Deadlock Checking for Complete Finite Prefixes
Using Logic Programs with
Stable Model Semantics
(Extended Abstract)

Keijo Heljanko

Helsinki University of Technology, Digital Systems Laboratory
P.O.Box 1100, FIN-02015 HUT, Finland
Keijo.Heljanko@hut.fi

Abstract. McMillan has presented a deadlock detection method based on
complete finite prefixes (i.e. net unfoldings) of a Petri net. The problem of
checking deadlock-freedom is NP-complete in the size of the prefix. McMil-
lan originally suggested a branch-and-bound algorithm for deadlock detection
in prefixes. Recently, Melzer and Romer have presented another algorithm
which is based on solving mixed integer programming problems. We show
that instead of using mixed integer programming, a constraint-based logic
programming framework can be employed, and present a simple linear-size
translation from deadlock detection in prefixes into the problem of finding
a stable model of a logic program. We present experimental results from
a straightforward prototype implementation combining the prefix generator
of the PEP-tool, the translation, and an implementation of constraint-based
logic programing framework, the smodels system. We find our approach com-
petitive with the previous approaches.

1 Introduction

Petri nets are a model of concurrency which can be used to analyze e.g. reactive
systems. One of the analysis problems associated with reactive systems is that of
deadlock-freedom: Do all reachable markings enable some transition? For 1-safe Petri
nets this problem is PSPACE-complete in the size of the net [2], however, restricted
subclasses of 1-safe Petri nets exist for which this problem is NP-complete [7,8].
McMillan has presented a deadlock detection method based on complete finite pre-
fixes (i.e. net unfoldings) of a Petri net [7,8]. The basic idea is to transform the
PSPACE-complete deadlock detection problem for a 1-safe Petri net into a (poten-
tially exponentially) larger NP-complete problem. This translation creates a com-
plete finite prefix, which is a 1-safe Petri net of a restricted form. The blowup of the
translation depends on the problem instance, and experimental results show that it
can in many cases be avoided [3,7-9].

In this work we will mainly discuss ways of solving the NP-complete deadlock
detection problem for prefixes. McMillan originally suggested a branch-and-bound
algorithm for deadlock detection in prefixes. Recently, Melzer and Rémer have pre-
sented another algorithm which is based on solving mixed integer programming
problems generated from prefixes [9]. We suggest that by using a third alternative,

a constraint-based logic programming framework [10-12], this problem can be quite
elegantly and efficiently solved.

First we present Petri net notations used in the paper. In Section 3 we will
introduce the rule-based constraint programming framework. Section 4 contains the
main result of this work, a simple linear-size translation from deadlock detection for
prefixes into the problem of finding a stable model of a logic program. In Section 5
we present experimental results from a straightforward prototype implementation.
In Section 6 we conclude and discuss directions for future research.

2 Petri Net Definitions

This section is included for completeness, it is based on the notation of [3,9].

2.1 Petri Nets

A triple (S, T, F) is a netif SNT = () and F' C (SxT)U(T xS). The elements of S are
called places, and the elements of T' transitions. Places and transitions are also called
nodes. We identify F' with its characteristic function on the set (S xT)U(T x S). The
preset of a node z , denoted by *z, is the set {y € SUT|F(y,xz) = 1}. The postset of
a node z , denoted by z*, is the set {y € SUT|F(x,y) = 1}. Their generalizations
on sets of nodes X C SUT are defined as *X = (J,cx *7, and X* = [J,x **
respectively.

A marking of a net (S,T,F) is a mapping S — N. A marking M is identified
with the multiset which contains M (s) copies of s for every s € S. A 4-tuple X =
(S,T, F, My) is a net system if (S, T, F') is a net and My is a marking of (S, T, F). A
marking M enables a transition t if Vs € S : F(s,t) < M(s). If ¢ is enabled, it can
occur leading to a new marking (denoted M 5 M), where M’ is defined by Vs €
S:M'(s) = M(s) — F(s,t) + F(t,s). A marking M, is reachable in X' if there exist
a sequence of transitions ty,ta,...,t, and markings My, Ms,... M, 1 such that:
My 2N M, 3 oM, In M,,. A reachable marking is 1-safe if Vs € S : M(s) < 1.
A net system X' is 1-safe if all it’s reachable marking are 1-safe. In this work we will
restrict ourselves to the set of net systems which are 1-safe, have a finite number of
places and transitions, and also in which each transition ¢ € T" has both a nonempty
pre- and postsets.

2.2 Occurrence Nets

We use < to denote the reflexive transitive closure of F. Let (S,T, F) be a net
and let x1,z2 € SUT. The nodes z; and z5 are in conflict, denoted by z;#x4, if
there exist t1,ts € T such that t; # ta, *t1 N %ty # 0, t1 <p 1, and t3 <p 2. An
occurrence net is a net N = (B, E, F') such that:

- Vbe B:|* <1,

— F is acyclic, i.e. the irreflexive transitive closure of F' is a partial order,

— N is finitely preceded, i.e. for any node x of the net, the set of nodes y such that
y <p z is finite, and

— Ve e SUT : —(z#x).

The elements of B and E are called conditions and events respectively. The set
Min(N) denotes the set of minimal elements of the transitive closure of F. A con-
figuration C of an occurrence net is a set of events satisfying:

—eeC=>Ve <pe:e €C (Cis causally closed),
— Ve,e' € C: —(efte’) (C is conflict-free).

2.3 Branching Processes

Branching processes are “unfoldings” of net systems and were introduced by Engel-
friet [1]. Let Ny = (S1,T1, F1) and No = (S3, T, F») be two nets. A homomorphism
is a mapping S; UT; — Sz UT» such that: h(S1) C Sa A h(T1) C T>, and for all
t € T, the restriction of h to *¢ is a bijection between *t and ®h(t), and similarly
for t* and h(t)*. A branching process of a net system X is a tuple 8 = (N’ p),
where N' is a occurrence net, and p is a homomorphism from N’ to (S, T, F') such
that: the restriction of p to Min(N') is a bijection between Min(N') and My, and
Vei,es € E, if ®e; = ®ex A p(e1) = p(e2) then e; = ey. The set of places associated
with a configuration C of § is denoted by Mark(C) = p((Min(N)U C*®) \ *C).

2.4 Complete Finite Prefixes

A finite branching process 3 is a complete finite prefix of a net system X' if and only
if for each reachable marking M of X there exists a configuration C' of 8 such that:

— Mark(C) = M, and
— for every transition ¢ enabled in M there exists a configuration C'U{e} such that
e € C and p(e) =1t.

Algorithms to obtain a complete finite prefix 8 given a 1-safe net system X are
presented in e.g. [3,7,8]. The algorithms will mark some events of the prefix 5 as
special cut-off events, which we denote by the set CutOffs(8). The intuition behind
cutoff events is that for each cutoff event e there already exists another event e’ in
the prefix. The markings after executing e can also be reached after executing e’,
and thus the markings after e need not to be considered any further. Due to space
limitations we direct the reader interested in the approach to [3,7-9].

3 Rule-Based Constraint Programming

We will use normal logic programs with stable model semantics [4] as the underlying
formalism into which the deadlock detection problem for complete finite prefixes is
translated. This section is to a large extent based on [12].

The stable model semantics is one of the main declarative semantics for normal
logic programs. However, here we use logic programming in a way that is different
from the typical PROLOG style paradigm, which is based on the idea of evaluat-
ing a given query. Instead, we employ logic programs as a constraint programming
framework [10], where stable models are the solutions of the program rules seen as
constraints. We consider normal logic programs that consist of rules of the form

h <+ ay,...,ap,not (b1),...,not (b,,) (1)

where ay, ... ,an,b1,... ,by and h are propositional atoms. Such a rule can be seen as
a constraint saying that if atoms a4, ... ,a, are in a model and atoms b1, ... ,b,, are
not in a model, then atom A is in a model. The stable model semantics also enforces
minimality and groundedness of models. This makes many combinatorial problems
easily and succinctly describable using logic programming with stable model seman-
tics.

We will demonstrate the basic behaviour of the semantics using programs P1-P4:

P1: a + not (b) P2:a<+a P3: a + not (a) P4: a < not (b),c
b < not (a) b < not (a)

Program P1 has two stable models: {a} and {b}. The property of this program is
that we may freely make negative assumptions as long as we do not bump into any
contradictions. For example, we may assume not (b) in order to deduce the stable
model {a}. Program P2 has only the empty set as its only stable model. This exposes
the fact that we can’t use positive assumptions to deduce what is to be included in
a model. Program P3 is an example of a program which has no stable models. If we
assume not (a), then we will deduce a, which will contradict with our assumption
not (a). Program P4 has one stable model {b}. If we assume not (a) then we will
deduce b. If we assume not (b) then we can’t deduce a, because ¢ can’t be deduced
from our assumptions.

The stable model semantics for a normal logic program P is defined as follows
[4]. The reduct P# of P with respect to the set of atoms A is obtained (i) by deleting
each rule in P that has a not-atom not (z) in its body such that z € A and (ii) by
deleting all not-atoms in the remaining rules. A set of atoms A is a stable model of
P if and only if A is the deductive closure of P4 when the rules in P4 are seen as
inference rules.

One interesting property of the stable model semantics is that only the atoms oc-
curring as not-atoms in some program rule contribute to the search space. Therefore
a non-deterministic way of constructing stable models is to guess which assumptions
(not-atoms of the program) to use, and then check using deductive closure (in lin-
ear time) whether the resulting model agrees with the assumptions. The problem of
determining the existence of a stable model is infact NP-complete [6].

3.1 The tool smodels

There is a tool, the smodels system [11,12], which provides an implementation of
logic programs as a rule-based constraint programming framework. It has been de-
veloped to find (some or all) stable models of a logic program. It can also tell when
the program has no stable models. It contains strong pruning techniques to make the
problem tractable for a large class of programs. The smodels implementation needs
only space linear in the size of the input program [12]. The stable model semantics
is defined using rules of the form (1). As of version 2.0, smodels also handles an
extended set of rules. All of these new rules can be seen as succinct encodings of
sets of basic rules. In this work we will only need the extended rule of the form:
h < 2{ai,... ,a,}. The semantics of this rule is that if two or more atoms from the
set ay,...,a, belong to the model, then also the atom h will be in the model. It is

easy to see that this rule can be encoded by using & 2; N basic rules of the form:
h < a;i,a;. Using an extended rule instead of the corresponding basic rule encoding

was necessary to achieve an efficient translation of the problem at hand.

4 Translating Deadlock Checking into Logic Programs

In this section we present the translation of deadlock detection into logic programs.
The main result can be seen as a rephrasing of the Theorem 4 of [9], where mixed
integer programming has been replaced by the rule-based constraint programming
framework. First we define some additional notation.

Definition 1. The set of non-cutoff events corresponding to the prefix f = (N, h)
with N = (B, E, F) is NonCutOffs(8) = {ele € E A e & CutOffs(B)}.

Definition 2. The set of normal events corresponding to the prefix 8 = (N, h) with
N = (B, E,F) is NormalEvents(3) = NonCutOffs(3) \ {e|le € E A *e = (}.

Normal events include all non-cutoff events except the minimal elements, if such
elements exist.

Next we present the main result of this work. We will discuss the theorem in full
detail in the text following the theorem.

Theorem 3. Let 8 = (N,h) with N = (B,E,F) be a complete finite prefix of a
given n-safe net system X. For technical reasons we use a slightly modified pre-
fix B', which is identical to B except that we have replaced the net N with the net
N' = (B',E',F"), where B' = B, E' = EU {eo}, F' = F U {(eg,b)|b € Min(N)}.
The event eg is a new minimal event which generates the initial marking.

X is deadlock-free if and only if the logic program containing the following rules
has no stable model:

1. A rule:
ep <

2. For all e; € NormalEvents((3') a rule:
e; < €l,... e, not (be;),
such that |, <<, {€j} = *(®e:)

3. For all e; € NormalEvents(8') a rule:
be; < not (e;)

4. For all b; € B' such that |b? \ CutOffs(6")] > 1 a rule:
conflict < 2{e},... e},
such that |, <; <, {€;} = b7 \ CutOffs(B')

5. A rule:
bottom < not (bottom), conflict

6. For all b; € {b € B'|b* # 0} a rule:
b; < e, not (e}), ..., not (el,),
such that {e} = *b;, and U, ;< {€j} = b7 \ CutOffs(8')

7. For all e; € NormalEvents(8") U CutOffs(8") a rule:

live < by,... ,bn,
such that U, <;<,, {bj} = *e;
8. A rule:

bottom < not (bottom), live

The intuition behind the logic program is the following: Rules 1-5 are a redefi-
nition of a legal configuration in terms of logic programs. The stable models of the
program containing only rules 1-5 have a one-to-one correspondence with those con-
figurations of 8 which do not include any cut-off events. Rules 6-8 are additional
constraints to these configurations. They remove from this set of configurations all
such configurations in which any event of the prefix is enabled. The remaining con-
figurations (if any exist) are configurations in which no event is enabled i.e. deadlock
configurations.

We’ll now discuss the program in more detail. The program has the atoms:

— The atom e; is in a model when the event e; is in the set of fired events.

— The atom be; is in a model when the event e; is not in the set of fired events.

— The atom conflict is deduced when two or more events sharing preset conditions
are in the set of fired events, and thus the set of fired events is not a configuration.

— The atom bottom is used merely for technical reasons. It is used to exclude all
stable models containing either atom conflict or live.

— The atom b; is in a model when the condition b; holds a token after the set of
fired events.

— The atom live is deduced when any net event is enabled.

The program rules do the following:

1. Rule 1 establishes the initial marking of the net by requiring that the event
generating the initial marking is always in the set of fired events. The configu-
ration containing only the event eg in the net N’ thus corresponds to the empty
configuration in the net N.

2. Rule 2 says that an event e; is in the set of fired events, if all of the events which
generate it’s preset are in the set of fired events, and the atom be; is not in the
model.

3. Rule 3 says that atom be; is in a model if event e; is not in the set of fired events.
This is a technicality which makes it legal for an event to be enabled and not to
be necessarily fired. This is needed to make also non-maximal configurations to
have stable models.

4. Rule 4 says that if two or more events which share a preset place are in the set
of fired events, then the atom conflict will be in the model.

5. Rule 5 excludes all models containing the atom conflict. Therefore rules 4 and
5 together disallow sets of fired events containing immediate conflicts due to
shared presets.

6. Rule 6 makes a condition to be in a model when its preset event, and none of
its postset events are in the set of fired events.

7. Rule 7 says that an event is enabled if all its preset conditions are in the model.
Note that this also includes cut-off events.

8. Rule 8 excludes all models in which any of the events are enabled, i.e. the atom
live is in the model.

It is easy to see that the size of translated program is linear in the size of the
prefix i.e. O(|B|+ |E| +|F). Because the rule-based constraint programming system
only needs linear space in the size of the input program, deadlock checking exploiting
this translation can be made using only linear space in the size of the prefix. The
translation is also local, which makes it is quite straightforward to implement the
translation in linear time in the size of the prefix.

5 Prototype Implementation

We have implemented the translation described in the previous section using the
interpreted scripting language Python. It translates the deadlock checking for com-
plete finite prefix generated by the PEP-tool [5] into a logic program. The only
optimization the translator script does is that it removes duplicate rules, which can
be done in polynomial time. (Duplicate rules might arise from rules 4 and 7.) The
Python script gen inputs an ASCII file which describes the complete finite prefix,
and generates another ASCII file which contains the logic program. This ASCII file is
then parsed by the smodels parser pparse into internal form suitable for the smodels
stable model generator. This prototype implementation was created to research the
feasibility of the approach, rather than to be a fully functional tool. The gen script,
the pparse program, and the smodels computational engine will eventually be all
integrated into one tool which directly reads binary format prefix files. Initial results
show that this will eliminate almost all of the costs associated with the generation
and parsing steps.

5.1 Experimental Results

We have made experiments with our approach using the examples by Corbett and
McMillan, which were used by Melzer and Romer in [9]. The Figures 1 and 2 present
the running times in seconds for the various algorithms used in this work and also
those presented in [9]. The running times have been measured using a Pentium
166MHz, 64MB RAM, 128MB swap, Linux 2.0.29, g++ 2.7.2.1, pparse 1.4, smodels
pre-2.0.11, and PEP 1.6g. The running times for the experiments by Melzer and
Romer were conducted on a Sparcstation 20/712, 96MB RAM.

The rows of the table correspond to different problems. The columns represent:
sum of user and system times measured by /usr/bin/time command, or times
reported in [9], depending on the column:

— Unf! = time for unfolding (PEP)

— Gen! = time for constraint program generation (gen)

— Parse! = time for parsing the constraint program (pparse)

— DC_MIP? = time for Mixed integer programming algorithm in [9]

— DC_McM? = time for McMillan’s algorithm in |9]

— DC_McM! = time for McMillan’s algorithm using Pentium 166MHz

— DC_smo! = time for smodels to determine whether there is a deadlock

A marking mem(n) notes that the program ran out of memory after n seconds
[9]. The marking vm(n) notes that the program ran out of virtual memory after n
seconds.

Problem(size) | Unf'| Gen'|Parse’[DC_MIP?| DC_McM?|DC_McM'|[DC_smo’
DPD(4) 0.13] 62| 0.2 2.0 0.3 0.2 0.3
DPD(5) 0.58| 16.3] 0.5 17.3 1.9 1.7 1.2
DPD(6) 3200 39.1] 1.2 82.8 20.2 12.1 4.9
DPD(7) 17.43| 91.0| 28 652.6 234.0 129.1 16.0
DPH(4) 0.13 6.9] 0.2 1.8 0.3 0.2 0.3
DPH(5) 1.26| 27.3] 0.7 42.9 10.5 6.4 2.3
DPH(6) 33.90| 150.1| 3.9 1472.8 1907.6 1100.0 29.9
DPH(7) 934.03| 931.5| 23.0 - -| vm(1713.3) 606.0
ELEVATOR(1)[0.09] 3.3] 0.1 0.1 0.0 0.1 0.1
ELEVATOR(2)| 0.54| 16.0 0.4 2.3 0.9 0.5 2.8
ELEVATOR(3)| 10.22| 78.0 1.9 14.5 18.7 10.1 63.4
ELEVATOR(4)[188.17| 368.6| 9.2 387.8 492.7 269.0 1221.7
FURNACE(1) | 0.10] 5.6/ 0.1 0.3 0.2 0.2 0.1
FURNACE(2) | 3.25| 52.3| 1.1 18.1 19.0 10.7 2.3
FURNACE(3) |136.88| 358.2| 8.9 1112.5| mem(811.1)| vm(387.6) 57.6
RING(3) 0.03] 12] 0.1 0.1 0.0 0.0 0.1
RING(5) 0.08/ 3.6/ 0.1 1.3 0.1 0.1 0.3
RING(7) 024 84| 03 17.1 0.3 0.2 1.6
RING(9) 0.73| 16.6| 0.5 71.2 1.1 0.7 7.3
RW(6) 0.09] 7.9] 0. 0.7 0.5 0.3 0.1
RW(9) 2.06| 108.3| 0.9 58.5 122.3 69.8 0.6
RW(12) 138.89|2682.9| 10.0| 24599.9|mem(6004.9)| vm(3111.8) 5.3

Fig. 1. Measured running times in seconds:
! = Pentium 166MHz, 64MB RAM, Linux 2.0.29.
2 — Sparcstation 20/712, 96MB RAM [9)

It is difficult comment on the absolute running times of algorithms running on
different machines. Some remarks on the scalability of the results inside the problem
instances can however be made. Our approach is scaling better than either of the
other methods on the problems DPD, DPH, FURNACE, RW, DME, and SYNC.
On the other hand, it seems to be doing worse than McMillan’s algorithm on RING.
The scaling between ELEVATOR(3) and ELEVATOR(4) is better with our approach
than either of the two other algorithms, but larger instances would be needed to draw
any conclusions about this.

Problem(size)] Unf'|Gen'|Parse'|[DC_MIP?[DC_McM?/DC_McM'|DC_smo’
DME(2) 0.13| 4.6 0.2 1.9 0.07 0.07 0.32
DME(3) 0.36| 11.5 0.3 64.6 0.50 0.35 2.34
DME(4) 1.09| 23.1 0.6 216.1 1.67 1.41 9.69
DME(5) 3.19| 40.4 1.1 1968.3 7.83 5.60 31.62
DME(6) 8.23| 63.7 1.7 13678.3 26.43 21.42 87.18
DME(7) 18.21] 96.5 2.6 - 97.80 67.84 204.98
DME(8) 37.56(140.4 3.7 - 251.52 184.51 425.96
DME(9) 70.44|197.3 5.1 - 701.74 527.02 823.78
DME(10) 124.20)270.5 6.9 - 1801.48 1273.94| 1483.96
DME(11) 207.64|366.6 9.0 - 4682.36 2892.92| 2541.65
SYNC(2) 4.61| 42.0 1.4 171.6 69.0 36.9 21.91
SYNC(3) 219.43|322.8 9.8 11985.0 26621.7 14219.0 626.16

Fig. 2. Measured running times in seconds:
! — Pentium 166MHz, 64MB RAM, Linux 2.0.29.
? — Sparcstation 20/712, 96MB RAM [9]

The ELEVATOR is the only problem which contains a deadlock, and this might
make it behave differently from the other problems. It is also the only example in
which the smodels computation engine had to make one choice of firing a transition
to find the deadlock. On all the other examples the strong pruning techniques of
smodels implementation removed all of the search space, thus having a guaranteed
polynomial running time in the size of the problem instance. We need to have a
larger set of examples in the future containing also difficult cases, which must exist
due to the complexity of the problem.

6 Conclusions

We have presented using a constraint-based logic programming framework for de-
tecting deadlocks from complete finite prefixes. Our main result is a simple linear-
size translation from deadlock detection on prefixes into the problem of finding a
stable model of a normal logic program. We present experimental results from a
straightforward prototype implementation, and find our approach competitive with
the previous approaches.

For future work we will extend this approach to the class of reachability problems
on prefixes. We conjecture that the translation can also be extended to the class of
Petri nets which have the following properties: 1-safe, acyclic, and each transition
can occur at most once. We will also need a larger set of examples to evaluate the
approach against other approaches, and also to test the the robustness of the various
algorithms to changes in the input representation. Also a more optimized translation
from the prefixes into rule-based constraint programs needs to be implemented. Even
by using only linear time in the size of the prefix a lot of optimizations exploiting
the structure of the prefix can be made. If needed, runtime overhead can also be
reduced by creating a special purpose tool which integrates all the phases of the
translation, and additionally might use a search algorithm which only handles the
very restricted set of rule-based constraint programs created by the translation.

7

Acknowledgements

The author would like to thank Ilkka Niemel4 for introducing him into the rule-based
constraint programming framework, and for many constructive ideas for the trans-
lation. The tool smodels was programmed by Patrik Simons, who also gave valuable
support for its usage. Stephan Melzer and Stefan Romer provided the example nets
they used, and also Linux binaries for the McMillan’s algorithm, which both were
invaluable for conducting the experiments. The financial support of Helsinki Grad-
uate School on Computer Science and Engineering (HeCSE), and the Academy of
Finland are gratefully acknowledged.

References

1.

2.

10.

11.

12.

J. Engelfriet. Branching processes of Petri nets. In Acta Informatica 28, pages 575-591,
1991.

J. Esparza and M. Nielsen. Decidability issues for Petri Nets - a survey. Journal of
Information Processing and Cybernetics 30(3), pages 143-160, 1994.

J. Esparza, S. Romer, and W. Vogler. An improvement of McMillan’s unfolding algo-
rithm. In Proceedings of Second International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’96), pages 87-106, Passau, Ger-
many, Mar 1996. Springer-Verlag. LNCS 1055.

. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

Proceedings of the 5th International Conference on Logic Programming, pages 1070-
1080, Seattle, USA, August 1988. The MIT Press.

B. Grahlmann. The PEP Tool. In Proceedings of CAV’97 (Computer Aided Verifica-
tion), pages 440-443. Springer-Verlag, June 1997. LNCS 1254.

W. Marek and M. Truszczyiiski. Autoepistemic logic. Journal of the ACM, 38:588-619,
1991.

K. L. McMillan. Using unfoldings to avoid the state space explosion problem in the
verification of asynchronous circuits. In Proceeding of 4th Workshop on Computer Aided
Verification (CAV’92), pages 164-174, 1992. LNCS 663.

K. L. McMillan. A technique of a state space search based on unfolding. In Formal
Methods is System Design 6(1), pages 45—-65, 1995.

S. Melzer and S. Rémer. Deadlock checking using net unfoldings. In Proceeding of 9th
International Conference on Computer Aided Verification (CAV’97), pages 352-363,
Haifa, Israel, Jun 1997. Springer-Verlag. LNCS 1254.

I. Niemeld. Logic programs with stable model semantics as a constraint programming
paradigm. In Proceedings of the Workshop on Computational Aspects of Nonmonotonic
Reasoning, pages 72-79, Trento, Italy, May 1998. Helsinki University of Technology,
Digital Systems Laboratory, Research Report A52.

I. Niemeld and P. Simons. Smodels — an implementation of the stable model and
well-founded semantics for normal logic programs. In Proceedings of the 4th Interna-
tional Conference on Logic Programming and Non-Monotonic Reasoning, pages 420—
429, Dagstuhl, Germany, July 1997. Springer-Verlag.

P. Simons. Towards constraint satisfaction through logic programs and the
stable model semantics. Research Report A47, Helsinki University of Tech-
nology, Espoo, Finland, August 1997. Licenciate’s thesis, Available at http://
saturn.hut.fi/pub/reports/A47.ps.gz.

