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Abstract

This paper presents a reduction from the problem of solving parity games to the
satisfiability problem in propositional logic (SAT). The reduction is done in two
stages, first into difference logic, i.e. SAT combined with the theory of integer dif-
ferences, an instance of the SAT modulo theories (SMT) framework. In the second
stage the integer variables and constraints of the difference logic encoding are re-
placed with a set of Boolean variables and constraints on them, giving rise to a pure
SAT encoding of the problem. The reduction uses Jurdziński’s characterisation of
winning strategies via progress measures. The reduction is motivated by the success
of SAT solvers in symbolic verification, bounded model checking in particular. The
paper reports on prototype implementations of the reductions and presents some
experimental results.
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1 Introduction

Solving a parity game is an intrinsic and interesting problem in theoretical
computer science. It is closely related to the problem of solving other games like
mean pay-off, discounted pay-off or stochastic games [1–3]. It is also equivalent
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to the model checking problem for the modal µ-calculus [4]. Since the modal µ-
calculus subsumes most of the commonly used temporal logics, solving parity
games has direct applications in automatic program verification.

Solving a parity game is also one of the few inhabitants of the complexity
class NP∩ co-NP [5] not known to be in PTIME. However, the problem is in
UP∩ co-UP [2] and many people do conjecture that it is in PTIME. Many
algorithms for solving parity games have been invented so far although none
of them provably runs in deterministic polynomial time.

Recursive methods like Zielonka’s algorithm [6], etc. solve a game with at most
p different priorities by referring several times to games with strictly less than
p many different priorities. Consequently, their running time is exponential in
the number of priorities in the game.

Strategy improvement as done by Jurdziński and Vöge’s algorithm [7] based
on Puri’s [1] – and similar to Hoffman and Karp’s [8] as well as Ludwig’s [9]
algorithms for stochastic games – uses the fact that strategies can be partially
ordered with a winning strategy being maximal w.r.t. this order. According
to [7,10] this performs very well for some families of parity games but it is not
known whether a polynomial number of iteration steps always suffices to find
a winning strategy.

A randomised and subexponential algorithm is due to Björklund, Sandberg,
and Vorobyov [11].

Every model checker for the full µ-calculus is in principle also an algorithm
for solving parity games. Several of the former have emerged beginning with
tableau-like methods by Stirling or Cleaveland [12,13], automata-theoretic
ones by Emerson and Jutla [4], equation solvers by Cleaveland et al. [14]
and Mader [15], and symbolic model checking procedures by Clarke et al. [16].

An algorithm with a good asymptotic complexity is Jurdziński’s small progress
measures procedure [17]. It is exponential in the number of odd priorities oc-
curring in the game, i.e. in the half of the maximal priority. A similar asymp-
totic bound is achieved by Seidl’s fixpoint iteration [18]. Recently, Jurdziński,
Paterson and Zwick have found the first deterministic and subexponential
(nO(

√
n), where n is the number of nodes in the game) algorithm for solving

parity games [19].

Opposing common undergraduate syllabi, polynomial time is not a synonym
for efficiency. The famous SAT problem is NP-complete [20] and, hence, widely
not believed to admit polynomial time algorithms. However, there are many
SAT solvers that are astonishingly efficient in practice for many instances of
the problem, zChaff [21] for example. Such solvers are used successfully, for
example, in bounded model checking [22].
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Inspired by this we present a different approach to solving parity games: by
a reduction to SAT. The reduction is done in two stages, first into differ-
ence logic [23], i.e. SAT combined with the theory of integer differences, an
instance of the SAT modulo theories (SMT) framework. This gives rise to a
solving method for parity games through efficient difference logic solvers such
as DPLL(T) [23]. In the second stage the integer variables and constraints of
the difference logic encoding are replaced with a set of Boolean variables and
constraints on them, giving rise to a pure SAT encoding of the problem. This
enables a much wider range of solvers to be used than the SMT framework.

Theoretically this approach is not too exciting since it is clear that such a
reduction must exists. Furthermore, SAT is believed to be harder than solv-
ing parity games. Again, clever heuristics and advanced search space pruning
techniques implemented in current SAT solvers can make up for this and result
in an algorithm that is efficient in practice.

Developing a computationally attractive reduction to SAT is often a non-trivial
and challenging task. For example, even though it was known that a polyno-
mial size reduction from parity games to SAT exists, no tight upper bound
on the size of the reduction was reported in the literature. All known SAT
checkers use algorithms whose worst case running time is exponential in the
number of variables. Moreover, if the encoding is of substantial size, this can
confuse the search heuristics and cause significant computational overhead in
search space pruning. Hence, a computationally interesting reduction should
introduce variables scantly and be of low polynomial size. This often means
that the problem in question needs to be studied quite deeply to understand
the essential properties of the solutions.

For the reduction from the parity game problem to SAT what we want is a
formula of propositional logic that is satisfiable iff the existential player has
a winning strategy in the parity game. It is rather straightforward to write
a compact encoding whose models capture all possible strategies. However, it
is more challenging to develop a concise set of conditions expressing the fact
that a given strategy is winning. The novelty here is that we put forward a
set of local constraints which express this property.

The reduction is based on a comment by Emerson where he explains inclusion
of the model checking problem for the modal µ-calculus in NP. He essentially
writes “Guess a rank for each µ-subformula at each state in a transition system.
Show that the lexicographic order on the tuples through the transition system
is well-founded” [24].

Following the idea about ranks consequently with the aim of a local characteri-
sation of winning strategies we define the notion of a µ-annotation – effectively
and unintentionally re-inventing Jurdziński’s progress measures [17]. These are
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Fig. 1. An example of a parity game.

data structures consisting of local constraints which together ensure the global
property that for all cycles of the parity game conforming to a certain strat-
egy the parity of the least occurring priority in the cycle is even. Jurdziński’s
algorithm sets these data structures to an initial value and updates them it-
eratively. Our reduction leaves it entirely to the SAT solver to find their final
values. Since this is not in any way an iterative procedure, we call these data
structures µ-annotations in order to stress their static nature. We hereby at-
tribute the theory of µ-annotations to Jurdziński explicitly. Nevertheless, we
provide correctness proofs that differ slightly from Jurdziński’s work [17] by
reflecting this static nature.

The rest of the paper is organised as follows. Section 2 recalls the definitions
of parity games. Since we are interested in solving them practically we restrict
ourselves to finite parity games only. Section 3 contains the aforementioned
theory regarding µ-annotations, resp. progress measures. The fact that we
consider finite parity games only is essential for this part. Sections 5 and 6
present the reductions to difference logic and pure SAT, respectively. Section 7
presents experimental results of these translations, and Section 8 discusses
further work.

2 Parity Games

A parity game is a tuple G = (V,E, v0, Ω) where (V,E) is a finite, non-empty,
directed graph and V is partitioned into two sets V∃ and V∀, v0 ∈ V is the
starting node, and Ω : V → N is a priority function. G is assumed to be total,
i.e. for every v ∈ V there is a w ∈ V with (v, w) ∈ E.

Example 1 An example of a parity game with eight nodes is depicted in
Fig. 1. The three nodes making up V∃ are drawn using diamond shapes, the
five nodes of V∀ are drawn using boxes. Here the node names are given inside
the nodes, and the priority Ω(v) of a node v is shown beside the node v itself.
The starting node is v0 in the upper left corner.
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We will use the following abbreviations: Vp = {v ∈ V | Ω(v) = p} for any p,
and Vodd =

⋃

p odd

Vp. We also write vE for the set {w | (v, w) ∈ E}.

A play of G is an infinite path π = v0v1v2 . . . through G starting in v0. Intu-
itively, a play is constructed through interaction between the players: suppose
the play has been partially constructed as v0 . . . vi. Then we have vi ∈ Vx for
some x ∈ {∃,∀}, and player x chooses a w ∈ V with (v, w) ∈ E and the
construction of the play continues with v0 . . . viw.

Given a play π = v0v1 . . . let inf π = {v ∈ V | there are infinitely many i ∈ N

s.t. v = vi}. Remember that we assumed parity games to be finite, hence
inf π 6= ∅. Player ∃ wins the play π = v0v1 . . . if min{Ω(v) | v ∈ inf π} is even.
If it is odd then player ∀ wins the play π.

Example 2 There are two types of plays in the game G shown in Fig. 1
starting in v0.

a) Plays that stay in the upper four nodes forever.
b) Plays that eventually proceed into the lower four nodes and stay there

forever.

Player ∃ wins any play of type (a). An odd priority 3 must be immediately
followed by a smaller 2 or 1, and the other odd priority 1 is immediately
followed by an even 0. Hence, the least priority occurring infinitely often must
be even.

For plays of type (b) note that all priorities seen in the upper part do not
influence the winner of this play because they can be seen at most finitely
often. Hence, we can divide the plays of type (b) into two categories

b1) those that traverse through the node with priority 1 infinitely often, and
b2) those that traverse through the node with priority 1 only finitely often.

Then player ∀ must win plays of type (b1), while player ∃ wins plays of type
(b2) since in the lower part of the game there is no odd priority other than 1.

A strategy for player x is a function σ : V ∗Vx → V , s.t. for all v0 . . . vi with
vi ∈ Vx we have (vi, σ(v0 . . . vi)) ∈ E. Intuitively, such a strategy tells player
x which choice to make depending on the current construction of a play.

A strategy is called positional if for all α, β ∈ V ∗ and all v ∈ Vx we have
σ(αv) = σ(βv). Hence, the choices made according to a positional strategy
only depend on the last node visited. In such a case we will rather use σ :
Vx → V .
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Positional strategies on finite games have the distinct advantage of being fi-
nite themselves. Furthermore, Thm. 4 below states intuitively that positional
strategies are as powerful as arbitrary strategies. Hence, we will only consider
positional ones and may simply speak of strategies when in fact we mean
positional strategies.

A play π = v0v1 . . . is called conforming to a (possibly positional) strategy
σ for player x if for all i ∈ N we have: vi ∈ Vx implies vi+1 = σ(v0 . . . vi). A
strategy σ for player x is called a winning strategy if every play conforming to
σ is won by player x.

Example 3 Consider the following positional strategy σ0 for player ∃ on the
game G from Fig. 1 defined as σ0(v0) = v1, σ0(v2) = v3, σ0(v6) = v7, and
σ0(v7) = v4. Every play starting in v0 and conforming to σ0 stays within the
upper part of G from Fig. 1. Since only edges from V∃ lead out of the upper
part and Ex. 2 established that all plays staying in that upper part are won
by player ∃ we know that σ0 is a winning strategy for player ∃.

Consider on the other hand any strategy σ1 for player ∀ such that σ1(v4) =
σ1(v5) = v6, and the parity game G with any starting node among {v4, . . . , v7}.
Any play conforming to σ1 will visit v7 as the node with the minimum priority
infinitely often. According to Ex. 2, the play is won by player ∃ and, hence, σ1

is not a winning strategy for player ∀. However, player ∀ does indeed have a
winning strategy for the game starting in vi for i = 4, . . . , 7, for example any
strategy σ2 such that σ2(v4) = v5 and σ2(v5) = v4.

Given a parity game G and a positional strategy σ for player ∃ we write G|σ
for the parity game that is induced by σ on G. Formally, G|σ = (V,E ∩ (V∀ ×
V ∪ {(v, σ(v)) | v ∈ V∃}), v0, Ω). Note that G|σ is indeed a subgame of G, i.e.
every play π in G|σ with winner P is also a play in G that is won by player P .

The problem of solving a parity game G = (V,E, v0, Ω) is to determine whether
or not player ∃ has a winning strategy for G. We formulate this as the decision
problem PARITY defined as {G | player ∃ has a winning strategy for G}.

Theorem 4 [4] Given a parity game G,
(a) player ∃ has a winning strategy for G iff player ∀ does not have a winning
strategy for G;
(b) a player has a winning strategy for G iff she has a positional winning
strategy for G.

Theorem 5 [5] The problem of solving a parity game is in NP∩ co-NP.
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Fig. 2. A parity game with a µ-annotation.

3 Characterising Winning Strategies Locally

Given a parity game G = (V,E, v0, Ω), let Odd(G) = {p | p is odd and Ω(v) =
p for some v ∈ V }, Odd<p(G) = Odd(G) ∩ {i | 1 ≤ i < p}, and mop(G) =
max Odd(G). Remember that G is assumed to be finite and non-empty. Thus,
mop(G) exists uniquely.

A µ-tuple for G is an a = (a1, a3, . . . , amop(G)) ∈ N
dmop(G)/2e. Given two µ-

tuples a = (a1, . . . , amop(G)) and b = (b1, . . . , bmop(G)) for G and a p ≤ mop(G)
(not necessarily odd), we define

a £p b iff







for all i ∈ Odd<p(G) : ai ≤ bi if p is even,

ap < bp and for all i ∈ Odd<p(G) : ai ≤ bi o.w.

If a = (a1, a3, . . . , amop(G)) and p ∈ Odd(G) then a(p) denotes the p-component
of a, i.e. ap.

A µ-annotation for G is a function η that assigns to each v ∈ V a µ-tuple. It
is called successful, iff for all v ∈ V :

• if v ∈ V∀ then for all w ∈ vE: η(w) £Ω(w) η(v), and
• if v ∈ V∃ then there is a w ∈ vE: η(w) £Ω(w) η(v).

Example 6 Consider, again, the parity game G depicted in Fig. 1. We have
Odd(G) = {1, 3} and mop(G) = 3. Thus, µ-tuples for G are of the form
(a1, a3). A µ-annotation η of G is shown in Fig. 2. This time we do not show
the nodes’ names anymore. Instead, the number in a node denotes its priority,
and its µ-tuple is shown as a label on that node.

It is not hard to see that η is not successful but the only node violating success
is v4 with its outgoing edge (v4, v5). According to the rules for success we would
have to have (1, 0) £1 (1, 0) which translates into 1 < 1 and 0 ≤ 0. Remember
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that it is crucial for player ∀ to move from v4 to v5 as shown in Ex. 3.

It is also easily verified that there are no µ-tuples η(v4) £4 η(v5) and η(v5) £1

η(v4) because this would entail η(v4)
(1) ≤ η(v5)

(1) while on the other hand
η(v5)

(1) < η(v4)
(1). Hence, there is no successful µ-annotation for G. However,

take player ∃’s strategy σ0 from Ex. 3 and consider the subgame G|σ0 . It
consists of the upper part {v0, . . . , v3} only, and the restriction of η to G|σ0 is
indeed a successful µ-annotation for G|σ0 .

This example insinuates that successful µ-annotations for subgames are closely
related to winning strategies. In the following we will show that this is indeed
the case.

Lemma 7 Let G = (V,E, v0, Ω) be a parity game, η be a successful µ-annotation
for G, and π = v0v1 . . . be a play of G. If for all i ∈ N: η(vi+1) £Ω(vi+1) η(vi)
then the minimal priority occurring infinitely often in π is even.

PROOF. Suppose that the minimal priority p that occurs infinitely often in
π is odd. Then there are infinitely many nodes vi1 , vi2 , . . . on π, s.t. η(vi1)

(p) >

η(vi2)
(p) > . . . since eventually there is no lower even priority anymore that

would allow η(vij)
(p) < η(vij+1

)(p) for some j ∈ N. But then we cannot have
η(vi+1) £Ω(vi+1) η(vi) for all i ∈ N, because the natural numbers are well-
founded. 2

Theorem 8 Let G be a parity game and σ be a positional strategy for player
∃. There is a successful µ-annotation for G|σ iff σ is a winning strategy.

PROOF. (⇒) Suppose there is a successful µ-annotation η for the game
G|σ = (V,Eσ, v0, Ω). Now take any play π = v0v1 . . . that conforms to σ.
Hence, π is also a play in G|σ. But then we have η(vi+1) £Ω(vi+1) η(vi) for all
i ∈ N. According to Lemma 7 the minimal priority occurring infinitely often in
π is even. Hence, player ∃ wins every such π and σ must indeed be a winning
strategy.

(⇐) Suppose σ is a winning strategy for the parity game G = (V,E, v0, Ω).
Let G|σ = (V,Eσ, v0, Ω). For every p ∈ Odd(G) let Eσ,p = Eσ ∩ {(v, w) ∈
E | Ω(w) ≥ p} be the set of edges in G|σ that lead to nodes with priorities
not less than p whilst conforming to σ. Furthermore, for every v ∈ V let
W p

v = {w | (v, w) ∈ E+
σ,p}∩Vp be the set of nodes that have priority p and are

reachable from v via this relation, where E+
σ,p is the transitive closure of Eσ,p.

Now define a µ-annotation η for G|σ as η(v)(p) = |W p
v | for every v ∈ V and

every p ∈ Odd(G). It remains to be seen that η is successful.
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Suppose it is not, then there a v ∈ V and a w ∈ vEσ s.t. η(w) 6 £Ω(w)η(v). Note
that, if v ∈ V∃ then w is uniquely determined by σ. Otherwise the existence
of such a w is guaranteed by totality.

Since w ∈ vEσ, i.e. w is reachable from v whilst conforming to σ, we have
W p

w ⊆ W p
v for every p ≥ Ω(w) and, hence, η(w)(p) ≤ η(v)(p) for all p ≤ Ω(w).

Since η(w) 6 £Ω(w)η(v) by assumption it must be the case that Ω(w) is odd and
η(w)(Ω(w)) 6< η(v)(Ω(w)). Then it must be the case that η(w)(Ω(w)) = η(v)(Ω(w)),

in other words W
Ω(w)
w = W

Ω(w)
v . This means, in particular, (w, v) ∈ E+

σ,Ω(w), i.e.
v is reachable back from w through edges that are induced by the strategy σ

whilst not seeing a priority greater than Ω(w). But then there is a play which
conforms to σ on which the least priority seen infinitely often is Ω(w) which
is odd. Thus, this play is won by player ∀ and, since it conforms to σ, this
contradicts the fact that σ is a winning strategy. We conclude that η must
indeed be a successful µ-annotation. 2

A direct consequence of this proof is the fact that the domain of annotation
values can be bounded. A similar but slightly less optimising observation has
also been made regarding progress measures [17]. Again, for a parity game
G = (V,E, v0, Ω) and a p ≤ mop(G) let E+

p denote the transitive closure of
the relation E ∩ {(v, w) | Ω(w) ≤ p}.

Corollary 9 Let G = (V,E, v0, Ω) be a parity game. There is a successful
µ-annotation for G iff there is a successful µ-annotation η for G s.t. for all
v ∈ V and all p ∈ Odd(G): η(v)(p) ≤ |{w ∈ V | (v, w) ∈ E+

p }|.

The µ-annotation values can furthermore be bounded by considering strongly
connected components (SCC) of the game graph. Note that any infinite play
on a finite game ultimately gets trapped in an SCC of the game. Furthermore,
the winner of that play is entirely determined by the priorities of nodes from
that SCC. This is because every suffix of an infinite play has the same set of
infinitely occurring nodes as the play itself.

Let G = (V,E, v0, Ω) be a parity game, p ≤ mop(G) and scc : V → N a
function that assigns to each node a unique index identifying the SCC con-
taining that node. I.e. we have scc(v) = scc(w) iff v is reachable from w

and vice-versa. Furthermore, let E+
p be the transitive closure of the relation

E ∩ {(v, w) | scc(v) = scc(w) and Ω(w) ≤ p}. Then Cor. 9 holds with this
interpretation of E+

p as well, but a µ-annotation η is now successful iff for all
v ∈ V :

• if v ∈ V∀ then for all w ∈ vE: scc(v) = scc(w) implies η(w) £Ω(w) η(v), and
• if v ∈ V∃ then there is a w ∈ vE s.t. scc(v) 6= scc(w) or η(w) £Ω(w) η(v).
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4 Difference Logic

Let P = {P1, P2, . . . , Pn} be a set of Boolean variables and X = {x1, x2, . . . , xm}
a set of integer variables. The set of atomic formulas of difference logic con-
sists of propositions in P and integer constraints of the forms (xi ≥ xj) and
(xi > xj) with xi, xj ∈ X . The set F of all difference logic formulas 1 is the
smallest set containing the atomic formulas which is closed under negation
and conjunction:

• if φ ∈ F , then ¬φ ∈ F , and
• if φ ∈ F and ψ ∈ F , then (φ ∧ ψ) ∈ F .

The Boolean connectives ∨,→,↔ are defined in the usual way in terms of ¬
and ∧.

A (P ,X ) valuation consists of two functions 2 β : P → {⊥,>} and β : X → Z,
where Z is the set of integers. The valuation is extended to all formulas in F by
defining β(xi ≥ xj) = > iff β(xi) ≥ β(xj), β(xi > xj) = > iff β(xi) > β(xj),
and applying the usual rules for the Boolean connectives. A formula φ ∈ F
is satisfied by a valuation iff β(φ) = >, and it is satisfiable if there exists a
satisfying valuation. Given a formula φ ∈ F , the satisfiability problem is to
decide whether or not φ is satisfiable.

Theorem 10 [25,20] The satisfiability problem for difference logic is NP-
complete.

PROOF. NP-hardness follows directly from the fact that our logic subsumes
propositional logic and membership in NP from the fact that the full difference
logic is in NP, see e.g., [25]. 2

An alternative way of showing membership in NP and to demonstrate the
use of (our chosen subset of full) difference logic in an automata theoretic
setting is the following nondeterministic algorithm. First replace each integer
constraint (xi ≥ xj) and (xi > xj) with new propositional variables p(xi≥xj)

and p(xi>xj). Guess a truth assignment for the resulting propositional formula,
and check in polynomial time that it is satisfiable in the propositional sense.
If it is, we still need to check that the conjunction of the integer constraints
(xi ≥ xj) such that β(p(xi≥xj)) = > and (xi > xj) such that β(p(xi>xj)) = >
1 Our logic is actually a proper subset of the standard definition of difference logic
over integers which allows integer constraints of the form (xi + k ≥ xj), where k is
an arbitrary integer constant, see e.g., [23].
2 Notice that the function β is overloaded for notational convenience.
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is satisfiable. We can actually reduce this problem into the problem of Büchi
automata emptiness with acceptance conditions on arcs as follows. Create
a Büchi automaton with the state set X , where all states are initial. The
alphabet is a singleton set Σ = {a}, and the arcs are defined as follows. For
each constraint (xi ≥ xj) such that β(p(xi≥xj)) = > add a non-accepting
arc (xi, a, xj), and for each constraint (xi > xj) such that β(p(xi>xj)) = >
add an accepting arc (xi, a, xj). Now it is straightforward to prove that the
conjunction of the integer constraints induced by the propositional model will
be satisfiable iff the Büchi automaton is empty. Because clearly checking the
emptiness of a Büchi automaton can be done in polynomial time, the whole
algorithm is in NP.

5 Encoding Winning Strategies in Difference Logic

Given a parity game G = (V,E, v0, Ω) we build a difference logic formula ΦG

that is satisfiable iff player ∃ has a winning strategy in the game G. It contains
Boolean variables Sv for every v ∈ V and Tv,w for every (v, w) ∈ E. They are
used to guess a subgame of G inducing a positional strategy σ for the player
∃ in G.

In addition, ΦG contains integer variables xv
p for every v ∈ V and every p ∈

Odd(G) in order to model a µ-annotation. ΦG is defined to be

(Sv0 ∧ Φ∃ ∧ Φ∀ ∧ ΦV ∧ ΦA).

Here, the subformulas are defined as follows:

Φ∃ =
∧

v∈V∃

(Sv →
∨

(v,w)∈E

Tv,w),

Φ∀ =
∧

v∈V∀

(Sv →
∧

(v,w)∈E

Tv,w),

ΦV =
∧

v∈V,v 6=v0

((
∨

(w,v)∈E

Tw,v) → Sv), and

ΦA =
∧

(v,w)∈E

(Tv,w → Ψv,w),

where Ψv,w is given by

Ψv,w =















∧

p∈Odd<Ω(w)(G)

(xv
p ≥ xw

p ) if Ω(w) even,

(xv
Ω(w) > xw

Ω(w)) ∧
∧

p∈Odd<Ω(w)(G)

(xv
p ≥ xw

p ) otherwise.
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Theorem 11 Player ∃ has a winning strategy in the game G iff the difference
logic formula ΦG is satisfiable.

PROOF. (⇒) Suppose player ∃ has a winning strategy σ for the game G =
(V,E, v0, Ω). This gives rise to an assignment β of the propositional variables
Sv and Tv,w for any (v, w) ∈ E: β(Sv) = >, resp. β(Tv,w) = >, if there is a
play conforming to σ which visits the node v, resp. traverses the edge (v, w).
It is not hard to see that the conjuncts Sv0 , Φ∃, Φ∀, and ΦV are satisfied by β.

According to Theorem 8 there is a successful µ-annotation η for G|σ. This gives
rise to an assignment β to the non-propositional variables xv

p for all the nodes

of the play conforming to σ defined by β(xv
p) = η(v)(p). Since η is successful,

we have η(w)£Ω(w) η(v) for all (v, w) ∈ Eσ, and hence, the conjunct ΦA is also
satisfied. Altogether, there is a satisfying assignment for ΦG.

(⇐) Suppose β is a satisfying variable assignment for ΦG. It is easy to derive
from this a game G|σ = (V,Eσ, v0, Ω) as follows: for every node v ∈ V∃ such
that β(Sv) = > add an arbitrary edge (v, w) to Eσ such that β(Tv,w) = >,
and for every node v ∈ V∀ such that β(Sv) = > add all edges (v, w) ∈ E

to Eσ. The conjuncts Sv0 , Φ∃, Φ∀ and ΦV ensure that suitable edges needed
by the construction above exist and that G|σ induced in this way is indeed a
subgame of G. 3

Furthermore, we can extract a µ-annotation η for G|σ defined by η(v)(p) =
β(xp

v) for any v ∈ V conforming to σ and any p ∈ Odd(G). (Should some
β(xp

v) turn out to be negative, it is easy to see from our translation that
the integer values of a satisfiable model can be made to positive integers
by first offsetting every β(xp′

v′) by a large enough positive integer offset o to
make all integer variables of an assignment positive, and the formula still
remains satisfiable with this assignment consisting of positive values only.)
The conjunct ΦA ensures that η is a successful µ-annotation for G|σ and,
according to Theorem 8, σ is a winning strategy for player ∃ in the game
G. 2

Proposition 12 Given a parity game G = (V,E, v0, Ω) with maximal odd
priority pmax , the size of the difference logic formula ΦG is O(|E| · dpmax

2
e).

The same size bound holds even if ΦG is required to be in conjunctive normal
form (CNF). In fact, by careful analysis of the difference logic formula ΦG

our implementation is able to rewrite it to difference logic in conjunctive nor-

3 Note that a satisfying truth assignment can give rise to several winning strategies
for the player ∃. It would be easy to change this by constraining each node of the
player ∃ to have at most one outgoing edge.
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mal form without blowup even without introducing any additional Boolean
variables.

6 An Encoding into Propositional Logic

We present an encoding of the formula ΦG for a parity game G into propo-
sitional logic, i.e. the subset of difference logic with Boolean variables only.
Clearly, all that remains to be done is to translate the integer variables and
constraints on them of the form (xv

p ≥ xw
p ) and (xv

Ω(w) > xw
Ω(w)).

Let G = (V,E, v0, Ω) be the underlying parity game. By Cor. 9, the domain
of the difference logic variables xv

p for a fixed p and any v can be bounded by
|Vp| + 1. Let mp = dlog(|Vp| + 1)e be the number of bits needed for a binary
encoding of a value in the range {0, . . . , |Vp|}. Hence, a set of propositional
variables xv

p,i for i ∈ {0, . . . ,mp − 1} will be used to encode the value of each
integer variable xv

p.

For any v, w ∈ V , any p ∈ Odd(G) and any m ≥ 1 we present recur-
sively defined propositional formulas GreaterOrEquals and StrictlyGreater
parametrised by v, w, p,m and stating 0 ≤ xw

p ≤ xv
p < 2m, resp. 0 ≤ xw

p <

xv
p < 2m.

GreaterOrEquals(v, w, p, 0) = xw
p,0 → xv

p,0

GreaterOrEquals(v, w, p,m) = (xw
p,m → xv

p,m) ∧
(

(xw
p,m ∨ ¬xv

p,m) →
GreaterOrEquals(v, w, p,m − 1)

)

StrictlyGreater(v, w, p, 0) = xv
p,0 ∧ ¬xw

p,0

StrictlyGreater(v, w, p,m) = (xw
p,m → xv

p,m) ∧
(

(xw
p,m ∨ ¬xv

p,m) →
StrictlyGreater(v, w, p,m − 1)

)

Both formulas assert that the mth bit of xv
p is greater or equals to the mth

bit of xw
p , and if they are equal then the same has to hold recursively for the

next lower bit. However, formula StrictlyGreater has to ensure in the base case
that at least the values of the lowest bits differ unless some higher bits have
differed already.

The encodings of the integer constraints in ΦG are simply replaced by

(xv
p ≥ xw

p ) with GreaterOrEquals(v, w, p,mp), and

(xv
Ω(w) > xw

Ω(w)) with StrictlyGreater(v, w, Ω(w),mΩ(w)).
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We keep ΦG as the name of the formula obtained by replacing all integer
variables and all integer constraints on them by their Boolean counterparts.

Theorem 13 Player ∃ has a winning strategy in the game G iff the proposi-
tional logic formula ΦG (i.e. ΦG with only Boolean variables) is satisfiable.

PROOF. Immediate from the replacement of integer variables and constraints
by their Boolean counterparts, together with Thm. 11 and Cor. 9. 2

Proposition 14 [26] Given a parity game G = (V,E, v0, Ω) with maximal
odd priority pmax , the size of the propositional logic formula ΦG (i.e. ΦG with
only Boolean variables) is O(|E| · dpmax

2
e · dlog |V |e).

The same size bound can be obtained also for a formula in conjunctive normal
form (CNF) by introducing additional Boolean variables when needed in the
CNF conversion process.

7 Experimental Results

We have implemented the translations from PARITY to difference logic and
SAT presented in the previous sections. We use the DPLL(T) system [23] as
the satisfiability solver for difference logic, and the well established zChaff [21]
solver as the SAT solver. We also compare to an alternative approach for solv-
ing parity games by Keinänen and Niemelä [27] using the Smodels logic
programming system [28], for further details on this approach, see [29].

All results are obtained on a machine with a 2GHz AMD Athlon64 processor
and 2GiB of RAM. Times reported are the times in seconds to solve the
formulas as reported by the Unix /usr/bin/time command. All benchmark
runs employ a 1000 s timeout. Further implementation details, test setup,
benchmarks, and discussion of the results can be found in [29], from which the
following experimental results are from.

As the first set of benchmarks we use the family of Jurdziński graphs Jd,w,
with parameters depth d ∈ N and width w ∈ N. The parity game Jd,w can
be represented as a rectangle of 2d + 1 rows and 2w columns as depicted in
Fig. 3. The Corollary below follows directly from Theorem 12 in [17].

Corollary 15 Given a Jurdziński graph Jd,w, the running time of the progress
measure algorithm on Jd,w is exponential in d.

It is not hard to see – despite these games being difficult to solve for the small
progress measures algorithm – that player ∃ has a winning strategy from every
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Fig. 3. The Jurdziński graphs Jd,w.

node in the first 2d rows whereas player ∀ has a winning strategy from every
node in row 2d+1. These strategies simply consist of moving to the right end
of each row for example.

In the following we will always choose as the starting node the top leftmost
node of the ∀ player. Hence, the resulting formulas under the reductions above
are always satisfiable. 4 The results for the benchmarks in classes Jd,5 and
Jd,10 are reported in Fig. 4. In these benchmarks we observe a better scaling
of zChaff and Smodels over the difference logic approach of DPLL(T).

The second set of benchmarks used is a set of randomly generated parity
games. These are generated by the following simple algorithm. For a parameter
value n, start generating a game with a set of nodes of size n and generate
exactly two outgoing edges for each node. Fix the initial state to node n0,
and discard all nodes not reachable from it. Experimentally roughly 80% of
all nodes are reachable from n0 on the average. For all the remaining nodes
pick the player of each node with equal probabilities. The maximum priority
m is another parameter value. We pick the priority of each node uniformly at
random from the set {0, 1, . . . ,m − 1}.

Fig. 5 reports running times with the parameter settings m = d√ne for 31 ran-

4 We note that unsatisfiable instances obtained by setting the starting node to be
the leftmost node on the last row seem to be easier for the SAT solvers.
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d Jurdziński graph Jd,5 Jurdziński graph Jd,10

DPLL(T) zChaff Smodels DPLL(T) zChaff Smodels

5 0.1 0.0 0.0 0.1 0.0 0.0
10 0.2 0.1 0.0 0.3 0.1 0.1
15 0.3 0.1 0.1 0.8 0.3 0.3
20 0.5 0.2 0.1 2.4 0.6 0.5
25 1.1 0.3 0.2 6.0 0.8 0.7
30 2.4 0.4 0.3 12.3 1.2 1.0
35 5.1 0.6 0.3 22.0 1.6 1.3
40 8.9 0.8 0.4 39.8 2.1 1.7
45 14.3 1.0 0.5 61.1 2.6 2.1
50 21.9 1.2 0.7 93.3 3.2 2.6
55 29.1 1.5 0.8 122.7 3.9 3.2
60 40.3 1.7 0.9 183.3 4.7 3.8
65 59.0 2.0 1.1 51.0 5.4 4.4
70 75.0 2.4 1.2 336.3 6.2 5.1
75 105.8 2.7 1.4 427.7 7.2 5.9
80 134.8 3.1 1.6 505.4 3.8 6.8

Fig. 4. The running times on the Jurdziński graphs Jd,5 and Jd,10.

n #sat/#unsat DPLL(T) zChaff Smodels

min/median/max min/median/max min/median/max

100 20 / 11 0.1 / 0.1 / 0.1 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.7

200 23 / 8 0.1 / 0.1 / 0.1 0.0 / 0.1 / 0.1 0.0 / 0.8 / 265.4

300 23 / 8 0.1 / 0.1 / 0.2 0.1 / 0.1 / 0.3 0.1 / 4.8 / >1000

400 21 / 10 0.1 / 0.2 / 0.2 0.1 / 0.2 / 14.4 0.1 / 13.7 / >1000

500 21 / 10 0.1 / 0.2 / 0.3 0.1 / 0.3 / 1.1 0.3 / 40.9 / >1000

600 21 / 10 0.2 / 0.3 / 0.4 0.2 / 0.4 / 1.7 0.3 / 121.3 / >1000

700 17 / 14 0.2 / 0.4 / 0.7 0.3 / 0.6 / >1000 0.4 / 209.9 / >1000

800 20 / 11 0.2 / 0.5 / 0.7 0.3 / 1.3 / 12.8 0.6 / 362.5 / >1000

Fig. 5. The running times on random parity games with m = d√ne.

dom instances for every value of n. In this test setup the Smodels based ap-
proach does not scale very well. The zChaff and DPLL(T) based approaches
are fairly close, with DPLL(T) winning slightly by having less variance in its
running times.

8 Conclusions

We have shown how to reduce the problem of solving parity games both into
difference logic and into SAT. Overall, the experimental results are encourag-
ing considering the small amount of tuning effort that has been done so far to
improve the translations. The reduction to finding a stable model of a logic
program from [27] combined with the Smodels system does surprisingly well
on Jurdziński graphs with a large number of priorities. However, the experi-
ments on random graphs show that the approach is not always as robust as the
results on Jurdziński graphs would let one believe. In any case, the approach
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proved to be a worthy baseline for the new reductions of this work.

The reduction of solving parity games into SAT is mainly interesting because
of the availability of highly efficient SAT checkers to solve the generated in-
stances efficiently in practice. Also the rate of improvement in the performance
of the state-of-the-art SAT checkers has been very high in recent years. This
is expected to make the reductions even more attractive in the future. The
reduction to SAT is also interesting because it enables a smooth integration
of this kind of a parity game solver to other SAT based technologies. For ex-
ample, bounded model checking of sequential Boolean circuits could have the
property specified using alternating parity automata as in [30]. In a hypothet-
ical bounded model checker for sequential Boolean circuits the encoding into
SAT would most probably be dominated by the size of the encoding of the
transition relation of the sequential Boolean circuit and the parity game would
be a much smaller property checking subproblem. In such an application do-
main we want to be able to express the problem of solving parity games in
SAT but the main difficulty in the problem solved by the SAT solver comes
from the encoding of the executions of the sequential Boolean circuit.

It is not hard to extend this reduction to a global parity game solver – an
algorithm that computes for each node v the player that has a winning strategy
for the game starting in this node. Because of Theorem 4 there is always
exactly one player who has a winning strategy. The straightforward extension
roughly doubles the number of variables and clauses in the formulas. Every
node is equipped with two data structures: a µ-annotation and a dually defined
ν-annotation. The formula then asserts that, depending on which winning set
this node belongs to, it is either the µ- or the ν-annotation that has to be
locally successful. Using the duality of the problem could also be exploited
during the translation to choose between guessing a strategy for either the
existential or the universal player and, for example, always choose the one
where the search space of the potential strategies is minimised.

As further work it would be interesting to try how well SAT based approaches
could work as subroutines in recursive procedures like [19], in particular as a
subroutine to find so called “small dominions” of a parity game [19]. Another
line of work based on our new reductions would be to extend bounded model
checking algorithms for linear time properties to allow for more efficient han-
dling of alternating parity automata as the specification formalism, continuing
work along the lines of [30–32].

Acknowledgements We would like to thank Jan Johannsen for suggesting
to solve parity games by doing a piggy-back on the recent advance in SAT
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Marcin Jurdziński for inspiring comments about difficult parity games. We
would also like to thank Albert Oliveras and Robert Nieuwenhuis for their
excellent support for the DPLL(T) solver.

References

[1] A. Puri, Theory of hybrid systems and discrete event systems, Ph.D. thesis,
University of California, Berkeley (1995).
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