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Abstract. We present an incremental bounded model checking encoding into
propositional satisfiability where the property specification is expressed as a weak
alternating B̈uchi automaton (WABA). The encoding is linear in the specification,
or, more exactlyO(|I |+ k · |T|+ k · |δ|), where|I | is the size of the initial state
predicate,k is the bound,|T| is the size of the transition relation, and|δ| is the
size of the WABA transition relation. Minimal length counterexamples can also
be found by increasing the encoding size to be quadratic in the number of states
in the largest component of the WABA. The proposed encoding can be used to
implement more efficient bounded model checking algorithms forω-regular in-
dustrial specification languages such as Accellera’s Property Specification Lan-
guage (PSL). Encouraging experimental results on a prototype implementation
are reported.
Keywords: Weak Alternating B̈uchi Automata, Bounded Model Checking, PSL,
NuSMV

1 Introduction

Large and demanding verification efforts require that the property specification lan-
guage used is up to the task. Linear temporal logic (LTL), the property specification
language implemented in many model checkers, has been criticised for the lack of ex-
pressive power [1,2]. Expressing certain properties in LTL is cumbersome at best, and
writing assumptions for compositional reasoning can even be impossible. Most of these
shortcomings are in one way or another related to the fact that LTL cannot express all
ω-regular languages. This has been recognised by many key players in the hardware in-
dustry and Accellera’s Property Specification Language (PSL) [3,4] has been proposed
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as a solution. PSL extends LTL in many ways, but perhaps most importantly PSL can
express allω-regular languages.4

Expressive specification languages require efficient model checking techniques to
deliver on their promise.Bounded model checking(BMC) [5] is a symbolic model
checking technique that focuses on searching for bounded counterexamples to the given
property. By encoding the model checking problem to propositional satisfiability (SAT),
bounded model checking can leverage the efficiency of modern SAT-solver technology.
Encoding BMC to SAT is accomplished by writing a propositional formula that mod-
els all executions of the system of certain length. Additional constraints ensure that the
final formula is satisfiable if some execution is a counterexample. There are also meth-
ods for concluding that current reached depth is enough to prove that the given property
holds [6,7,8,9]. BMC has established itself as an important tool among current verifi-
cation techniques. A very important question is therefore, can BMCefficientlymodel
checkall ω-regular properties, especially those expressed in PSL.

This work explores different possibilities of implementing BMC for PSL by us-
ing the automata theoretic approach to model checking. The PSL property can first
be converted into an alternating Büchi automaton (ABA) with the help of an external
translation procedure, such as the one described by the Prosyd project (see [10]). This
procedure can create so calledweak alternating automata(WABA) which have certain
restrictions on the structure of the automaton but are still able to express allω-regular
properties. A large subset of core PSL can be converted into a WABA with a linear
number of states with a few exceptions [10].

In the rest of the paper we explore different options of creating an efficient BMC
encoding for WABAs. With an exponential blow-up (O(2a+3b), wherea is the number
of accepting states andb is the number of non-accepting states) the WABA can be con-
verted to an explicit state nondeterministic Büchi automaton using the Miyano-Hayashi
construction [11]. This explicit state B̈uchi automaton could be used but the size of the
encoding is in the worst case exponential in the size of the WABA.

A significantly better option would be to implement a symbolic version (SAT encod-
ing) of the Miyano-Hayashi construction [10]. However, this approach does not exploit
the weakness of the ABAs and might thus not be an optimal approach for WABAs.
We have also experimentally observed that neither the symbolic nor the explicit state
versions of the approach preserve minimal length counterexamples.

We present a new efficient BMC encoding specialised for model checking WABAs.
The size of the encoding islinear in the specification as WABA and the system model.
By increasing the size of the encoding to be quadratic in the number of states in the
largest component of the WABA, we can guarantee that it detects minimal length coun-
terexamples for all WABAs. The encoding utilises the incremental SAT encoding frame-
work developed in [9].

We have experimentally evaluated our new BMC encoding for WABAs. Compared
to BMC based on explicit state Büchi automata, the new WABA encoding is much more
robust because the exponential blow-up in the explicit state Miyano-Hayashi construc-
tion is avoided. The new linear size encoding is clearly faster than a symbolic BMC

4 PSL can also express properties of finite words, for simplicity onlyω-words are considered
here.



encoding of the Miyano-Hayashi construction. In addition, the minimal counterexam-
ple variant of our new encoding produces shorter counterexamples in some cases. On
LTL formulas the new encoding generates minimum length counterexamples and is
as compact (within a constant factor) as the most compact specialised LTL encodings
known [9]. Furthermore, the performance on LTL is quite similar.

There is some earlier work on bounded model checking for subclasses of alternat-
ing Büchi automata and for allω-regular properties. Sheridan [12] describes anon-
incrementalBMC encoding for very weak alternating Büchi automata. This encod-
ing captures only the LTL subset ofω-regular properties since very weak alternating
Büchi automata exactly correspond to LTL properties [13,14]. A BMC encoding for
alternation-freeµTL, a temporal logic that can express allω-regular properties, has
been developed by Jehle et al. [15]. The encoding is cubic in the used boundk and thus
not as efficient as the new encoding presented in this work.

2 Alternating Büchi Automata

In this section we cover the technical definitions needed to introduce our BMC encod-
ing for WABAs. The set of positive Boolean formulas overX , denoted byB+(X ), is
the smallest set of formulas which contains all elements fromX and is closed under
disjunction and conjunction. A subsetS of X is a model ofθ ∈ B+(X ), denoted by
S |= θ, iff the truth assignment that assigns true to the elements ofS and false to the
elements ofX \Ssatisfiesθ.

As alphabetΣ of alternating automata we restrict ourselves to only considering val-
uations of atomic propositions. More precisely, for a given non-empty finite setAP of
atomic propositions we define the set of atomic proposition complementsAP= {p | p∈
AP} and letΣ be the largest setΣ⊆ 2AP ∪ AP such that for allp∈APexactly one element
of {p, p} is contained in each member ofΣ.

An alternating B̈uchi automaton (ABA) is of the formA = (Q,Σ,q0,δ,F), where
Q is a finite set of states,Σ is a finite alphabet,q0 ∈ Q is the initial state,δ : Q →
B+(AP∪ AP∪ Q) is the transition relation andF ⊆Q is the set of accepting states. We
useB+(A) to denote the set of Boolean formulas that occur inA’s transition function.

Given an infinite wordw∈ Σω, wi denotes thei-th letter ofw (i.e.w = w0w1w2 . . .).
A run of A = (Q,Σ,q0,δ,F) on w is a directed acyclic graph (dag)G = (V,E) with the
following properties:

– V ⊆Q×N,
– E ⊆

S
i≥0((Q×{i})× (Q×{i +1})),

– (q0,0) ∈V,
– if (q, i) ∈V then(wi ∪ {q′ | ((q, i),(q′, i +1)) ∈ E}) |= δ(q), and
– if ((q, i),(q′, i +1)) ∈ E then both(q, i) ∈V and(q′, i +1) ∈V.

For technical convenience this definition of a run allows for states which are unreach-
able from the initial state. Letσ be an infinite path in a run inG, i.e. an infinite sequence
of nodes(v0,v1,v2, . . .) such that(vi ,vi+1) ∈ E for all i ≥ 0. Let In f (σ) be the set of
states that consists of all automaton states appearing infinitely often in the nodes ofσ.



An infinite pathσ is accepting iffF ∩ In f (σ) 6= /0. A run G is accepting iff every in-
finite path throughG is accepting. An ABAA = (Q,Σ,q0,δ,F) accepts a wordw∈ Σω

iff there is an accepting runG of the automatonA on w. The definition of a run allows
a state to have no successors and a path through the run (as well as the whole run) to be
finite. In effect all such finite paths ending in a state with no successors are “accepting”.
Alternatively the existence of states with no successors could be easily ruled out by
placing additional constraints onδ(·).

Example 1.For instance,δ(q1) = ((p∧q1)∨(p∧((r∧(q2∧q3))∨r))) means that from
state(q1, i) ∈V with valuationwi = {p, r} move to a state set ati +1 containing{q1}
(this also happens with valuation{p, r}), while with valuation{p, r} we will move to a
state set containing{q2,q3}. With valuation{p, r} the transition relation ofq1 becomes
true, which means that we do not requireq0 to have any successors.

A weak alternating B̈uchi automaton (WABA) is an ABAA= (Q,Σ,q0,δ,F) whose
statesQ can be partitioned intocomponents Q1]·· ·]Qm such that:5

– for all j,k∈ {1, . . . ,m}, q j ∈Q j , qk ∈Qk: if qk appears syntactically inδ(q j) then
k≤ j; and

– for all 1≤ j ≤m: Q j ⊆ F or Q j ∩F = /0.

A WABA is a veryweak alternating B̈uchi automaton (VWABA) if no componentQ j

contains more than one state. For a componentQ j , |δ j | denotes the sum of the sizes of
the transition relationsδ(q), whereq∈Q j .

Let A be a WABA with state setQ partitioned into componentsQ1] ·· · ]Qm and
final state setF . We next define thecomponent unrolling depth dj needed to detect
minimal length counterexamples in our BMC encoding for each componentQ j . For
any j ∈ {1, . . . ,m} let

d j =
{

0 , if Q j ⊆ F
|Q j | , if Q j ∩F = /0

3 Incremental Bounded Model Checking for Weak Alternating
Büchi Automata

Our incremental encoding for weak alternating automata is based on the simple BMC
encodings [16,17,9] for LTL. The approach to incrementality used here is exactly the
same as in [9]. First of all, the encoding needs to be formulated so that it is easy to derive
the encoding for boundk = i + 1 from the encoding for boundk = i. This is done by
separating the encoding to ak-invariant part and ak-dependentpart. The information
learned by the SAT solver from thek-invariant constraints can be reused when the bound
is increased while thek-dependent constraints and all the information learned from them
needs to be discarded. Thus we try to minimise the use ofk-dependent constraints in our

5 Given an ABA the setsQ1, . . . ,Qm can be easily computed by using an algorithm for com-
puting the maximal strongly connected components (MSCCs) in a graph induced by the ABA
transition relation as follows: the states are the nodes, and there is an edge fromq j to qk iff qk
appears syntactically inδ(q j ).



encoding. The so calledBase constraintsare alsok-invariant, but they are conditions
that are constant for all 0≤ i ≤ k.

As in earlier works, paths of lengthk are encoded usingk-invariant model con-
straints|[M]|k. They encode initialised finite paths of the modelM of lengthk:

|[M]|k ⇔ I(s0)∧
k̂

i=1

T(si−1,si),

where I(s) is the initial state predicate andT(s,s′) is a total transition relation. Let
π = s0s1s2 . . . be an initialised infinite path throughM. The corresponding wordw =
w0w1w2 . . . ∈ Σω is obtained by concatenating the sets of valuations of atomic proposi-
tions in the statessi . We say thatπ is a (k, l)-loop if π = (s0s1 . . .sl−1)(sl . . .sk)ω such
that 0< l ≤ k andsl−1 = sk.

The loop constraintsalso closely follow [9] by employingk+1 freshloop selector
variables l0, . . . , lk. They constrain the finite path of the system to always be a(k, i)-loop
for exactly onei, in which case the variablel i is true and all otherl j variables are false.
Manyk-dependent constraints are avoided by introducing a new special system statesE

with fresh (unconstrained) state variables acting as aproxy statefor the endpoint of the
path. In thek-dependent part the proxy statesE is constrained to be equivalent tosk. The
variable InLoopi is true iff the statesi belongs to the loop part of a(k, l)-loop. These are
encoded by conjuncting the constraints below and denoted by|[LoopConstraints]|k:

Base l0 ⇔ ⊥
InLoop0 ⇔ ⊥

k−invariant l i ⇒ (si−1 = sE)

1≤ i ≤ k InLoopi ⇔ InLoopi−1∨ l i ,

InLoopi−1 ⇒ ¬l i

k−dependent InLoopk ⇔ >
sE ⇔ sk

We will first give an encoding that detects minimal length counterexamples forall
WABAs, and later on show an optimisation that makes the encoding linear in the size
of the WABA if this requirement is dropped. Given a WABAA, in our new encoding
the state variables of the system are split at each timei to the actual state variablessi of
the system, to the set of variables for all automata states|[sq]|di (one for 0≤ i ≤ k+ 1
and each pair(q,d), whereq∈ Q j and 0≤ d ≤ d j ). The encoding also contains a few
additional variables which will be referred to explicitly. The rules of the encoding are
given as a set of Boolean constraints.

The WABA constraints|[AWABA]|k are new to this work and restrict the bounded
paths defined by the model constraints and loop constraints to infinite words accepted
by WABA A. One intuition for understanding the encoding is given by the fact that for
(k, l)-loops the semantics of branching and linear time coincide. We will in fact employ
algorithmic ideas similar to those used in branching time logic CTL model checkers.



The transition relation ofA is encoded in a straightforward manner. For each com-
ponentQ j and for each stateq∈Q j the following constraints are created:

0≤ d≤ d j

Base |[sq0]|
0
0 ⇔>, whereq0 is the initial state

k−invariant,0≤ i ≤ k |[sq]|di ⇔ |[δ(q)]|di

where thek−invariant encoding|[δ(q)]|di for each componentQ j , and for each state
q∈Q j is the following:

|[δ(q)]|di 0≤ i ≤ k,0≤ d≤ d j

|[p]|di |[p]|di ⇔ pi

|[p]|di |[p]|di ⇔¬pi

|[q′]|di |[q′]|di ⇔ |[sq′ ]|di+1, if q′ ∈Q j

|[q′]|di ⇔ |[sq′ ]|0i+1, if q′ 6∈Q j

|[ψ1∧ψ2]|di |[ψ1∧ψ2]|di ⇔ |[ψ1]|di ∧|[ψ2]|di
|[ψ1∨ψ2]|di |[ψ1∨ψ2]|di ⇔ |[ψ1]|di ∨|[ψ2]|di

In the encoding abovepi denotes the variable holding the value of the atomic proposi-
tion p in the statesi . Notice how for stateq∈ Q j the successor statesq′ insideQ j get
the values from the current unrollingd while the successor statesq′ outsideQ j get their
values from the unrollingd = 0. The intuition for this will be explained below.

We use aproxy loop stateindexed withL with associated (free) automaton vari-
ables|[sq]|dL to act as the loop state in order to make as many constraintsk-invariant as
possible. For non-accepting components thek-dependent rules bind the truth values of
|[sq]|dk+1 to |[sq]|d+1

L (jump to the next unrolling leveld+1), while for accepting com-

ponents they bind the values of|[sq]|0k+1 to the value of|[sq]|0L, i.e. to the values at the
loop point state of the same unrolling. This is encoded by conjuncting the following
constraints for each componentQ j and for each stateq∈Q j :

0≤ d≤ d j

Base |[sq]|
d j+1
L ⇔⊥, if q 6∈ F

k−invariant,1≤ i ≤ k l i ⇒
(
|[sq]|dL ⇔ |[sq]|di

)
k−dependent |[sq]|dk+1 ⇔ |[sq]|d+1

L , if q 6∈ F

|[sq]|0k+1 ⇔ |[sq]|0L, if q∈ F

The intuitive idea behind the encoding is as follows. Our encoding can be seen as a SAT
implementation of an automata theoreticbranching timemodel checker using WABAs
such as [18] but specialised for models induced by(k, l)-loops. Because of the compo-
nent structure of the WABA, each componentQ j can assume that all other components
and atomic propositions it refers to have already been evaluated, and the results are



available. This is all that is needed to evaluate the componentQ j by iteratively substi-
tuting these subresults.6

Similarly to [18] we want to compute the effect of these substitutions in terms of a
fixpoint evaluation procedure. Consider a non-accepting componentQ j first. We want
|[sq]|1L to evaluate to whether at the loop pointL starting from a stateq ∈ Q j the au-
tomaton has some run which accepts theω-word induced by the loop. Because we do
not want to allow accepting runs to be trapped forever in a non-accepting component,
the fixpoint required is the least fixpoint, and gives us the initial approximation values

|[sq]|
d j+1
L ⇔ ⊥. By running through the loop once in thebackward directionmaking

substitutions of known results along the way, we can get a better approximation of the

final value, namely|[sq]|
d j
L . Either we have already reached a fixpoint, or at least one of

statesq′ ∈Q j has obtained the value|[sq′ ]|
d j
L =>, in which case we have to resubstitute

this value by running through the loop a second time in the backward direction. Clearly
afterd j = |Q j | rounds the fixpoint is guaranteed to be reached, and the values of|[sq]|1L
are exact results of the fixpoint iteration. Finally, an extra fixpoint iteration is done with
|[sq]|0i variables to get the correct final values for indices to the right of the loop point.

We could do the obvious dual greatest fixpoint iteration for the accepting compo-
nents. However, we will use the optimisation trick of employingany fixpointinstead
of the greatest fixpoint. The intuitive reason why this is sound is that any fixpoint will
in our encoding cautiously underapproximate the greatest fixpoint, (see the soundness
proof, Lemma 1 in Appendix A which never uses the fact that the fixpoint obtained for
accepting components is the greatest fixpoint). The completeness part is trivial, as the
any fixpoint enforcing constraints are strictly less constraining that the constraints that
would be needed for enforcing the exact greatest fixpoint.

We can optionally add constraints based on the monotonicity of the fixpoint approx-
imations of non-accepting components. Thesek−invariant propagation constraints are
as follows. For each non-accepting componentQ j , and for each stateq∈ Q j , 0≤ i ≤
k+1,1≤ d≤ d j :

k−invariant |[sq]|di ⇒ |[sq]|d−1
i

Conjuncting all the constraints above the encoding|[M,AWABA]|k becomes:

|[M,AWABA]|k ⇔ |[M]|k∧|[LoopConstraints]|k∧|[AWABA]|k.

Theorem 1. Given a finite Kripke structure M and a WABA A, M has a pathπ accepted
by A iff there exists a k∈ N such that|[M,AWABA]|k is satisfiable. More specifically, if
π = s0s1s2 . . . is a (k, l)-loop accepted by A then|[M,AWABA]|k is satisfiable.7

Proof. Immediate by Lemmas 1 and 2 in Appendix A. ut
6 Notice the similarity to evaluating CTL formulas by substituting subformula results and prop-

agating these in the backward transition relation direction. See for example the WABA based
CTL model checking algorithm [18] as well as similar algorithms for the alternation freeµ-
calculus [19]. The main difference is that we aim for an easy encoding into SAT instead of
optimal running time as in the algorithms mentioned above.

7 A direct corollary of this is that minimal length(k, l)-loop witnesses can be detected.



The exact size of the encoding isO(|I |+k· |T|+k· |δ|+k·∑m
j=1(d j · |δ j |)). Note that

the size is bounded from above byO(|I |+k · |T|+k · |Q| · |δ|), and becomesO(|I |+k ·
|T|+k · |δ|) when the WABA is a very weak alternating Büchi automaton (as produced
by most LTL to WABA translations). Combined with a linear size translation from an
LTL formula into a VWABA (for example a state acceptance based variant of [20] with
a symbolically encoded transition relation), bounded LTL model checking using this
approach is as compact as the approaches of [16,17,9]. In fact, by doing so the encoding
would for LTL formulas effectively become an optimised incremental variant of [16].

Trading Minimal Length Witnesses for a Smaller Encoding. Instead of quantifying
d over 0≤ d≤ d j in the encoding above, for any non-accepting componentQ j we can
instead use 0≤ d≤ c j , where 1≤ c j ≤ d j . Now c j is the number of fixpoint iterations
made8, and we need the following constraints to guarantee correctness of the approach.
For each non-accepting componentQ j , and for each stateq∈Q j the following fixpoint-
enforcing constraints are added:

Base |[sq]|0L ⇔ |[sq]|1L

The constraints intuitively check that the fixpoint iteration has reached a fixpoint after
c j iterations. Thus the approach will be sound. The reason why the approach is still
complete is that by going through the loop part of a(k, l)-loop d j times one can with
c j = 1 simulate thed j fixpoint iterations done by going through the loop part only
once but withd j unrollings. Thus increasing the bound by roughly a factor ofd j can
compensate for the lack ofd j unrollings. By changing the quantification to, for example,
always usec j = 1 (as used in our experiments) the resulting encoding is of sizeO(|I |+
k · |T|+k · |δ|), i.e. linear in the size of the WABA. The correctness of the encoding is
preserved in the sense that every witness will eventually be detected when the bound is
increased large enough (albeit with a non-minimal bound).

4 Experimental Results

We have implemented a prototype of the proposed WABA BMC encoding on top of a
development version of the NuSMV tool [21]. We use the “Sugar” tool (obtained from
http://www.prosyd.org/ ), by C. J. Kargl of TU Graz, as a translator from PSL
to ABAs and reuse our previous incremental SAT encoding techniques [9]. As the SAT
solver we use ZChaff version 2004.11.15 in the experiments. In order to evaluate and
validate the proposed encoding, we have also implemented two other BMC approaches
for WABAs on top of the same software platform: (i) translate the WABA to an explicit
state B̈uchi automaton by using the Miyano-Hayashi algorithm of the “Sugar” tool and
then do BMC by using the explicit state Büchi automaton, (ii) take the Miyano-Hayashi
translation from (W)ABA to B̈uchi automata given in [10, page 38] and derive asym-
bolic BMC encoding from it.

8 The encoding of|[sq]|di with d = 0 can be seen as an “extra” fixpoint iteration. It is needed in

order to also obtain correct|[sq]|0i values for indicesi to the “right” of the loop point. We use
it here to also check that the fixpoint has been reached.

http://www.prosyd.org/
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Fig. 1. A comparison of encoding approaches on random models and VWABAs gen-
erated from LTL formulae. Red boxes mark cases with a counterexample while black
diamonds mark cases where none was found.

These two BMC encodings are linear in the boundk and the sizes of the transition
relations of the corresponding automata (Büchi and WABA, resp.). Unfortunately we
do not have space to explain them in more detail here. The prototype implementation
as well as the experiments are available athttp://www.tcs.hut.fi/˜timo/
cav2006 . The implementation also contains a (W)ABA input path, allowing alterna-
tive PSL to (W)ABA translations to be used.

Figures 1 and 2 show a comparison of encoding schemes for randomly generated
models (Kripke structures of 100 states and a single justice fairness requirement) and
WABAs generated from LTL and PSL formulae (of parse tree sizes between 3 and 14).
The time limit for each run was 10 minutes and the memory limit 1.5GiB.

In Fig. 1(a), 1(b) and 1(c), we benchmark our new algorithm on 1200 random LTL
formulae. We plot the total execution time of each run to either find a counterexample
for the property or to reach the bound limit of 50. In the plots, cases where a counterex-
ample was found are denoted by red boxes while black diamonds denote cases where
none of the approaches found a counterexample. The scales are logarithmic. Based on
Fig. 1(a), it is easy to see that the “WABA to Büchi” approach is not very competitive:
it suffers from the automata size blow-up occurring during the WABA to explicit state

http://www.tcs.hut.fi/~timo/cav2006
http://www.tcs.hut.fi/~timo/cav2006
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Fig. 2. A comparison of encoding approaches on random models and WABAs gener-
ated from PSL formulae. Red boxes mark cases with a counterexample while black
diamonds mark cases where none was found.

Büchi automata translation. We can see that the proposed WABA BMC encoding is
competitive against the symbolic Miyano-Hayashi approach (Fig. 1(b)). As expected,
the specialised LTL encoding of [9] performs slightly better than the new, more general
encoding but the difference is not large: the new encoding seems to be a reasonably
good BMC algorithm for LTL, too.

In Fig. 2, we compare the encodings on 1000+ WABAs obtained by generating
random PSL formulas, translating them to ABAs using the “Sugar” tool, and picking
those instances which are WABAs that arenotvery weak. It is known that in the version
of the “Sugar” tool used by us there are some discrepancies with respect to the semantics
of PSL, but that does not effect our use of it as a random WABA generator. The bound
and other parameters of the setup, as well as plot point encoding, are identical to the
LTL case. We also plot thebound reached, i.e. the counterexample length, for the runs
that found one. The scales are logarithmic.

The new linear encoding performs better than the symbolic Miyano-Hayashi encod-
ing, as shown in Fig. 2(a), with comparable counterexample lengths, as can be observed
from Fig. 2(d). Comparing the two new encodings in Fig. 2(b), the linear encoding
is clearly faster but may generate significantly longer counterexamples as shown in
Fig. 2(e). If we were to model check systems with a larger transition relation, the in-
creased counterexample length as seen here might sometimes translate into a slower



running time. Comparing the new encoding that can find minimal counterexamples to
the symbolic Miyano-Hayashi encoding in Figures 2(c) and 2(f) we see that there is no
clear winner in speed but that the new encoding produces shorter counterexamples.

To sum up, these results show that the proposed WABA BMC is a competitive en-
coding for WABAs generated from PSL formulas, and quite close to a state-of-the-art
BMC encoding specialised for LTL.

5 Conclusions

Our new BMC encoding for WABAs seems very competitive. With BMC using ex-
plicit state B̈uchi automata, it is obvious that for complicated properties the potentially
exponential conversion from a WABA will become a bottleneck. The reason why our
encoding performs better than a symbolic Miyano-Hayashi encoding is not completely
clear to us. We speculate that the more deterministic nature of our encoding generates
easier problems for the SAT solver. The fact that the new encoding can exploit the struc-
ture of WABAs unlike Miyano-Hayashi, which works for all alternating automata, may
also help. Both are linear size in the specification, but if we use a version that is in the
worst case quadratic in the number of states in the largest component of the WABA, our
new encoding is guaranteed to find minimal length counterexamples.

The proposed WABA BMC encoding can be made complete (in the sense that it can
also prove properties, not only find counterexamples) by modifying and applying the
simple-path constrains of [9] in a straightforward way.

We would like to investigate whether it is possible to modify Miyano-Hayashi to
generate tight B̈uchi automata. We believe that the BMC encoding of this work can be
adapted to also generate a symbolic WABA to Büchi automaton conversion procedure
(an alternative to Miyano-Hayashi for WABAs) which generates tight Büchi automata
and thus detects minimal length counterexamples along the lines of [22]. This intuition
is based on the fact that [22] is an adaptation of the PLTL BMC encoding [17] to the
symbolic B̈uchi automaton setting and the implementation techniques used here are
quite similar to those of [17].

Other potential future directions of research are related to succinctness. One possi-
bility would be to devise new direct BMC encodings for general, non-weak ABAs or
for alternating parity automata. Generalising the encoding to temporal logics with past
operators (e.g. PSL extended with past) may potentially involve handling of two-way
alternating automata.
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Appendix A - Proofs

Here we prove the soundness and completeness of the encoding.

Lemma 1. Given a finite Kripke structure M, a WABA A and a k∈ N, if |[M,AWABA]|k
is satisfiable then there is an initialised infinite pathπ through M such that the induced
word w is accepted by A.

http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://www.prosyd.org/


Proof. Suppose|[M,AWABA]|k has a satisfying truth assignmentβ for its variables. Since
β satisfies|[M]|k there are statess0s1 . . .sk that form an initialised finite path inM. Note
that |[LoopConstraints]|k requires that there is 0< l ≤ k such thatsk = sl−1. Let π now
be the initialised infinite paths0 . . .sl−1(sl . . .sk)ω throughM. It remains to be seen that
the corresponding wordw is accepted byA.

We will prove the following stronger statement from which the claim of the the-
orem follows because of the base constraint for the initial stateq0. For a wordw =
w0w1w2 . . . ∈ Σω let w(i) denote the suffix ofw starting fromwi . We useAq to denote
the WABA that results fromA by makingq the initial state.For all components Qj of

A, all 0≤ d ≤ d j , all q ∈ Q j , and all 0≤ i ≤ k: if β(|[sq]|di ) = > then w(i) is accepted
by Aq.

Note that the topological order onA’s components is well-founded. Hence, we can
use Noetherian induction assuming that the statement has been proved for all lower
components already.

Let Q j be a final component. Take anyq∈Q j and assumeβ(|[sq]|0i ) => for some
0≤ i ≤ k. It is straightforward to construct a run dag forAq andw(i) starting with the
node(q, i). The constraints forδ then requireβ(|[δ(q)]|0i ) = >.9 Since Boolean con-
nectives inδ are uniformly translated in the constraints forδ, there must be a modelQ′

of δ(q). The construction of the run dag is then iterated on the next level with nodes
(q′, i +1) for someq′ ∈Q′. Note that the constraints always ensure that there are mod-
els of δ(q) for eachq that occurs in this construction. This continues on each infinite
path of the run ad infinitum or until a stateq′ is reached such thatq′ 6∈ Q j . But then,
by weakness,q′ must belong to some component for which an accepting run dag has
already been constructed by the induction hypothesis. Note that all the states on such
infinite paths that remain in componentQ j are final. Hence, the run dag is accepting,
and we havew(i) is accepted byAq.

Now let Q j be a non-final component. Again, take anyq ∈ Q j but now assume
β(|[sq]|di ) => for some 0≤ i ≤ k and some 0≤ d≤ d j . Again, we construct a run dag
for Aq andw(i) starting with the node(q, i). As above, the constraints forδ always ensure
the existence of a model for a node on some level of this run which creates the nodes
on the following level. But note that the indexd is increased in each transition fromsk

to sl . Sinceβ(|[sq]|
d j+1
L ) =⊥ is ensured by the constraints of the encoding, each infinite

path in this run dag will eventually leave the componentQ j . By weakness, each infinite
path proceeds into another component for which an accepting run dag has already been
created by the induction hypothesis. Since a finite prefix of non-final states on any such
an infinite path does not harm the acceptance condition, this run dag is accepting, too,
and we havew(i) is accepted byAq. ut

Lemma 2. Given a finite Kripke structure M and a WABA A, if there is an initialised
infinite pathπ through M such that the corresponding word w is accepted by A then
there is a k∈ N such that|[M,AWABA]|k is satisfiable.

9 According to this, implications from left to right instead of bi-implications in the constraints
for δ would already suffice. It is also not hard to see that this does not destroy completeness:
if there is an assignment satisfying the bi-implications then this assignment would also satisfy
the weaker implications.



Proof. Suppose there is an infinite pathπ such that the corresponding wordw is ac-
cepted byA. Since the class of languages accepted by weak alternating Büchi automata
are theω-regular languages we can without loss of generality assumeπ to be a(k, l)-
loop for some 0< l ≤ k. Furthermore, without loss of generality we can assume that
π is minimal in the following sense. There is no infinite pathπ′ throughM such that
the corresponding wordw′ is accepted byA andπ′ is a(k′, l ′)-loop for somek′ < k and
somel ′.

It remains to be seen that|[M,AWABA]|k is satisfiable. Hence, we need to construct
a truth assignmentβ to the variabless0s1 . . .sk, InLoopi for each 0≤ i ≤ k as well as
|[sq]|di for each componentQ j of A, eachq∈Q j , each 0≤ d≤ d j , and each 0≤ i≤ k+1.
Note that the values of the other variables are determined by the values of these.

The values for the former are immediately given by the(k, l)-loop w. This shows
satisfaction of the conjuncts|[M]|k and|[LoopConstraints]|k.

For the rest of the variables we only give a proof sketch due to space considerations.
After fixing w we can seeA as a WABAtree automatonrunning on word (degenerate
tree)w. Simplifying the encoding ofδ with the values given byw to variables in the
first phase above implements the tree WABA product construction in similar fashion
as in Section 3.2 of [18] and thus the rest of the encoding solves the 1-letter WABA
emptiness problem of a 1-letter product WABA induced byw. Now the rest of the
encoding is basically a SAT implementation of a variant of the fixpoint computation
algorithm of Theorem 4.7 in [18] to solve the 1-letter emptiness problem for WABAs.
The non-accepting components correspond to least fixpoints and the accepting com-
ponents correspond to greatest fixpoints. We can do an induction which processes one
component at a time as in the proof of soundness above.

For an accepting componentQ j the values|[sq]|0i can be set to be identical to the
final values computed by the algorithm of Theorem 4.7 in [18], thus obtaining a fixpoint
which is easily checked to be a satisfying truth assignment.

For a non-accepting componentQ j the values|[sq]|0i can also be set to be identical to
the final values computed by the algorithm of Theorem 4.7 in [18]. However, the values
of |[sq]|di with 1≤ d≤ d j are set to be the values obtained by a fixpoint approximation

procedure which starts from the initial values given byβ(|[sq]|
d j+1
L ) =⊥ and for alli,d

pairs proceeds fori from k+ 1 towards 0, and ford from d j towards 1. It is easy to
check that after at mostd j = |Q j | iterations through the loop in the backward direction
final values have been obtained at the loop pointi = l ,d = 1 (recall thatw is fixed
and thus also the simplified form ofδ is monotone and fixed according tow at each
point of computing the fixpoint approximations), and thus we obtain a satisfying truth
assignment for all the constraints concerning non-accepting components.

By the above and the fact that the algorithm of Theorem 4.7 in [18] computes>
to the initial state iffw is accepted byA, we finally obtainβ(|[sq0]|

0
0) =>, and thus all

constraints of the encoding are satisfied. ut

As a consequence of the proof, the encoding detects witnessesπ that are(k, l)-loops
at minimal parameterk.
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