asedito solve a set of formulas that share
a large number of clauses. If we were to solve these indepdgideach solving process may make the

same inferences, expressed as learned clauses, aboutrthengsubset of the formulas. To avoid this

repeated effort it would be desirable to reuse learned etabistween the consecutively executed solving
processes, which is what amcrementalSAT solver is good for.

Example 1.1 Assume that we wish to sequentially solve the formulgs, F, ..., F, ) for which
Fi= Uij:1 Pj, i.e. each formuld; equals the union of the previous formia ; and a new set of clauses
P;. Exploiting the incrementality of the sequence to reusenksd clauses is easy in this case: We can
simply place the clausds; in the solver, solve, report the result fBg, addP, to the solver, solve, report
the result forF,, add P3z and so on. All learned clauses remain logical consequenédiseoproblem
clauses throughout this sequence, so all learned clausebeaeused in consecutive runs.

Unfortunately, for most applications, including ours, dies not hold that each formula is a superset
of the preceding formula as in Example]1.1. If we want to sdale consecutive formulas we may
not only need to add clauses to the solver, we also may neeshtove some. However, if we remove
clauses from the problem clause database the clauses iaaimed clause database may no longer be
implied by the problem clauses. The concepas$umptionsvas first introduced in_[9] and it offers a
way around this problem. Only a simple modification to a stsad®BAT solver is required; the addition
of the possibility to solve the formula in the problem claukdabase under a set asumptions An
assumption is simply a variable assignment. We will showt mdw this is sufficient.

Example 1.2 Assume again that we wish to sequentially solve the formutas F», ..., F, ) but now
eachF =QjuU Uij:1 P, i.e. each formulds; now contains a subset of claus@sthat is contained only in
Fi. Let{ x1, X2, ..., Xy } be a set offreevariables, i.e. a set of variables that do not occur in anyusk
in any of the formulas in the sequence. Qgt= { C; vV | Cj € Q; }. Note that if xis assigned the value



64 Tarmo: A Framework for Parallelized BMC

false then formulaQ; becomes equivalent ©@;. If, however, xis assigned the valuiue, then formula
Q{ becomes equivalent toue. As x occurs only in the clauses & and its negation-x; does not occur
in any clause, the solver may freely choose to assidgimexvaluetrue unless we force it otherwise, which
we may do by means of an assumption.

We proceed in almost the same way as in Exaimple 1.1: simptg pkee clause®, and Q] in the
solver, solve under the assumption=xfalse, report the result fof~,, addP, and Q’2 to the solver, solve
under the assumption x= false, report the result folF,, addP3; and Q and so on.

As we never actually remove a clause from the problem claatsddse, we do not affect the consis-
tency of the learned clause database.

We use the BMC encoding of [12] 4] to generate the SAT ins&ndeor the remainder of this
paper we will represent an encoded BMC instance as a seqoéfmenulas ( F%,l(p, Fﬁ,l(p, - FR‘M, )

for which F}Wp C F'lf,l(p for any k > i. Furthermore there exists a corresponding sequence ailesi

( X1, X2, ..., Xn ) Such thaﬂ:i,\,l(p/\ —x; is satisfiable iff there exists a counterexample of lengibainst
property@ in modelM.

Corollary 1.1 If Fl, = C; then for any k> i it holds thatFyy,, = C;.

From experiments in the early stages of this project we fonunidthat it is not uncommon for the
separate SAT instances in a formula sequence to take sevienaks to solve while the whole sequence
could have been solved using an incremental SAT solver énthem one minute. The use of incremental
SAT is thus crucial for performance when solving BMC insesicwhich makes general purpose dis-
tributed SAT solvers unsuitable for solving them. In thip@awe present approaches to parallelizing
the solving of BMC instances while maintaining the efficign€incremental SAT. One of our main con-
tributions is the introduction of a generic architecturedshared clause database which allows sharing
clauses between incremental SAT solver threads, allovohgss to easily pick only those clauses from
the database that are implied by their own problem claudeite vequiring only a small amount of book-
keeping. We demonstrate the feasibility of our design inremments where multiple solver threads can
access shared memory, as well as for environments whererdbheads communicate through a net-
work.

In contrary to the approach presented for distributed bedmdodel checking of safety properties in
[1] the correctness of our clause sharing mechanism is merdkent on the chosen encoding of BMC
instances into incremental SAT. Our framework can thus ywaeenefit from future improvements in
such encodings. We chose to use the current state-of-tlemending presented inl[4] which allows us
to check for safety as well as liveness properties, thus varg@n important limitation of the mentioned
earlier work.

2 Multithreaded BMC

Our multithreaded environment is one where multiple solliezadsS={ s, 1, ..., Sy } arerunon a
single shared memory system. All the solver threads attéonftd a counterexample against property
@ in modelM, but they are not necessarily looking for counterexamptéeesame length. This means
that in each solver threasl the problem clause databaseontains exactly the clauses i for
some boundsbnds), the solver bound Furthermore, letinbndS) = min{ sbnds) | s € S} and
maxbndS) = max sbnds) | s € S} be the smallest respectively the largest solver bound ast@my

of the solver threads i8.
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Let LDy be thelearned clause databas# solver threads. By definition each clause in the learned
clause database is implied by the clauses in the problerseldatabase, so for eaChe L Dy it holds
thatFan ™ = Cj.

The shared clause database a data structure accessible by each solver thread forutpoge of
sharing learned clauses between solver threads.

2.1 Approaches

In our framework solver thread attempts to solve the formuaf,lbgdS). Two solver threads;,s; € S
may have the same solver bound, i.e. it may hold #tmids ) = sbnd’s;), in which case both solver
threads are solving the same formula. A related approachiohano two threads are ever searching
for a counterexample of the same length is presented in flthés checking of safety properties. The
restriction that no two threads must be solving the exacesfnmnmula may seem like it can only have
positive effects, but this is not the case. The reason isatie df robustness of a SAT solving process.
Modern SAT solvers usually use some randomization, and altieid randomization the run time of a
SAT solver may vary greatly for multiple runs of the same splon the same formula when a different
random seeds used. Recent work on distributed SAT solvingl[13, 14] hasficmed that this can be
exploited to achieve remarkable reductions in the expeeiadimes by simply running the same ran-
domized SAT solver on the same formula multiple times in pelraith different random seeds until one
of them finishes. By sharing clauses amongst these soheadhrthose results can be further improved.
The authors of([11] use a similar method for distributed SAlviag where they also consider using
different search strategies in different threads (e.dgeidiht solver parameter settings or even completely
different SAT solvers).

A simple analogue to the described simple distribution m@shfor SAT that fits our framework
is to make each solver thread independently act just likectveventional single-threaded approach
CONV that we described earlier. We will call this approadiyLTICONV.

An approach similar to the one proposed_ih [1] in which eadhesdhat has finished starts to search
for a counterexample of the smallest length that no threadsteated searching for (i.maxbndS) + 1)
we callMULTIBOUND. In that approach the cores individually no longer followe #ame scheme as
CONV.

2.2 Clausebound

For a claus&; let theclause bound cbn@;) be a number such th& bgdcj) = Cj. We use this clause

bound for sharing learned clauses between solver threddscl@use bound can be used to ensure that
a solver thread; only receives those shared clauses that are implied by dluses$ in its problem clause
database, as this holds at least for all clae®r which cbnd(Cj) < sbnds). To allow clause sharing
whenever possible we would likebndCj) to always be theminimal bound at whichC; is implied

by the problem clauses, but this is hard to calculate and ewptired for correctness. In fact, a safe
approximation for the clause bound of any clause that i®eiththe problem clause database of solver
threads, or learned by that thread, would bends)).

In our implementation we calculate a clause bound for eaalsel only once, after which it is stored
with the clause. With all claus&s; in the problem clause database we sttvedC;) = min{ k| C; €
FKM, }, i.e. the first bound at which the clause appeared in the sgao$es. Note that a learned clause
is always derived from a number of other clauses. For a lelactaiseC; derived from the set of clauses
P, we storecbnd(Cj) = maxX cbndCy) | Cc € P }, i.e. the maximum clause bound stored with any of the
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clauses irP. Finding the maximum clause bound of all clauses in the glpyicmall setP takes only a
negligible amount of time.

2.3 Shared clause database organization

The shared clause database is organized as a set of URYER), -- -, Qmaxbngs) }- AS the number of
queues is dependent omaxbndS) a new queue must be created whenewaxbndS) increases. This
means that whenever a solver threpd S starts to solve the problem for a bound that no other solver
had reached up to that point it has to create a new queue il#nedsclause database.

Each claus€; € LDy that solver thread, wants to enter into the shared clause database should be
pushed into queu@cpngc;)- Note that this is the queue corresponding to cldLjseclause boundEach
clauseC; in queueQ has aclause index (Qx,C;j). The first clause to be pushed into an empty queue
gets clause index 1, and every clause pushed into a non-emete gets the number of its predecessor
incremented by 1. Furthermore we defip@x,s) as the highest clause index amongst the clauses in
Qk that solver thready knows about. If solves has never read from nor written to queQg then
P(Q«:s) =0.

Each queue can be locked separately. Furthermore thens exis readers-writer lock for the
whole shared clause database. A readers-writer lock caicderad by multiple threads at the same
time for reading or exclusively by one thread for writing.althread wants to add a queue to the shared
clause database it must acquire the Ibdhr writing. Threads that want to lock a separate queue fgr an
type of access must first acquire lockor reading. This mechanism is required because existiegeg
may be relocated in memory when a new queue is added to tHeedata

Example 2.1 Assume an environment in which two simultaneously worloh@sthreads S= { 5, s1 }
exist, let sbn@sy) = 21 and sbnds;) = 22. A possible state of the shared clause database in this envi-
ronment is the one depicted in Figl 1. The pointef®49, ) and pQ2o,S1) indicate that both solver
threads have seen all clauses in queug.Gbolver thread ghas also seen all clauses from queug,Q

but as its solver bound is smaller th&2 it is not allowed to synchronize with queues3o it knows
none of the clauses in there. One may also observe that ar sbtead g has not seen the clausds- 5

in queue Q; they must have been put there by solver thread s

—p(Q21~,50)
p(Q20,50) |6] CH
p(Q20,51) |5 CH
—P(sz,Sl)
4] c 4| cz
3 c?
2| o2
1| o2
~— p(Q22, 50)
Q21 Q22

Figure 1: Shared clause database example
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2.4 Synchronizing with the shared clause database

As explained in Subsection 2.2, all clausgdor which cbndCj) < sbnds)) are implied by the problem
clauses in solver threag, which means thag can safely introduce all clauses from the queQgdor

k <sbnds) to its shared clause database. As it does this it only hasitbalauses it has not read before,
so it can start reading from the clause with clause inol@,s) + 1.

A clauseC; can be removed from the queQg by the last solver threagl ¢ Sthat reads it, i.e. when
s finds after reading that for ad},, € Sit holds thatp(Qx,sm) > q(Qx,C;). If a solver threads wishes to
insert a set of clauses into queQg it must first lock that queue, then read all the clauSgfom it for
which q(Qx,Cj) > p(Qx,s). Only after this it may write the new clauses to the queue arallyiit may
proceed to unlock it. It is necessary tlsateads unread clauses fra@a before writing anything to it as
otherwise the queue ends up in a state where clauses not Know/mprecede clauses known gy In
such a state we would no longer be able to use the clause indelxamism to identify which clauses in
the queue the solver does not yet know.

Each solver thread € Shas a local clause statkSg C LDy that contains all clauses learned sy
that have not yet been placed in the shared clause datali@selalises in stadkS; can be moved to the
shared clause database at regular intervals. As we havadalauses from the database before writing
to it, these points form the synchronization points of solheeads with the shared clause database.
The pseudocode for the synchronization procedure is stat&fjorithm[2.1. We chose to execute this
synchronization at evergestart (see e.g.[[15]), as restarts happen regularly but only &fning a
substantial amount of new clauses, and because they argpgousd for introducing new learned clauses
as all assignments of branching variables are undone.

Algorithm 2.1 Synchronizing solver threag with the shared clause database.

1. lock readers-writer lock for reading
2. for all Qx such thak < sbnds)
3. lock queueQk

4. Read clause§C;j | Cj € Qx, d(Qk,Cj) > p(Qk,s) } from the database

5. Push clause§C;j | Cj € LSy, cbndC;) =k } into Q

6. newmin:= min{ p(Qx,Sn) | Sn€ S}

7. Remove all clausesC; | C; € Q, q(Qx,Cj) < newmin} from the database
8. unlock queueQy

9. end for

10. unlock readers-writer lock

11.LS:=0

As an optimization to this basic scheme our implementatisshps clauses; for whichcbnd(Cj) <
minbndS) into Quinbngs) instead of iNtoQcbndc;)- This means that no clauses are pushed into queues
corresponding to bounds that are no longer being solved Yogalmer thread. As a result the queu@s
for k < minbnd'S) will eventually become empty after which they may be congjetliscarded.

2.5 Benchmarks

We obtained the benchmark set used_ in [4], to which we wiltras LMCS06, and the benchmark suites
L2S, TIP and Intel from the set of benchmarks used for the Ward Model Checking Competition in
2007 (HWMCCO07)[[5]. Each of the benchmarks represents a hddnd propertyp, which can serve
as input to, for example, the model checker NuSMV [6].



68 Tarmo: A Framework for Parallelized BMC

This model checker includes an implementation of the emgpgiresented in_[4]. Unfortunately
NuSMV is linked to an incremental SAT solver directly (e.gilMBAT) and thus the actual encoding of
a benchmark into clauses that are fed to that solver doeseconte visible to its users.

We use a modified version of NUSMV version 2.4.3 which strerasequence of formulas encod-
ing a benchmark into a file rather than attempting to solvediformulas with its linked-in SAT solver.
For benchmarks from HWMCCO7 for which it was known beforeh#imat the shortest existing coun-
terexample was of lengtk a formula sequence of lengkht 11 was generated, i.e. the largest formula
represented in the file corresponds to the existence of a@e@@xample of lengtltk+ 10. For all other
benchmarks the sequence was generated up to length 5Qkeilargest formula represented in the file
corresponds to the existence of a counterexample of ler@fih As no suitable file format existed for
these incremental SAT problems we defined our own fordeatt{tNF@.

All of the obtained benchmarks were translated into a serpiefformulas as described. iCNF is
Tarmo’s input file format, so in the remainder of this papeendver we speak of a benchmark we mean
these translations. We consider a benchmark solved whemalfmin the sequence is found satisfiable,
which corresponds to the existence of a counterexamplehenwll formulas in the sequence are found
unsatisfiable, which corresponds to the nonexistence oliatecexample of length at most 500. We
removed all benchmarks from our benchmark set that can bedabithin 10 seconds by the single-
threadedCONV approach. The resulting set contains 134 benchmarks.

2.6 Experiments

In this subsection we present experimental results witferdiht approaches to exploiting multi-core
environments for BMC. All results in this subsection weréaited using a single workstation from the
set of 20 workstations found in our department’s clusterchBaorkstation is equipped with two Intel
Xeon 5130 (2 GHz) Dual Core processors and 16 GB of RAM.

Figures 2 andl3 are “cactus plots”: such plots are tradilipnesed by the organizers of the SAT
competitions[[2] for comparing SAT solvers. In a cactus piate is on the vertical axis and the number
of instances solved is on the horizontal axis. From[Big. 2came for example, see that for 97 benchmarks
in the set the run time dEONV is under twenty minutes, and that for 105 benchmarks theimm of
CONYV is under one hour.

The execution of the single-thread€DNV obviously required the use of only a single core of
one of our workstations, but, as will become clear laters iiniportant to note that care was taken to
keep the other three available cores in that same workstatie. The results presented fGIONV are
the run times of a single execution, OONV was executed in total four times for each benchmark.
4xCONV is an artificial variant that reports the fastest of those fesults for each benchmark. This is
meant to illustrate how the run time of a SAT solver variesmp@ardue to the random choices it makes,
and how this can be exploited to achieve reductions in thearp run time, as can be clearly seen from
Fig.[2.

Unfortunately if we execute the four independent run€afNV in parallel on the same four core
workstation the results are not as positive. This is bectheseores slow each other down as they share
resources like the memory bus and parts of the cache. Theivegasult can be clearly seen in the
scatterplot presented in Figl. 4 as well as in the cactus pestemted in Fig.]2. From that cactus plot
it can be seen how the result of this naive parallelizatiohjctv we will refer to asM ULTICONV-
SIMPLE, is even slower than the single-threaded var@@®NV for many of the simpler benchmarks.

1For a detailed description, and tools for handling iCNF fifgease checkttp://www.tcs.hut.fi/~swiering/icnf/
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Figure 3: Cactus plot showing the improved multithreadetibws.
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Figure 6: Scatterplot comparing ULTICONV with MULTIBOUND.

However, it does manage to solve a couple of benchmark<@atVv could not solve within an hour.

Fortunately we can exterdd ULTICONV-SI M PL E with clause sharing to improve its performance.
MULTICONV-FULL is a version which implements shared clause database gyizhtions by every
solver thread as described in Subsection 2.4. Although anesee from the cactus plot presented in
Fig.[2 that the average performance improves after addagsel sharing, the scatterplot in Hi§. 5 shows
that sharing clauses sometimes harms performance. Thisavasexpected as too many learned clauses
are not beneficial to any SAT solver. In fact, to reduce theatieg effects of large learned clause
databases SAT solvers occasionally delete learned clauses

In distributed SAT solvers various ways of limiting the nuentof shared clauses can be found. A
common approach, found for example inl[11], is to share ofdyses whose length is shorter than
some constant. This crude approach is justified by the olsernvthat shorter clauses represent stronger
constraints. We have tried several such constants in otribdited BMC framework but we achieved
better average results with varidvitJLTICONV-ADAPTIVE which uses an adaptive heuristic to limit
clause sharing. It shares only clauses whose length isentladin or equal to the continuously recalcu-
lated average length of all clauses it ever learned. The@paence improvement can be clearly seen in
Fig.[3.

In all of our MULTICONYV variants presented so far the search space is pruned diffeom each
core only because of the effect of the randomization usedd$AT solvers. To force a more diversified
search we can use different search parameters in diffdrerads.

One of MiniSAT’s search parameters is thelarity modewhich can be eithenegativeor positive
The default isnegative meaning that for every branching variable MiniSAT triesagsign the value
false first. In any case, MiniSAT selects the same value first camsetty for each branching variable,
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which seems to be surprisingly effective [16]. The defaolbapty modenegativeworks best in practice
for “industrial” SAT instances, which is solely caused bg thiay people tend to encode their problems.

We obtained the best results in our four-threaded environmvih a variant we calM ULTICONV-
TARMO. ltis the same astULTICONV-ADAPTIVE except that in one of the four solver threads we
use the polarity mod@ositive This further diversifies the search, which causes a clepravement
of the performance as can be seen from Eig. 3. Using polaritgtepositivein two of the four solver
threads performed less well for our benchmarks.

We have also tested thé¢ ULTIBOUND approach. Just as fsd ULTICONV we tested variants us-
ing full clause sharing, using our adaptive clause sharmgiktic, and with one solver using the opposite
polarity mode setting. In the cactus plot presented in[Fanl@ this last variant, calle ULTIBOUND-
TARMO, is plotted. One can see that this version performs on ageyaie similarly to the equivalent
MULTICONYV variant. Surprisingly enough the average performance @i BHJLTIBOUND variant
was similar to that of the equivaleMULTICONYV variant. This similar average performance is espe-
cially interesting since the performance for individuahblemarks is very different, as can be seen from
the scatterplot presented in Hig. 6. It thus seems thavitbe TICONV andM ULTIBOUND approach
are both useful, but complementary, approaches.

3 BMC for workstation clusters

Now that we have demonstrated the significant speed-upsvhatn obtain using our multithreaded
variants of Tarmo we will discuss approaches which distelvuns of Tarmo over several multithreaded
workstations. A distributed SAT solver for a similar enviment is presented i [17]. The workstations
in our department’s computing cluster that were alreadytimeed in Subsection 2.5 are all connected
by 1 gigabit Ethernet connections through a cluster switch.

Our environment can be defined as aBet { D, &, S, ..., S } in which D refers to the single-
threadedDatabase Interface ProcegBIP), and eaclf is a worker, which is simply a set of solver
threads on a single multi-core workstation as defined ini@®@& Each multithreaded environmeit
uses one of our multithreaded Tarmo variants to find a coexdéenple against propertyin modelM.

The DIP is a process which stores tilebal shared clause databgsand provides an interface to it
for the solver threads. It does not manipulate the databa#edif.

For the remainder of this section re'; refer to queu&)y in the local shared clause database of worker
S, andQE refer toQ in the global shared clause database stored in the DIP.dfartne, let; be the
readers-writer lock for the local shared clause databas®kerS.

3.1 Global shared clause database organization

The global shared clause database is a data structure whiglmost identical to the shared clause
database found in each worker process. The difference fsttismaccessed by the workers, rather
than by their individual solver threads. For each queuekwopair(QE,S) the clause database stores
p(QP,S) which is the highest clause index of the clauseQfwhich workerS knows about.

Only one worker can access the global shared clause databdsesame time because the DIP is
single-threaded. This simplifies the design as well as ptéwg possible network congestion due to
multiple workers accessing the database simultaneously.
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3.2 Global database synchronization

Whenever a worker wishes to share clauses with other wqrkaesof its threads performs a synchro-
nization with the global shared clause database througtReThis synchronizes the worker’s local
shared clause database with the global shared clause siataba

Recall from Subsectioh 2.3 that we have for each thrgad S and queueQL a clause index
pP(Q,Sm). The local database of each workgris extended withp(Q,, D) for each queu&}, where
p(Qik, D) is defined as the highest clause index amongst all clauié§tmat are known to the DIP.

The synchronization process begins with a woigesending a message to the DIP, informing it that
it is prepared for a synchronization. The DIP gathers fo@glithe clauseg Cj | Cj € QR, q(QP,Cj) >
p(QR,S) } and places all of them in a buffer. The whole buffer is thert semorkerS at once.

When the worker has received the clause buffer from the D#Raits a synchronization procedure
which is described in Algorithrih 3. 1. As with local synchroaiions, care must be taken to ensure that
writing new clauses to a queue always follows a lock and a, ieadrder to prevent unknown clauses
preceding known clauses in the queue.

Algorithm 3.1 Synchronizing worker;Svith the global shared clause database.

1. LetRbe the set of clauses received fr@m
2. B==0

3. lock readers-writer lock; for reading

4. for all Q, such thak < maxbndS)

5. lock queueQ

6. Read clause§C;j | Cj € Q,, a(Q,Cj) > p(Q,,D) } and append them B
7. Push clause§C; | Cj € R, cbndCj) =k } into Q

8. newmin=min({ p(QkSn) |SneS } U { p(Q.D) })

9. Remove all clausesC; | Cj € Q,, 9(Q},Cj) < newmin}

10.  unlock queueQ;

11. end for

12. unlock readers-writer lock

13. SendBto D

Upon receiving the worker’s learned clauses after the Isgathronization has taken place, the DIP
can write them to the global shared clause database. Thegzraccompleted and the DIP awaits another
request.

3.3 Experiments

We have tried several approaches to distributing Tarmo iovee than one workstation. Our best multi-
threaded variants turned out to be very robust. Simply ngthie same multithreaded variant multiple
times with different seeds in parallel on several worketegiand reporting the result when the first one
finishes hardly decreases the expected run time. From theriments in Subsectidn 2.6 we concluded
that ourMULTICONV-TARMO andMULTIBOUND-TARM O variants both have good average per-
formance but are complementary. This observation inspisetb a simple distribution over two work-
stations where the two different approaches are each rursomgke workstation. In this way we obtain
a result for each benchmark in exactly the amount of timekiseor the fastest of the two to finish.
We have named this variaMULTICONVXMULTIBOUND. It was calculated from the earlier single
workstation results rather than actually executed on twikstations in parallel. In this case this should,
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however, not make any difference to the result, as two watksts can function completely indepen-

dently, at least assuming that they both already have thé filp stored locally before starting the run.

From Fig[T an improvement on the number of instances solvgdnaan hour can be seen. When one
takes another look at Figl 6 in Section]2.6 one realizes @nahfny individual benchmarks the speed-up
is significant as the achieved performance is the best ofstbevariants plotted there.

The cactus also shows the variddtSTRIBUTED. This is a truly distributed program that uses
MPI version 2.0[[10] for communication between workstasiorTo obtain each result for that variant
we used three workstations in total: one runnM@LTICONYV, one runningMULTIBOUND, and
one running the DIP. The single-threaded DIP was run on desimngrkstation in which the other three
available processor cores were kept idle for the purposétaiing these results. In a practical setting
one will most likely not want to reserve an entire workstatior the single-threaded DIP, but as the DIP’s
computational load is not very high, relaxing that resipictshould not cause a significant performance
decrease. It may even be a good choice in practice to run theoBkhe cluster'sront-end which in a
typical cluster setup is a single workstation through whatltommunication with machines outside the
cluster takes place.

Note that in varianDISTRIBUTED we use the global shared clause database stored in the DIP
to share clauses between a workstation runtvigLTICONV-TARMO and a workstation running
MULTIBOUND-TARMO. Our clause database design ensures that this does notargusemplica-
tions. After testing several approaches we chose to haverkewmitiate a synchronization with the
global shared clause database whenever one of its soheadiincreases its solver bound, i.e. every
time a solver thread finds a formula unsatisfiable. From [Big.can be seen that this simple global
clause sharing setup improves the average performance.

This performance can probably be improved more by intratuei clever heuristic for limiting the
number of clauses shared as we did for the multithreadedagpipes. We chose not to further investigate
such variants in this paper. The performance increasendutas mainly due to using two complemen-
tary multithreaded approaches. As those are very robusbagipes the performance of this distributed
version of Tarmo will not scale beyond two workstations. @pald try to define more multithreaded
approaches with good average performance to obtain moreleomentary approaches that can be run
in parallel but this is unlikely to scale much further.

This distributed framework with its generic shared claus&lase architecture will be very useful to
our future work. We plan to investigate approaches that eaech space splitting amongst the worksta-
tions, in order to allow our system to scale to larger numbémsorkstations. A possible way of doing
this would be to split the formulas usimgiding pathg[18]].

4 Conclusion

In this paper we have presented the Tarmo framework for beimdodel checking using multi-core
workstations as well as clusters of them. One novel feattiepframework for distributed BMC is
that it allows using any encoding of BMC instances into inceatal SAT. In our experiments we use the
encoding presented inl[4], which means that we are able tckcbefety as well as liveness properties
with all variants of Tarmo discussed in this paper.

An important contribution found in this work is our genericlaitecture for a shared clause database
for multiple incremental SAT solver threads working on part the same incremental SAT encoding of
a BMC instance. Together with our definitions fdause boundndsolver boundit allows the sharing
of clauses while requiring very little bookkeeping to makeesthat solver threads only obtain those
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Figure 7: Performance of the multiple workstation Tarmaasats.

clauses that are are actually implied by their set of probtéauases. It has been demonstrated how the
architecture can be employed for solver threads operatispared-memory environments as well as for
solver threads that communicate through a network using MPI

Our multi-core variants of Tarmo obtained good speed-ups tdwe conventional single-threaded
approach. This is an important result as multi-core hardvimmow widely available, and thus many
BMC users can benefit from this. Furthermore the two multeo@riants presented 8ULTICONV-
TARMO andMULTIBOUND-TARMO turned out to be complementary approaches which both have
good average performance.

We exploited these complementary variants in a setting whges multiple workstations. We ob-
tained a speed-up over the single workstation versiongydmgibly more interestingly showed the feasi-
bility of clause sharing between workstations using ourethalause database architecture. This will be
a very useful result for future distributed versions of Taran even other distributed BMC approaches.
To improve the rate at which the performance scales with theber of workstations used such future
versions may, for example, split the search space into pheltiisjoint parts. Such techniques are easy
to implement within our framework, as our shared clausel#s@a architecture allows clause sharing
between any solver thread that is working on parts of the saaremental SAT problem, regardless of
the solving strategy it uses.

Our Tarmo implementation is available attp://www.tcs.hut.fi/~swiering/tarmo/.
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