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t A new unfolding approa
h to LTL model 
he
king is pre-sented, in whi
h the model 
he
king problem 
an be solved by dire
tinspe
tion of a 
ertain �nite pre�x. The te
hniques presented so far re-quired to run an elaborate algorithm on the pre�x.1 Introdu
tionUnfoldings are a partial order te
hnique for the veri�
ation of 
on
urrent and dis-tributed systems, initially introdu
ed by M
Millan [11℄. They 
an be understoodas the extension to 
ommuni
ating automata of the well-known unfolding of a�nite automaton into a (possibly in�nite) tree. The unfolding te
hnique 
an beapplied to systems modelled by Petri nets, 
ommuni
ating automata, or pro
essalgebras [4, 3, 10℄. It has been used to verify properties of 
ir
uits, tele
ommuni-
ation systems, distributed algorithms, and manufa
turing systems [1℄.Unfoldings have proved to be very suitable for deadlo
k dete
tion and invari-ant 
he
king [11℄. For these problems, one �rst 
onstru
ts a so-
alled 
ompletepre�x [4℄, a �nite initial part of the unfolding 
ontaining all the rea
hable states.This pre�x is at most as large as the state spa
e, and usually mu
h smaller (oftenexponentially smaller). On
e the pre�x has been 
onstru
ted, the deadlo
k de-te
tion problem 
an be easily redu
ed to a graph problem [11℄, an integer linearprogramming problem [12℄, or to a logi
 programming problem [8℄.In [2, 7℄ and [17, 16℄, unfolding-based model 
he
king algorithms have beenproposed for a simple bran
hing-time logi
 and for LTL, respe
tively. Althoughthe algorithms have been applied with su

ess to a variety of examples, they arenot 
ompletely satisfa
tory: After 
onstru
ting the 
omplete pre�x, the model
he
king problem 
annot be yet redu
ed to a simple problem like, say, �nding
y
les in a graph. In the 
ase of LTL the intuitive reason is that the in�nitesequen
es of the system are \hidden" in the �nite pre�x in a 
ompli
ated way.In order to make them \visible", a 
ertain graph has to be 
onstru
ted. Unfor-tunately, the graph 
an be exponentially larger than the 
omplete pre�x itself.? Work partially supported by the Teilprojekt A3 SAM of the Sonderfors
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Niebert has observed [13℄ that this exponential blow-up already appears in a sys-tem of n independent pro
esses, ea
h of them 
onsisting of an endless loop withone single a
tion as body. The 
omplete pre�x has size O(n), whi
h in prin
ipleshould lead to large savings in time and spa
e with respe
t to an interleavingapproa
h, but the graph is of size O(2n), i.e. as large as the state spa
e itself.In this paper we present a di�erent unfolding te
hnique whi
h over
omes thisproblem. Instead of unrolling the system until a 
omplete pre�x has been gener-ated, we \keep on unrolling" for a while, and stop when 
ertain 
onditions aremet. There are two advantages: (i) the model 
he
king problem 
an be solved bya dire
t inspe
tion of the pre�x, and so we avoid the 
onstru
tion of the possiblyexponential graph; and, (ii) the algorithm for the 
onstru
tion of the new pre�xis similar to the old algorithm for the 
omplete pre�x; only the de�nition of a
ut-o� event needs to be 
hanged. The only disadvantage is the larger size of thenew pre�x. Fortunately, we are able to provide a bound: the pre�x of a systemwith K rea
hable states 
ontains at most O(K2) events, assuming that the sys-tem is presented as a 1-safe Petri net or as a produ
t of automata1. Noti
e thatthis is an upper bound: the new pre�x is usually mu
h smaller than the statespa
e, and in parti
ular for Niebert's example it grows linearly in n.The paper is stru
tured as follows (for detailed de�nitions and proofs seethe full version [5℄). Se
tion 2 presents the automata theoreti
 approa
h to LTLmodel 
he
king. In Se
t. 3 the unfolding method is introdu
ed. Se
tions 4 and5 
ontain the tableau systems for the two subproblems. In Se
t. 6 we show howLTL model 
he
king 
an be solved with the presented tableau systems. In Se
t. 7we 
on
lude and dis
uss topi
s for further resear
h.2 Automata theoreti
 approa
h to model 
he
king LTLPetri nets. We assume that the reader is familiar with basi
 notions, su
h asnet, preset, postset, marking, �ring, �ring sequen
e, and rea
hability graph. We
onsider labelled nets, in whi
h pla
es and transitions 
arry labels taken from a�nite alphabet L, and labelled net systems. We denote a labelled net system by� = (P; T; F; l;M0), where P and T are the sets of pla
es and transitions, F isthe 
ow fun
tion F : (P � T ) [ (T � P ) ! f0; 1g, l:P [ T ! L is the labellingfun
tion, and M0 is the initial marking.We present how to modify the automata theoreti
 approa
h to model 
he
k-ing LTL [15℄ to best suit the net unfolding approa
h. For te
hni
al 
onvenien
ewe use an a
tion-based temporal logi
 instead of a state-based one, namely thelinear temporal logi
 tLTL0 of Kaivola, whi
h is immune to the stuttering of in-visible a
tions [9℄. With small modi�
ations the approa
h 
an also handle statebased stuttering invariant logi
s su
h as LTL-X. Given a �nite set A of a
tions,and a set V � A of visible a
tions, the abstra
t syntax of tLTL0 is given by:' ::= > j :' j '1 _ '2 j '1 U '2 j '1 Ua '2; where a 2 V1 More pre
isely, the number of non-
ut-o� events is at most O(K2).



Formulas are interpreted over sequen
es of A!. The semanti
s of '1 U '2 isas expe
ted. Loosely speaking, a sequen
e w satis�es '1 Ua '2 if '1 holds untilthe �rst a in w, and then '2 holds2.Given a net system � = (P; T; F; l;M0), where the transitions of T are la-belled with a
tions from the set A, and a formula ' of tLTL0, the model 
he
kingproblem 
onsists of de
iding if all the in�nite �ring sequen
es of � satisfy '.The automata theoreti
 approa
h atta
ks this problem as follows. First, apro
edure similar to that of [6℄ 
onverts the negation of ' into a B�u
hi automatonA:' over the alphabet � = V [f�g, where � 62 A is a new label used to representall the invisible a
tions. Then, this automaton is syn
hronized with � on visiblea
tions (see [5℄ for details). The syn
hronization 
an be represented by a newlabelled net system �:' 
ontaining a transition (u; t) for every u = q a���! q0 inA:' and for every t 2 T , su
h that l(t) = a and a 2 V , plus other transitions forthe invisible transitions of �. We say that (u; t) is an in�nite-tra
e monitor if q0is a �nal state of A:', and a livelo
k monitor if the automaton A:' a

epts anin�nite sequen
e of invisible transitions (a livelo
k) with q0 as initial state. Thesets of in�nite-tra
e and livelo
k monitors are denoted by I and L, respe
tively.An illegal !-tra
e of �:' is an in�nite �ring sequen
e M0 t1t2:::������! su
h thatti 2 I for in�nitely many indi
es i. An illegal livelo
k of �:' is an in�nite �ringsequen
e M0 t1t2:::ti�������! M ti+1ti+2:::���������! su
h that ti 2 L, and ti+k 2 (T n V )for all k � 1. We have the following result:Theorem 1. Let � be a labelled net system, and ' a tLTL0-formula. � j= ' ifand only if �:' has no illegal !-tra
es and no illegal livelo
ks.The intuition behind this theorem is as follows. Assume that � 
an exe
utean in�nite �ring sequen
e 
orresponding to a word w 2 (V [ f�g)! violating '(where `
orresponding' means that the �ring sequen
e exe
utes the same visiblea
tions in the same order, and an invisible a
tion for ea
h �). If w 
ontainsin�nitely many o

urren
es of visible a
tions, then �:' 
ontains an illegal !-tra
e; if not, it 
ontains an illegal livelo
k.In the next se
tions we provide unfolding-based solutions to the problemsof dete
ting illegal !-tra
es and illegal livelo
ks. We solve the problems in anabstra
t setting. We �x a net system � = (P; T; F;M0), where T is divided intotwo sets V and T nV of visible and invisible transitions, respe
tively. Moreover, T
ontains two spe
ial subsets L and I . We assume that no rea
hable marking of �
on
urrently enables a transition of V and a transition of L. We further assumethat M0 does not put more than one token on any pla
e. In parti
ular, whenapplying the results to the model 
he
king problem for tLTL0 and Petri nets, thesystem � is the syn
hronization �:' of a Petri net and a B�u
hi automaton, andit satis�es these 
onditions. We use as running example the net system of Fig. 1.We have V = ft6g, I = ft1g, and L = ft2g. The system has illegal !-tra
es (forinstan
e, (t1t3t4t6t7)!), but no illegal livelo
ks.2 Kaivola's semanti
s is interpreted over A�[A!, whi
h is a small te
hni
al di�eren
e.
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 de�nitions on unfoldingsIn this se
tion we brie
y introdu
e the de�nitions we need to des
ribe the un-folding approa
h to our two problems. More details 
an be found in [4℄.O

urren
e nets. Given two nodes x and y of a net, we say that x is 
ausallyrelated to y, denoted by x � y, if there is a path of arrows from x to y. We saythat x and y are in 
on
i
t, denoted by x#y, if there is a pla
e z, di�erent fromx and y, from whi
h one 
an rea
h x and y, exiting z by di�erent arrows. Finally,we say that x and y are 
on
urrent, denoted by x
o y, if neither x � y nor y � xnor x#y hold. A 
o-set is a set of nodes X su
h that x 
o y for every x; y 2 X .O

urren
e nets are those satisfying the following three properties: the net, seenas a graph, has no 
y
les; every pla
e has at most one input transition; and, nonode is in self-
on
i
t, i.e., x#x holds for no x. A pla
e of an o

urren
e net isminimal if it has no input transitions. The net of Fig. 2 is an in�nite o

urren
enet with minimal pla
es a; b. The default initial marking of an o

urren
e netputs one token on ea
h minimal pla
e an none in the rest.Bran
hing pro
esses. We asso
iate to � a set of labelled o

urren
e nets, 
alledthe bran
hing pro
esses of �. To avoid 
onfusions, we 
all the pla
es and transi-tions of bran
hing pro
esses 
onditions and events, respe
tively. The 
onditionsand events of bran
hing pro
esses are labelled with pla
es and transitions of �,respe
tively. The 
onditions and events of the bran
hing pro
esses are subsetsfrom two sets B and E , indu
tively de�ned as the smallest sets satisfying:{ ? 2 E , where ? is an spe
ial symbol;{ if e 2 E , then (p; e) 2 B for every p 2 P ;{ if ; � X � B, then (t;X) 2 E for every t 2 T .In our de�nitions we make 
onsistent use of these names: The label of a
ondition (p; e) is p, and its unique input event is e. Conditions (p;?) have no



input event, i.e., the spe
ial symbol ? is used for the minimal pla
es of theo

urren
e net. Similarly, the label of an event (t;X) is t, and its set of input
onditions is X . The advantage of this s
heme is that a bran
hing pro
ess is
ompletely determined by its sets of 
onditions and events. We make use of thisand represent a bran
hing pro
ess as a pair (B;E).De�nition 1. The set of �nite bran
hing pro
esses of a net system � with theinitial marking M0 = fp1; : : : ; png is indu
tively de�ned as follows:{ (f(p1;?); : : : ; (pn;?)g; ;) is a bran
hing pro
ess of �.3{ If (B;E) is a bran
hing pro
ess of �, t 2 T , and X � B is a 
o-set labelledby �t, then (B [f(p; e) j p 2 t�g ; E [feg ) is also a bran
hing pro
ess of �,where e = (t;X). If e =2 E, then e is 
alled a possible extension of (B;E).The set of bran
hing pro
esses of � is obtained by de
laring that the unionof any �nite or in�nite set of bran
hing pro
esses is also a bran
hing pro
ess,where union of bran
hing pro
esses is de�ned 
omponentwise on 
onditions andevents. Sin
e bran
hing pro
esses are 
losed under union, there is a unique max-imal bran
hing pro
ess, 
alled the unfolding of �. The unfolding of our runningexample is an in�nite o

urren
e net. Figure 2 shows an initial part. Events and
onditions have been assigned identi�
ators that will be used in the examples.For instan
e, the event (t1; f(p1;?)g) is assigned the identi�
ator 1.
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Figure 2. The unfolding of �3 This is the point at whi
h we use the fa
t that the initial marking is 1-safe.



Con�gurations. A 
on�guration of an o

urren
e net is a set of events C satis-fying the two following properties: C is 
ausally 
losed, i.e., if e 2 C and e0 < ethen e0 2 C, and C is 
on
i
t-free, i.e., no two events of C are in 
on
i
t. Givenan event e, we 
all [e℄ = fe0 2 E j e0 � eg the lo
al 
on�guration of e. LetMin denote the set of minimal pla
es of the bran
hing pro
ess. A 
on�gura-tion C of the bran
hing pro
ess is asso
iated with a marking of � denoted byMark (C) = l((Min [ C�) n �C).In Fig. 2, f1; 3; 4; 6g is a 
on�guration, and f1; 4g (not 
ausally 
losed) orf1; 2g (not 
on
i
t-free) are not. A set of events is a 
on�guration if and onlyif there is one or more �ring sequen
es of the o

urren
e net (from the defaultinitial marking) 
ontaining ea
h event from the set exa
tly on
e, and no fur-ther events. These �ring sequen
es are 
alled linearisations. The 
on�gurationf1; 3; 4; 6g has two linearisations, namely 1 3 4 6 and 3 1 4 6. All linearisations leadto the same rea
hable marking. For example, the two sequen
es above lead to themarking fp1; p7g. By applying the labelling fun
tion to a linearisation we obtaina �ring sequen
e of �. Abusing of language, we also 
all this �ring sequen
e alinearisation. In our example we obtain t1t3t4t6 and t3t1t4t6 as linearisations.Given a 
on�guration C, we denote by "C the set of events e 2 E, su
h that:(1) e0 < e for some event e0 2 C, and (2) e is not in 
on
i
t with any event ofC. Intuitively, "C 
orresponds to the behavior of � from the marking rea
hedafter exe
uting any of the linearisations of C. We 
all "C the 
ontinuation afterC of the unfolding of �. If C1 and C2 are two �nite 
on�gurations leading tothe same marking, i.e. Mark (C1) = M = Mark (C2), then "C1 and "C2 areisomorphi
, i.e., there is a bije
tion between them whi
h preserves the labellingof events and the 
ausal, 
on
i
t, and 
on
urren
y relations (see [4℄).4 A tableau system for the illegal !-tra
e problemIn this se
tion we present an unfolding te
hnique for dete
ting illegal !-tra
es.We introdu
e it using the terminology of tableau systems, the reason being thatthe te
hnique has many similarities with tableau systems as used for instan
ein [18℄ for model-
he
king LTL, or in [14℄ for model-
he
king the mu-
al
ulus.However, no previous knowledge of tableau systems is required.Adequate orders. We need the notion of adequate order on 
on�gurations [4℄. Infa
t, our tableau system will be parametri
 in the adequate order, i.e., we willobtain a di�erent system for ea
h adequate order. Given a 
on�guration C of theunfolding of �, we denote by C�E the set C[E, under the 
ondition that C[Eis a 
on�guration satisfying C \E = ;. We say that C �E is an extension of C.Now, let C1 and C2 be two �nite 
on�gurations leading to the same marking.Then "C1 and "C2 are isomorphi
. This isomorphism, say f , indu
es a mappingfrom the extensions of C1 onto the extensions of C2; the image of C1 �E underthis mapping is C2 � f(E).De�nition 2. A partial order � on the �nite 
on�gurations of the unfolding ofa net system is an adequate order if:



{ � is well-founded,{ C1 � C2 implies C1 � C2, and{ � is preserved by �nite extensions; if C1 � C2 and Mark (C1) = Mark (C2),then the isomorphism f from above satis�es C1 � E � C2 � f(E) for all�nite extensions C1 �E of C1.Total adequate orders are parti
ularly good for our tableau systems be
ausethey lead to stronger 
onditions for an event to be a terminal, and so to smallertableaux. Total adequate orders for 1-safe Petri nets and for syn
hronous prod-u
ts of transition systems, have been presented in [4, 3℄.4.1 The tableau systemGiven a 
on�guration C of the unfolding of �, denote by #IC the number ofevents e 2 C labelled by transitions of I .De�nition 3. An event e of a bran
hing pro
ess BP is a repeat (with respe
tto �) if BP 
ontains another event e0, 
alled the 
ompanion of e, su
h thatMark ([e0℄) = Mark ([e℄), and either(I) e0 < e, or(II) :(e0 < e), [e0℄ � [e℄, and #I [e0℄ � #I [e℄.A terminal is a minimal repeat with respe
t to the 
ausal relation; in other words,a repeat e is a terminal if the unfolding of � 
ontains no repeat e0 < e. Repeats,and in parti
ular terminals, are of type I or type II, a

ording to the 
onditionthey satisfy.Events labelled by I-transitions are 
alled I-events. A repeat e with 
ompanione0 is su

essful if it is of type I, and [e℄ n [e0℄ 
ontains some I-event. Otherwiseit is unsu

essful.A tableau is a bran
hing pro
ess BP su
h that for every possible extensione of BP at least one of the immediate 
ausal prede
essors of e is a terminal. Atableau is su

essful if at least one of its terminals is su

essful.Loosely speaking, a tableau is a bran
hing pro
ess whi
h 
annot be extendedwithout adding a 
ausal su

essor to a terminal. In the 
ase of a terminal of typeI, "[e℄ need not be 
onstru
ted be
ause "[e0℄, whi
h is isomorphi
 to it, will bein the tableau. In the 
ase of a terminal of type II, "[e℄ need not be 
onstru
tedeither, be
ause "[e0℄ will appear in the tableau. However, in order to guarantee
ompleteness, we need the 
ondition #I [e0℄ � #I [e℄.The tableau 
onstru
tion is straightforward. Given � = (N;M0), whereM0 = fp1; : : : ; png, start from the bran
hing pro
ess (f(p1;?); : : : ; (pn;?)g; ;).Add events a

ording to the indu
tive de�nition of bran
hing pro
ess, but withthe restri
tion that no event having a terminal as a 
ausal prede
essor is added.Events are added in � order; more pre
isely, if [e℄ � [e0℄, then e is added beforee0. The 
onstru
tion terminates when no further events 
an be added.



We 
onstru
t the tableau 
orresponding to the net system of Fig. 1 using thetotal adequate order of [4℄.4 All we need to know about this order is that forthe events 4 and 5 in Fig. 2, [4℄ � [5℄ holds. The tableau is the fragment of theunfolding of Fig. 2 having events 16, 17, and 5 as terminals. Events 16 and 17 areterminals of type I having event 4 as 
ompanion. Event 16 is su

essful be
ausethe set [16℄ n [4℄ = f6; 7; 10; 11; 12; 16g 
ontains an I-event, namely 10. Theintuition behind these terminals is rather 
lear: a terminal of type I 
orrespondsto a 
y
le in the rea
hability graph. Loosely speaking, the events of [16℄ n [4℄
orrespond to a �ring sequen
e leading from Mark ([4℄) to Mark ([16℄), and thesetwo markings 
oin
ide. Sin
e [16℄ n [4℄ 
ontains an I-event, the �ring sequen
e
ontains a transition of I , and so we have found an illegal !-tra
e. The set [17℄n[4℄doesn't 
ontains any I-event, but "[17℄ need not be 
onstru
ted, be
ause it isisomorphi
 to "[4℄. Event 5 is a terminal of type II with event 4 as 
ompanionbe
ause Mark ([4℄) = fp6; p7g = Mark ([5℄), [4℄ � [5℄, and 1 = #I [4℄ � #I [5℄ = 0.The intuition is that "[5℄ need not be 
onstru
ted, be
ause it is isomorphi
 to"[4℄. However, this doesn't explain why the 
ondition #I [e0℄ � #I [e℄ is needed.In [5℄ we present an example showing that after removing this 
ondition thetableau system is no longer 
omplete.Let K denote the number of rea
hable markings of �, and let B denote themaximum number of tokens that the rea
hable markings of � put in all thepla
es of �. We have the following result:Theorem 2. Let T be a tableau of � 
onstru
ted a

ording to a total adequateorder �.{ T is su

essful if and only if � has an illegal !-tra
e.{ T 
ontains at most K2 � B non-terminal events.{ If the transitions of I are pairwise non-
on
urrent, then T 
ontains at mostK2 non-terminal events.5 A tableau system for the illegal livelo
k problemThe tableau system for the illegal livelo
k problem is a bit more involved thatthat of the illegal !-tra
e problem. In a �rst step we 
ompute a set CP =fM1; : : : ;Mng of rea
hable markings of �, 
alled the set of 
he
kpoints. This sethas the following property: if � has an illegal livelo
k, then it also has an illegallivelo
k M0 t1t2:::ti�������!M ti+1ti+2:::���������! su
h that ti 2 L and M is a 
he
kpoint.For the 
omputation of CP we use the unfolding te
hnique of [4℄ or [3℄; thepro
edure is des
ribed in Se
t. 5.1.The tableau system solves the problem whether some 
he
kpoint enables anin�nite sequen
e of invisible a
tions. Clearly, � has an illegal livelo
k if andonly if this is indeed the 
ase. For this, we 
onsider the net Ninv obtained fromN by removing all the visible transitions together with their adja
ent ar
s. We
onstru
t unfoldings for the net systems (Ninv ;M1); : : : ; (Ninv ;Mn), and 
he
k4 We 
an also take the order of [3℄, whi
h for this example yields the same results.



on them if the systems exhibit some in�nite behavior. The tableau system isdes
ribed in Se
t. 5.2.5.1 Computing the set of 
he
kpoints.We 
onstru
t the 
omplete pre�x of the unfolding of � as de�ned in [4℄ or [3℄.In the terminology of this paper, the 
omplete pre�x 
orresponds to a tableauin whi
h an event e is a terminal if there is an event e0 su
h that Mark ([e0℄) =Mark ([e℄), and [e0℄ � [e℄.De�nition 4. A marking M belongs to the set CP of 
he
kpoints of � if M =Mark ([e℄) for some non-terminal event e of the 
omplete pre�x of � labelled bya transition of L.Let us 
ompute CP for our example. The 
omplete pre�x of � 
oin
ideswith the tableau for the illegal !-tra
e problem. The events labelled by t2, theonly transition of L, are 2 and 11. The 
orresponding markings are Mark ([2℄) =fp2; p4g and Mark ([11℄) = fp4; p7g. So CP = f fp2; p4g; fp4; p7g g.5.2 The tableau systemLet fM1; : : : ;Mng be the set of 
he
kpoints obtained in the �rst phase. We willuse �1; : : : ; �n to denote the net systems (Ninv ;M1); : : : ; (Ninv ;Mn).De�nition 5. Let BP1; : : : ;BPn be bran
hing pro
esses of �1; : : : ; �n, respe
-tively. An event e of BP i is a repeat (with respe
t to �) if there is an indexj � i and an event e0 in BP j , 
alled the 
ompanion of e, su
h that Mark ([e0℄) =Mark ([e℄), and either(I) j < i, or(II) i = j and e0 < e, or(III) i = j, :(e0 < e), [e0℄ � [e℄, and j[e0℄j � j[e℄j.A repeat e of BP i is a terminal if BP i 
ontains no repeat e0 < e. Repeats,and in parti
ular terminals, are of type I, II, or III, a

ording to the 
onditionthey satisfy. A repeat e with 
ompanion e0 is su

essful if it is of type II, andunsu

essful otherwise.A tableau is a tuple BP1; : : : ;BPn of bran
hing pro
esses of �1; : : : ; �n su
hthat for every 1 � i � n and for every possible extension e of BP i at least oneof the immediate 
ausal prede
essors of e is a terminal. Ea
h BP i is 
alled atableau 
omponent. A tableau is su

essful if at least one of its terminals issu

essful.Observe that an event of BP i 
an be a repeat be
ause of an event thatbelongs to another bran
hing pro
ess BP j . The de�nition of repeat depends onthe order of the 
he
kpoints, but the tableau system de�ned above is sound and
omplete for any �xed order. Be
ause the de�nition of the tableau 
omponent
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Figure 3. The tableau system for the illegal livelo
k problemBP i depends only on the 
omponents with a smaller index, we 
an 
reate thetableau 
omponents in in
reasing i order. Tableau 
omponents are 
onstru
tedas for the illegal !-tra
e problem, using the new de�nition of terminal.The tableau for our example is shown in Fig. 3. The names of pla
es and tran-sitions have been 
hosen to mat
h \pie
es" of the unfolding in Fig. 2. The �rsttableau 
omponent 
ontains no terminals; the 
onstru
tion terminates be
auseno event labelled by an invisible transition 
an be added. In the se
ond 
ompo-nent, event 12 is a terminal with event 3 in the �rst 
omponent as 
ompanion.The intuition is that we don't need to unfold beyond 12 in the se
ond 
omponent,be
ause what we 
onstru
t 
an be found after 3 in the �rst 
omponent.Similarly to the 
ase of the illegal !-tra
e problem, a terminal of type II
orresponds to a 
y
le in the rea
hability graph. Sin
e the transitions of Ninvare all invisible, su
h a 
y
le always originates an illegal livelo
k, and so terminalsof type II are always su

essful. For terminals of type III, the intuition is that" [e℄ need not be 
onstru
ted, be
ause it is isomorphi
 to " [e0℄. The 
onditionj[e0℄j � j[e℄j is required for 
ompleteness (see [5℄). We have the following result:Theorem 3. Let T1; : : : ; Tn be a tableau of �1; : : : ; �n 
onstru
ted a

ording toa total adequate order �.{ T1; : : : ; Tn is su

essful if and only if � 
ontains an illegal livelo
k.{ T1; : : : ; Tn 
ontain together at most K2 �B non-terminal events.5.3 A tableau system for the 1-safe 
aseIf � is 1-safe then we 
an modify the tableau system to obtain a bound of K2non-terminal events. We modify the de�nition of the repeats of type II and III:(II') i = j and :(e0#e), or



(III') i = j, e0#e, [e0℄ � [e℄, and j[e0℄j � j[e℄j.Theorem 4. Let � be 1-safe. Let T1; : : : ; Tn be a tableau of �1; : : : ; �n 
on-stru
ted a

ording to a total adequate order �, and to the new de�nition ofrepeats of type II and III.{ T1; : : : ; Tn is su

essful if and only if � 
ontains an illegal livelo
k.{ T1; : : : ; Tn 
ontain together at most K2 non-terminal events.6 A tableau system for LTL model 
he
kingPutting the tableau systems of Se
tions 4 and 5 together, we obtain a tableausystem for the model 
he
king problem of tLTL0. For the sake of 
larity we have
onsidered the illegal !-tra
e problem and the illegal livelo
k problem separately.However, when implementing the tableau systems there is no reason to do so.Sin
e all the bran
hing pro
esses we need to 
onstru
t are \embedded" in theunfolding of �:', it suÆ
es in fa
t to 
onstru
t one single bran
hing pro
ess,namely the union of all the pro
esses needed to solve both problems.Clearly, this pre�x 
ontains O(K2 � B) non-terminal events. If the systemis presented as a 1-safe Petri net, then the pre�x 
ontains O(K2) non-terminalevents be
ause the following two 
onditions hold: (i) None of the rea
hable mark-ings of the syn
hronization �:� enable two I-transitions 
on
urrently. (ii) If thesystem is a 1-safe Petri net, then the syn
hronization �:� is also 1-safe.7 Con
lusionsWe have presented a new unfolding te
hnique for 
he
king LTL-properties. We�rst make use of the automata-theoreti
 approa
h to model 
he
king: a 
ombinedsystem is 
onstru
ted as the produ
t of the system itself and of an automatonfor the negation of the property to be 
he
ked. The model 
he
king problemredu
es to the illegal !-tra
e problem and to the illegal livelo
k problem for the
ombined system. Both problems are solved by 
onstru
ting 
ertain pre�xes ofthe net unfolding of the 
ombined system. In fa
t, it suÆ
es to 
onstru
t theunion of these pre�xes.The pre�xes 
an be seen as tableau systems for the illegal !-tra
e and theillegal livelo
k problem. We have proved soundness and 
ompleteness of thesetableau systems, and we have given an upper bound on the size of the tableau.For systems presented as 1-safe Petri nets or produ
ts of automata, tableaux
ontain at most size O(K2) (non-terminal) events, where K is the number ofrea
hable states of the system. An interesting open problem is the existen
e ofa better tableau system su
h that tableaux 
ontain at most O(K) events. We
onje
ture that it doesn't exist.The main advantage of our approa
h is its simpli
ity. Wallner's approa
h pro-
eeds in two steps: 
onstru
tion of a 
omplete pre�x, and then 
onstru
tion of agraph. The de�nition of a graph is non-trivial, and the graph itself 
an be expo-nential in the size of the 
omplete pre�x. Our approa
h makes the 
onstru
tionof the graph unne
essary. The pri
e to pay is a larger pre�x.
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