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Abstract—Safety properties are an important class of prop-
erties as in the industrial use of model checking a large
majority of the properties to be checked are safety properties.
This work presents an efficient approach to model check
safety properties expressed in PSL (IEEE Std 1850 Property
Specification Language), an industrial property specification
language. The approach can also be used as a sound but
incomplete bug hunting tool for general (non-safety) PSL
properties, and it will detect exactly the finite counterexamples
that are the informative bad prefixes for the PSL formulas in
question. The presented technique is inspired by the temporal
testers approach of Pnueli and co-authors but is aimed at finite
words instead of infinite words. The new approach presented
in this paper handles a larger syntactic subset of PSL safety
properties than earlier translations for PSL safety subsets and
has been implemented on top of the open source NuSMV 2
model checker. The experimental results show the approach
to be a quite competitive model checking approach when
compared to a state-of-the-art implementation of PSL model
checking.
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I. INTRODUCTION

Safety properties are an important class of properties as
in the industrial use of model checking a large majority of
the properties to be checked are safety properties. Safety
properties are also interesting from the point of view that
they can be reduced to invariant checking without a blow-up
in the number of state variables in the system to be checked.
This enables a larger variety of model checking algorithms
to be applied to them, such as the use of interpolants [1],
that are restricted to safety properties.

In this work we present an approach for model checking
of safety properties expressed in PSL (IEEE Std 1850
Property Specification Language), an industrial property
specification language. The approach can also be used as
a sound but incomplete bug hunting tool for general (non-
safety) PSL properties, and it will detect exactly the finite
counterexamples that are the informative bad prefixes (see
Sect. II-C) for the PSL formulas in question. The semantics
in our approach is based on [2] which coincides with the
latest revision of the semantics of PSL [3]. Our approach

extends to PSL the approach of [4] for finding so called
informative bad prefixes for linear temporal logic (LTL)
formulas. Thus our approach is sound for all PSL formulas in
the following sense: If our approach finds a counterexample
then a counterexample exists by the semantics of PSL.
Otherwise, if our approach does not find a counterexample,
then there is no so called informative bad prefix ([4], see
also Sect. II-C) for the PSL formula in question. On the
technical level our approach is inspired by [5] but instead
of general (non-safety) properties with temporal testers on
infinite words, our approach is tailored for safety properties
with transducers on finite words. The generated transducer
is then translated into an observer NuSMV module and an
invariant specification in a way that resembles the classical
approach of encoding LTL model checking to an observer
SMV module with fairness constraints [6] but again we
are looking for finite words instead of infinite words as
counterexamples.

There are a number of papers that encode smaller subsets
of PSL safety properties than our encoding. The most
widely known is the so called safety simple subset [7], [8],
[9], [10]. Our encoding handles a strictly larger syntactic
subset of PSL safety properties but is not directly suitable
for runtime monitoring, as we use nondeterminism in the
generated transducers for better succinctness. Our approach
is designed to be used in combination with model checking
algorithms and is thus significantly more succinct than the
approach of [11] tailored to be used in runtime monitoring
of PSL in a simulation setting. The approach of [4] for
encoding informative bad prefixes for LTL formulas has
been implemented in the scheck tool [12] in the context
of explicit state model checking. Our approach is different
in the way that it is a symbolic model checking approach
detecting all informative bad prefixes of PSL formulas.

One could argue that using the liveness-to-safety reduc-
tion [13], [14], [15] eliminates the need for any specialized
model checking algorithms for safety properties as it can
reduce model checking of general (non-safety) properties to
invariant checking, and as such only optimizing algorithms



for invariant checking would suffice. However, this reduction
doubles the number of system state variables and is thus
often impractical from an efficiency perspective. This is
especially true with model checking techniques such as
symbolic model checking with BDDs [16] that are quite
sensitive to the number of state bits in the model. A more
traditional approach to model checking general (non-safety)
properties with BDDs is to find accepting cycles using
nested fixpoint computations, see e.g., [17]. There is also
a symbolic algorithm with a better theoretical worst-case
complexity [18]. The problem with these fixpoint algorithms
is that their use often leads to slow running times in BDD-
based model checkers when compared to simple invariant
checking used by algorithms for safety properties.

In our experiments we compare to the state-of-the-art
symbolic encoding of all PSL properties [19]. The exper-
iments show that the approach presented in this work is
a very efficient model checking approach. Especially in
combination with BDD-based symbolic model checking it
avoids the use of costly algorithms used to find accepting
cycles with BDDs and instead relies on simple and more
efficient invariant checking.

The structure of the rest of the paper is as follows.
Section II describes the syntax and semantics of PSL, as well
as introduces the central notion of informative bad prefixes.
In Sect. III transducers are introduced and it is shown how
one can construct a transducer for a PSL formula. In Sect. IV
the implementation of model checking based on transducers
encoded as NuSMV modules is described. Section V reports
on the experiments and Sect. VI presents the conclusions.
The proofs of presented Lemmas are omitted due to space
restrictions but can be found in [20].

II. PSL SYNTAX AND SEMANTICS

This section formally defines the applied syntax and
semantics of PSL and is based on the revised standard [3],
[2], where the semantics are divided into three variants:
strong, neutral, and weak. The three variants are identical
for infinite paths, but differ for finite paths. The full set of
PSL operators is supported by this work, including several
operators that can be easily rewritten using those presented
here. The PSL extensions with local variables suggested
in [3] as well as the Optional Branching Extension are not
considered. The semantics applied in this paper is equivalent
to the strong semantics for finite paths in [3], [2]. It is
used because it has the desired property that if a finite
prefix of an infinite or a finite path satisfies a property with
this semantics, then the whole path satisfies the property
with any of the three semantics (weak, neutral, or strong)
presented in [3], [2]. This is convenient when searching for
finite counter-examples to properties. If a path satisfies the
negation of some property with the strong semantics, then
every extension of it satisfies the negated property as well,

and therefore the path is a counter-example for the non-
negated property. Thus, searching for counter-examples can
be done by searching for paths that satisfy the negation of
the property and using the strong semantics.

A. Syntax

Assume a non-empty set of atomic propositions AP . The
syntax of Sequential Extended Regular Expressions (SERE)
is defined by the grammar

r ::= [∗0] | p | ¬p | r1[+] | r1 · r2 | r1 ◦ r2 |
r1 ∪ r2 | r1 ∩ r2,

where p varies of over atomic propositions in AP and r1
and r2 are SEREs. Intuitively, [∗0] denotes the empty word,
r1[+] is the Kleene plus operator, r1 ·r2 is the concatenation
of two SEREs, r1 ◦ r2 is the concatenation of two SEREs
with an overlap of a single state, and ∪ and ∩ denote the
standard union and intersection. PSL also uses a conjunction
operator (r1 & r2) to denote words that match both operand
SEREs but one need not be matched tightly. We omit this
operator because it can be expressed with the ones here.
This syntax is similar to the one in [3].

The syntax of PSL formulas is defined by the grammar

φ ::= p | ¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 |
φ1 R φ2 | X!φ1 | Xφ1 | r 7→ φ1 | r �→ φ1,

where φ1 and φ2 are PSL formulae, r is a SERE, and p
varies over atomic propositions in AP . The X!, X, U and
R operators are the “strong next”, “weak next”, “until”
and “releases” temporal operators also used in LTL. As
usual, we also use the abbreviations true ≡ (p ∨ ¬p)
and false ≡ (p ∧ ¬p) for some p ∈ AP . The tail
conjunction operator �→ is the dual of the standard PSL
tail implication operator 7→. Given a word, tail implication
r 7→ φ1 states that whenever a prefix of the word matches
the SERE r, then the corresponding, one letter overlapping,
postfix must satisfy φ1; tail conjunction r �→ φ1 holds if
there exists some prefix of the word that matches r and
the corresponding overlapping postfix satisfies φ1. The tail
conjunction operator also appears in [19]. In addition to
these operators, [3] also includes formulas of form r! stating
that a match must be found for the SERE r; we assume
that these are rewritten to tail conjunctions with the equality
r! ≡ r �→ true. Another, weaker version of the SERE
match is presented in [3] as well but we do not present
it here as it is equivalent to r! under the applied strong
semantics for finite paths.

In the rest of the paper, all formulae are assumed to be
written in negation normal form where negations only appear
in front of atomic propositions. The following equalities
can be used with the full semantics of PSL from [3], [2]:
¬(φ ∨ ψ) ≡ (¬φ∧¬ψ), ¬(φ ∧ ψ) ≡ (¬φ∨¬ψ), ¬(X!φ) ≡
(X¬φ), ¬(Xφ) ≡ (X!¬φ), ¬(φ U ψ) ≡ (¬φ R ¬ψ),



¬(φ R ψ) ≡ (¬φ U ¬ψ), ¬(r 7→ ψ) ≡ (r �→ ¬ψ), and
¬(r �→ ψ) ≡ (r 7→ ¬ψ). With these, every formula can
be rewritten to an equivalent one in the negation normal
form. For these rewritten formulae we use only the strong
semantics from [3], [2], which is presented below.

B. Semantics
We define a state s to be the set of atomic propositions

that hold in it, i.e. s ⊆ AP . The set of all possible states
is denoted by S, i.e. S = 2AP . A path is a finite or
an infinite sequence of states. In the following definitions,
s ∈ S while π, π1, π2, . . . ∈ S? are finite paths. The base
language L(r) ⊆ S? of a SERE r is defined inductively as
follows:
• L([∗0]) = {ε}, where ε is the empty path.
• L(p) = {s ∈ S | p ∈ s} and L(¬p) = {s ∈ S | p /∈ s}

for each p ∈ AP .
• L(r[+]) = {π | ∃n ≥ 1 : π = π1π2 . . . πn and ∀i, 1 ≤
i ≤ n : πi ∈ L(r)}

• L(r1 · r2) = {π1π2 | π1 ∈ L(r1) and π2 ∈ L(r2)}.
• L(r1 ◦ r2) = {π1sπ2 | π1s ∈ L(r1) and sπ2 ∈ L(r2)}.
• L(r1 ∪ r2) = L(r1) ∪ L(r2).
• L(r1 ∩ r2) = L(r1) ∩ L(r2).

For example, the path {a, b}{a, d}{b} is in L(a[+] · (b∪c))
but the path {a, b}{a, d}{a} is not. In addition to the base
language, we define the prefix language Lpref(r) ⊆ S? for a
SERE r to consist of all finite, proper prefixes of paths in
L(r):

Lpref(r) = {π ∈ S? | ∃π′ ∈ S+ : ππ′ ∈ L(r)}.
As an example, the path {a, b}{a, b} is in Lpref(a[+] · (b∪c))
but {a, b}{b} is not.

For PSL formulae, we use the strong semantics for finite
paths as given in [3], [2]. Assume a finite, non-empty path
π = s1 . . . sn ∈ S+ for some n ≥ 1. For each 1 ≤ i ≤ n,
define the relation |=f

i by the following inductive rules:
• π |=f

i p iff p ∈ si, where p ∈ AP .
• π |=f

i ¬p iff p /∈ si, where p ∈ AP .
• π |=f

i φ ∧ ψ iff π |=f
i φ and π |=f

i ψ.
• π |=f

i φ ∨ ψ iff π |=f
i φ or π |=f

i ψ.
• π |=f

i X!φ iff i < n and π |=f
i+1 φ.

• π |=f
i Xφ iff i < n and π |=f

i+1 φ. (Note that this is
exactly the same as X!φ.)

• π |=f
i φ1 U φ2 iff ∃j, i ≤ j ≤ n : (π |=f

j φ2)∧(∀k, i ≤
k < j : π |=f

k φ1).
• π |=f

i φ1 R φ2 iff ∃j, i ≤ j ≤ n : (π |=f
j φ1)∧(∀k, i ≤

k ≤ j : π |=f
k φ2).

• π |=f
i r 7→ φ iff (i) ∀j, i ≤ j ≤ n : (si . . . sj ∈

L(r))⇒ (π |=f
j φ) and (ii) si . . . sn /∈ Lpref(r).

• π |=f
i r �→ φ iff ∃j, i ≤ j ≤ n : (si . . . sj ∈ L(r)) ∧

(π |=f
j φ).

We use π |=f φ to denote π |=f
1 φ and say that “φ holds

on π”, or that “π satisfies φ”, if π |=f φ. Since X!φ and

Xφ are equivalent in the strong semantics, we only use X!φ
from now on. Both are present in the syntax so that rewriting
formulae to the negative normal form can be done even with
the full semantics of PSL from [3], [2]. The semantics of
the U and R operators may seem strange if compared to
those in LTL. This is because we use the strong semantics
for finite paths here.

C. Informative bad prefixes

As mentioned earlier, if a finite prefix π of an infinite
or a finite path satisfies a property φ under the semantics
presented above (i.e. π |=f φ), the whole path satisfies the
property under any of the three semantics (weak, neutral, or
strong) presented in [2], [3]. In the model checking context
this means that if π |=f ¬φ holds, then the property φ
cannot hold on the path π (or any extension of it) and
thus π serves as a finite counterexample for φ. Following
the terminology of [4], we formalize this by defining that
a finite path π ∈ S? is an informative bad prefix for a
formula φ if π |=f ¬φ. For the LTL subset (i.e. PSL
formulas without tail implications and tail conjunctions and
thus without SEREs), the semantics here is equivalent to the
definition of informativity in [4] and thus the definition of
informative bad prefixes is also equivalent to the one in [4].

As our model checking approach constructs an observer
(defined in the next two sections) for the negation ¬φ of
the formula φ under consideration and the observer uses the
strong semantics to accept paths of the observed system, we
can find all the finite paths in the system that violate φ and
are informative bad prefixes for φ. However, observe that
some safety formulae do not have informative bad prefixes.
As an example (taken from [4]), the LTL safety formula
ψ = (Gq)∨(Gr)∨(G(q ∨ FGp) ∧G(r ∨ FG¬p)), where
Gφ ≡ false R φ and Fφ ≡ true U φ, does not have
informative bad prefixes although no finite path with ¬q
and ¬r holding in some states can be extended to a path
satisfying ψ.

As a consequence, our model checking approach cannot
detect (i) counter-examples to such “pathologically safe”
formulae or (ii) infinite counter-examples to general (non-
safety) formulae. However, it should be reminded that this
is exactly what the strong semantics for PSL described
above dictates, and our approach exactly matches the strong
semantics for finite paths.

On the other hand, observe that also general (non-safety)
properties can have informative bad prefixes and these are
detected by our model checking approach. As an example,
τ = (F¬p)∧ (G¬r) is a non-safety property as the infinite
path {p}{p}... satisfying ¬τ does not have a finite bad prefix
(i.e. a prefix that cannot be extended to a (finite or infinite)
path satisfying τ ). But τ also has informative bad prefixes,
such as {p}{p, r}, and these are detected by our approach.



III. OBSERVERS

This work uses a custom formalism, similar to temporal
testers in e.g. [5], [21], for defining observers to PSL
formulae. The custom formalism makes it easy to combine
observers for sub-formulae into an observer for the whole
formula. They are also relatively simple to convert directly
to NuSMV modules.

A. Transducers
Transducers in this paper are a symbolic variant of

finite state automata. Unlike traditional automata, their state
and input are represented by a set of boolean variables,
and they can signal acceptance at multiple points in the
execution. In this work the latter property is used to build
transducers that accept at those points in the execution where
a PSL formula holds. Formally, a transducer T is a tuple
(Q,Qin, qout, I, F, δ), where:
• Q is a finite set of state variables.
• Qin is a finite set of input variables, disjoint from Q.
• qout ∈ Q is the output variable.
• Every subset of Q∪Qin is a state of the transducer. A

variable v is said to be true in a state s ⊆ Q ∪ Qin if
and only if v ∈ s.

• I ⊆ 2Q∪Q
in

is the set of initial states of the transducer.
• F ⊆ 2Q∪Q

in
is the set of final states of the transducer,

not to be confused with accepting states in traditional
finite state automata.

• δ ⊆ 2Q∪Q
in × 2Q∪Q

in
is the transition relation.

Let T = (Q,Qin, qout, I, F, δ) be a transducer. An exe-
cution of T is a finite non-empty sequence of transducer
states, s1, s2, . . . , sn, such that s1 ∈ I , sn ∈ F , and
∀i, 1 ≤ i < n : (si, si+1) ∈ δ. The set of initial states I
restricts what may be the first state of an execution, and the
set of final states F restricts what may be the last state of
an execution, and the transition relation restricts what states
may be adjacent in the sequence. An input of T is a sequence
π = p1, . . . , pn ∈ (2D)+, where each pi is a set of input
variables from some input domain D such that Qin ⊆ D. An
execution s1, s2, . . . , sn of T is defined to be an execution
for π if the execution and the input path agree on input
variables, i.e. for every input variable v ∈ Qin and for every
i, 1 ≤ i ≤ n the following holds: v ∈ si ⇔ v ∈ pi. The
transducer accepts at a state si of an execution if qout ∈ si.

Example 3.1: The following example of a transducer,
presented in Fig. 1, accepts at states which precede a state
where its sole input variable i is true. This is equivalent
to accepting at states where the formula X!i is true. The
output variable is q, which is also the only state variable.
Every state in the transducer is an initial state, and the final
states are the ones where the output is not true, namely ∅
and {i}. An example of an execution of the transducer is:
{q}, {i}, {q}, {q, i}, {i}.

Formally, the transducer is defined as the tuple TX! =
({q}, {i}, q, I, F, δ) such that (i) all states are initial: I =

{i}
{q}

{q, i}
∅

Figure 1. A graphical presentation of the states and the transition relation
of a transducer for the formula X!i

2{q,i}, (ii) a state is final iff q is false in it: F ={
s ∈ 2{q,i} | q /∈ s}, and (iii) the transition relation δ is

defined so that the variable q is true in a state iff the variable
i is true in the next state: (s, s′) ∈ δ iff (q ∈ s)⇔ (i ∈ s′).

B. Transducer composition

Transducer composition is a way to combine two trans-
ducers so that one transducer can use information from the
other. This is done by plugging the output variable of one
transducer to one input variable of the other in a circuit-like
manner.

Here we use S[a/b] to denote that an element a from
the set S is renamed to b. Similarly, (S, S′)[a/b] is used to
denote (S[a/b], S′[a/b]) for a pair of sets.

Now let T1 = (Q1, Q
in
1 , q

out
1 , I1, F1, δ1) and T2 =

(Q2, Q
in
2 , q

out
2 , I2, F2, δ2) be two transducers such that Q1 ∩

Q2 = ∅. The composition of T1 and T2, with respect to
some input variable qin ∈ Qin

2 , is denoted as T1 Bqin T2, and
defined as (QB, Q

in
B, q

out
B , IB, FB, δB), where:

• QB = Q1 ∪Q2,
• Qin

B = Qin
1 ∪(Qin

2 \{qin}) and the plugged input variable
cannot exist in Qin

1 , i.e. qin /∈ Qin
1 ,

• qout
B = qout

2 ,
• IB = {s1 ∪ s2[qin/qout

1 ] |
s1 ∈ I1, s2 ∈ I2, and qout

1 ∈ s1 ⇔ qin ∈ s2, and∧
v∈Qin

1∩Q
in
2

v ∈ s1 ⇔ v ∈ s2},

• FB = {s1 ∪ s2[qin/qout
1 ] |

s1 ∈ F1, s2 ∈ F2, and qout
1 ∈ s1 ⇔ qin ∈ s2,

and
∧

v∈Qin
1∩Q

in
2

v ∈ s1 ⇔ v ∈ s2}, and

• δB = {(s1 ∪ s2, s′1 ∪ s′2)[qin/qout
1 ] |

(s1, s′1) ∈ δ1, (s2, s′2) ∈ δ2, and
(qout

1 ∈ s1 ⇔ qin ∈ s2)∧
(qout

1 ∈ s′1 ⇔ qin ∈ s′2), and∧
v∈Qin

1∩Q
in
2

[(v ∈ s1 ⇔ v ∈ s2)∧

(v ∈ s′1 ⇔ v ∈ s′2)]}.
The intuitive description of the composition is that the

initial states, final states and the transitions from each
transducer are combined, but only when they agree on the
value of the variable to be plugged and the input variables
that they share. States and transitions where the transducers
disagree on these variables are dropped.

Example 3.2: The following example of transducer com-
position combines the previous example with itself to create



{q}
{p, i}

{i}
{q, i}

∅

{q, p, i}

{p}
{q, p}

Figure 2. A graphical presentation of the states and the transition relation
of a transducer for the formula X!X!i

a transducer that accepts when the formula X!X!i is true.
First, a copy of the transducer is made with the state variable
renamed to p and the input variable renamed to j to avoid
conflicts. This means that the semantics of the variable q
is to be true when X!i holds and the semantics of the
variable p is to be true when X!j holds. Let TX! be the
transducer in the previous example, and T ′X! be the copy.
The transducer TX!X! is then the composition TX! Bj T

′
X!,

which is presented in Fig. 2. Each transition pair that agrees
on the plugged variable is combined, e.g. ({i}, {q}) and
({p}, {p, j}) together yield the transition ({p, i}, {q, p}).
Now that q is plugged to j, p holds when X!q holds, meaning
that it holds when X!X!i holds. The output variable is p,
every state is initial, and the final states are ∅ and {i}.
C. Transducers for formulae

In this section we define how transducers for formulae are
built inductively, starting from atomic propositions. We first
formally define what “a transducer for a formula” means:

Definition 3.3: A transducer T is a transducer for a
formula φ if the following hold:
• For every input π = p1, . . . , pn ∈ (2D)+, where D ⊆

AP , there exists an execution γ = s1, . . . , sn of T such
that T accepts at a state sj of the execution iff π |=f

j φ,
and

• there are no executions of T for π where T accepts at
a state sj and π 6|=f

j φ.
Atomic propositions are represented by input variables,
meaning that AP ⊆ D, and transducers for larger formulae
are built with composition from transducers for their sub-
formulae as explained below. The proofs of Lemmas are
omitted due to space restrictions but can be found in [20].

1) Logical operators: The transducer for the ∨-operator
has two input variables for the operands and a single state
variable that is also the output variable. The initial and final
state constraints, as well as the transition are defined so that
the state variable is true exactly when at least one of the
input variables is true. Formally, the transducer is T∨ =
(Q,Qin, qout, I, F, δ), where:
• Q = {q},
• Qin = {qleft, qright},
• qout = q,
• I = F = {∅, {qleft, q}, {qright, q}, {qleft, qright, q}}, and

• δ = {(s, s′) | q ∈ s ⇔ (qleft ∈ s ∨ qright ∈
s) and q ∈ s′ ⇔ (qleft ∈ s′ ∨ qright ∈ s′)}.

The transducer for the entire formula φ1 ∨ φ2 is obtained
as the composition Tφ1∨φ2 = T1 Bqleft (T2 Bqright T∨). The
transducers for the ∧ and ¬-operators are defined in a similar
way.

2) The next operator: The transducer TX! for the next
operator is presented in Ex. 3.1. The transducer for the entire
formula X!φ is obtained with the composition Tφ Bi TX!,
where Tφ is a transducer for φ.

3) The until operator: Recall the semantics of the until-
operator: π |=f

i (φ1 U φ2) iff ∃j, i ≤ j ≤ n :(π |=f
j φ2) ∧

(∀k, i ≤ k < j : π |=f
k φ1). The intuition behind the

transducer for the until-operator is that the until-formula
φ1 U φ2 holds if and only if φ2 holds, or φ1 holds and
the whole formula holds in the next state. We make use of
this by having a variable qU that represents the truth value
of the formula. The transition relation restricts the variable
so that it is true when φ2 is true or when φ1 is true and the
variable itself is true in the next state. The transducer for
the until operator is TU = (Q,Qin, qout, I, F, δ), where:
• Q = {qU},
• Qin = {qleft, qright},
• qout = qU,
• I = 2Q∪Q

in
,

• F =
{
s | qU ∈ s⇔ qright ∈ s}, and

• δ = {(s, s′) | qU ∈ s ⇔ (qright ∈ s ∨ (qleft ∈ s ∧ qU ∈
s′))}.

The transducer for the entire formula φ1 U φ2 is obtained
as the composition Tφ1Uφ2 = T1 Bqleft (T2 Bqright TU), where
T1 is a transducer for φ1 and T2 is a transducer for φ2.

Lemma 3.4: If T1 and T2 are transducers for φ1 and φ2,
respectively, then Tφ1Uφ2 = T1 Bqleft (T2 Bqright TU) is a
transducer for the formula φ1 U φ2.

Proof: Omitted due to space constraints, see [20].
4) The releases operator: The semantics for the releases-

operator is: π |=f
i (φ1 R φ2) iff ∃j, i ≤ j ≤ n :(π |=f

j φ1)∧
(∀k, i ≤ k ≤ j : π |=f

k φ2). The intuition behind the trans-
ducer for the releases-operator is that the formula φ1 R φ2

holds if and only if both φ1 and φ2 hold, or φ2 holds and
the entire formula holds in the next state. As with the until-
operator, we use a variable qR to represent the truth value
of the entire formula, and the transition relation restricts it
so that it holds when both φ1 and φ2 hold or when φ2 holds
and the variable holds in the next state. The transducer for
the releases operator is TR = (Q,Qin, qout, I, F, δ), where:
• Q = {qR},
• Qin = {qleft, qright},
• qout = qR,
• I = 2Q∪Q

in
,

• F =
{
s | qR ∈ s⇔ (

qleft ∈ s ∧ qright ∈ s)}, and
• δ = {(s, s′) | qR ∈ s ⇔ qright ∈ s ∧ (qleft ∈ s ∨
qR ∈ s′))}.



For the entire formula φ1 R φ2, we define the transducer
Tφ1Rφ2 = T1 Bqleft (T2 Bqright TR), where T1 is a transducer
for φ1 and T2 is a transducer for φ2.

Lemma 3.5: If T1 and T2 are transducers for φ1 and φ2,
respectively, then Tφ1Rφ2 = T1 Bqleft (T2 Bqright TR) is a
transducer for the formula φ1 R φ2.

Proof: Refer to [20].
5) Tail implication: In describing the tail implication r 7→

φ and tail conjunction r �→ φ, we use AP (r) to denote the
set of atomic propositions appearing in the SERE r. We also
define a function ` : 2Q

in∪Q → 2AP (r) that maps the states
of a transducer to the relevant atomic propositions that hold
in the state by: `(s) = s ∩ AP (r). Additionally, in both
cases we assume that the base language L(r) is not empty;
if L(r) = ∅, r 7→ φ can be rewritten to true and r �→ φ
can be rewritten to false.

The intuition behind the transducer for the tail implication
operator is that an automaton is created for the SERE r, and
multiple copies of the automaton are simulated, which yields
the matches for the SERE. When a simulated copy accepts,
φ should hold.

Let Ar = (Qr,Σ, δr, q0, Fr) be a finite, non-deterministic
automaton that satisfies the following requirements: (i) at
least one state in Fr is reachable from every state, i.e. there
are no rejecting states, (ii) there are no ε-transitions, (iii)
L(Ar) = L(r), and (iv) Σ = 2AP (r). Using Ar, we can
construct a transducer

Tr 7→ = (Q,Qin, qout, I, F, δ)

for the tail implication operator, where:
• Q = Qr,
• Qin = AP (r) ∪ {qφ}, where qφ is the input variable

that signals when φ holds,
• qout = q0, the initial state of Ar,
• I = 2Q∪Q

in
,

• F = {s | s ∩Qr = ∅}, and
• δ = {(s, s′) | ∧(v,σ,v′)∈δr ((v ∈ s ∧ `(s) = σ) ⇒
v′ ∈ s′) and Fr ∩ s′ 6= ∅ ⇒ qφ ∈ s}.

The transducer for the entire formula r 7→ φ is obtained
with the composition Tr 7→φ = Tφ Bqφ Tr 7→, where Tφ is a
transducer for φ. Intuitively, the first part of the transition
relation handles simulating copies of the automaton for the
SERE, and the second part states that when the simulated
automaton accepts, φ must hold. The final state constraint
states that no copies of the simulated automata can be left
running, which takes care of the requirement that the suffix
of the path cannot belong to the prefix language of r.

Since input to finite state automata is given on a transition
from one state to another, combining them with transducers
in the described way introduces a slight inconvenience.
The atomic propositions that are used for the input of the
automaton are a part of the states in the transducer, as
opposed to the transitions. Therefore, in the transducer, the

q0 q1 q2

{a, b}

{a} {b}

{a, b}

Figure 3. An automaton for the SERE {a · b}

state of the automaton changes one step after the input.
Combined with the fact that the final state of the transducer
cannot contain state variables from the automaton, in some
cases the transducer needs to be run for two additional steps
even though a counter-example has already been detected.

Lemma 3.6: If Tφ is a transducer for φ, then Tr 7→φ =
Tφ Bqφ Tr 7→ is a transducer for the formula r 7→ φ.

Proof: See [20].
Example 3.7: The following example illustrates a trans-

ducer for the formula {a · b} 7→ c. The automaton for the
SERE part is shown in Fig. 3. The automaton dictates the
transition relation of the transducer, which is:

{(s, s′) | ((q0 ∈ s ∧ `(s) = {a})⇒ q1 ∈ s′) ∧
((q0 ∈ s ∧ `(s) = {a, b})⇒ q1 ∈ s′) ∧
((q1 ∈ s ∧ `(s) = {b})⇒ q2 ∈ s′) ∧
((q1 ∈ s ∧ `(s) = {a, b})⇒ q2 ∈ s′) ∧
(q2 ∈ s′ ⇒ c ∈ s)}

For the path {a}{b, c}∅∅, on which the formula holds, there
exists an execution of the transducer that accepts at the first
state, namely: {a, q0}{b, c, q1}{q2}∅. For the path {a}∅∅,
for which the formula holds as well since there is no match
for the SERE, there exists the execution of the transducer
{a, q0}{q1}∅. In both cases the execution must continue until
a valid end state is reached, i.e. one that does not have any
state variables from the automaton.

6) Tail conjunction: The intuition behind the transducer
for the tail conjunction r �→ φ is a non-deterministically
simulated automaton for the SERE r, combined with enforc-
ing that φ must hold when the simulated automaton accepts.
The simulation is different from the tail implication, because
only one match needs to be captured, instead of all possible
matches.

Let Ar = (Qr,Σ, δr, q0, Fr) be a finite, non-deterministic
automaton that satisfies the following requirements: (i) at
least one state in Fr is reachable from every state, i.e. there
are no rejecting states, (ii) there are no ε-transitions, (iii)
L(Ar) = L(r), and (iv) Σ = 2AP (r). With the help of Ar,
we can construct a transducer

Tr�→ = (Q,Qin, qout, I, F, δ)

for the tail conjunction operator, where:
• Q = Qr,
• Qin = AP (r)∪{qφ}, where qφ is the input variable to

which the output of Tφ is connected,
• qout = q0, the initial state of Ar,



• I = 2Q∪Q
in
,

• F = {s | s ∩Qr = ∅}, and
• δ = {(s, s′) | ∧

v∈Qr
[v ∈ s⇒ ∨

(v,σ,v′)∈δr
`(s) = σ∧(v′ ∈

s′ ∨ (v′ ∈ Fr ∧ qφ ∈ s))]}.
The transducer for the entire formula r �→ φ is obtained

as the composition Tr�→φ = Tφ Bqφ Tr�→, where Tφ is a
transducer for φ. Intuitively, the transition relation takes care
of the simulation of the automaton, except for the expression
in the innermost parenthesis, which allow for the termination
of the simulation if a match is found and φ holds. The state
variables can be seen as a promise to find a match starting
from that state of the automaton, and the final state constraint
enforces that no such promise is left unfulfilled when the
execution stops.

Lemma 3.8: If Tφ is a transducer for φ, then Tr�→φ =
Tφ Bqφ Tr�→ is a transducer for the formula r �→ φ.

Proof: Again, please refer to [20].
Example 3.9: As an example of a transducer for a tail

conjunction, the following is a transducer for the formula
{a · b} �→ c. The automaton for the SERE is the same as
in the example for the tail implication, presented in Fig. 3.
The transition relation for the transducer is:{

(s, s′) |
(
q0 ∈ s ⇒ (`(s) = {a, b} ∧ q1 ∈ s′) ∨

(`(s) = {a} ∧ q1 ∈ s′)
)

∧
(
q1 ∈ s ⇒ (`(s) = {a, b} ∧ (q2 ∈ s′ ∨ c ∈ s)) ∨

(`(s) = {b} ∧ (q2 ∈ s′ ∨ c ∈ s))
)

∧
(
q2 ∈ s ⇒ ⊥

)}
For the path {a}{b, c}∅, for which the formula holds, there

exists the following accepting execution of the transducer:
{a, q0}{b, c, q1}∅. Again, as with the tail implication exam-
ple, the execution must continue until a valid end state is
reached, i.e. one that does not contain any state variables
from the automaton.

IV. OBSERVER IMPLEMENTATION

Model checking with the transducers can be done in the
following way:

To detect informative bad prefixes for any PSL
formula φ, a transducer for ¬φ is constructed. It
is then converted to a NuSMV module including
an invariant specification, and run together syn-
chronously with the model to be verified. If a run
exists where the output variable for the observer is
true in the first state and the invariant is violated,
that run violates the property φ.

Converting transducers to NuSMV modules that can be
used as observers is straightforward. A bad prefix is found
if the transducer accepts at the first state of an execution. A
NuSMV module is used to check whether this is possible,
but the execution of the module is not directly comparable
to the execution of the transducer. More specifically, the
NuSMV module will have executions that are not valid
executions of the transducer, and bad prefixes are detected by

checking if an execution of the module is a valid execution
of the transducer.

The executions of the module are such that they obey
the transition relation and initial state constraints of the
transducer, but the output variable is forced to be true in
the initial state as well. The module then checks if a valid
final state can be reached using an invariant specification,
which means that the transducer has a corresponding run
ending in a valid final state.

The state variables of a transducer are represented by
local variables of a NuSMV module, input variables are
represented by parameters to the module, the initial states
are set with an INIT-block in the module, and the transi-
tion relation is enforced with a TRANS-block. The output
variable is set to true in the initial state with an INIT-
block, and then the reachability of a valid final state is
checked for by adding a new special purpose unconstrained
variable fs that represents a valid final state. The final
state constraints are represented by an invariant constraint
that allows fs to become true only in a valid final state.
The reachability check can then be done by adding the
invariant specification INVARSPEC !fs to the module,
and running it synchronously together with the model to
be checked. Converting SEREs to finite state automata for
the construction is done in the usual way, e.g. like in [22].

Example 4.1: The transducer for the formula p U q is
translated into the following NuSMV module:

MODULE observer(p,q)
VAR
u : boolean;

INVAR
fs -> (u <-> q)

TRANS
u <-> (q | p & next(u))

INIT
u

INVARSPEC !fs

The module would be generated to check for the formula
¬p R ¬q, which is the negation of p U q. Note that the
INIT- and INVARSPEC-blocks are present because this is
the module for the top-level transducer.

The actual implementation that was done for this work
is a proof-of-concept, whose main purpose is to verify
the feasibility of such an implementation and to allow
experimentation with the algorithm. It is available online
at http://www.tcs.hut.fi/∼tlauniai/psl-observer/.

V. EXPERIMENTS

To experiment with our algorithm, we ran two sets of
benchmarks. All tests were done on a Debian Linux machine
with an Intel Core Duo 1.86 GHz processor and 2 GiB
RAM. Both benchmark sets were against the state-of-the-
art PSL implementation that is presented in [19]. That



implementation is also built on top of NuSMV. For the
first comparison, the same set of benchmarks is used as
in the paper [19], which includes both general (non-safety)
and safety properties. Their BDD-based algorithm, with
syntactic optimizations turned on, is compared with the
BDD-based invariant checking of NuSMV 2.4.3, combined
with our transducer encoding based observer. Their approach
combined with the simple bounded model checking (SBMC)
approach [23] implemented in NuSMV is compared against
the transducer encoding of this paper combined with SBMC
LTL checking of NuSMV 2.4.3 where the invariant is
expressed with a globally-operator. In order to provide a
fair comparison, both SBMC algorithms were run with the
completeness flag set. From the benchmark set, we filtered
out instances for which our tool cannot guarantee a correct
answer: namely the properties for which an informative bad
prefix could not be detected. This left us with about 38% of
the original instances, and 13% of the included properties
were safety properties. There were no safety properties in
the excluded part, i.e. all safety properties had a counter-
example. These results are presented in Fig. 4.

In the second set of benchmarks we used the real life
models from [15], excluding the ones that are not compat-
ible with the current implementation of NuSMV 2.4.3 due
to modelling language grammar changes in new NuSMV
versions. For these models we randomly generated PSL
properties for which every counterexample is informative.
This was done by syntactically limiting the properties to be
safety properties. These models where then checked with
both implementations as in the previous benchmark set. The
results of this benchmark set are shown in Fig. 5.

The benchmarks show that our tool has a clear advantage
over the state-of-the-art PSL model checker. While the real
world tests with SBMC-checking are somewhat even, all the
other benchmark sets, especially the BDD model checking
based ones, show that our implementation is clearly faster
in the majority of cases. It should be noted here that our
approach does not benefit from any of the syntactic PSL
simplifications described in [19] unlike the approach we
compare against. Summing up, our approach is certainly
viable for model checking PSL safety properties, as well
as finding bugs with non-safety properties.

Some tests were also run with random generated models
and properties, but with the exact setup used the runtime of
those benchmarks seemed to depend only on the size of the
model and the size of the formula, not the implementation
they were checked with or the particular instance. That
seems to imply that the checking of the property was trivial
once the property and model were interpreted and encoded
from the input file.

Unfortunately we do not know of a freely available
implementation of the safety simple subset of PSL [7],
[8], [9], [10], and therefore cannot run benchmarks against
those. With regards to approaches based on the safety simple

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

BD
D 

im
pl

em
en

ta
tio

n 
fro

m
 N

uS
M

V 
2.

4.
3 

wi
th

 o
bs

er
ve

r

BDD implementation from Cimatti et al. (TCAD 2008)

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

SB
M

C 
im

pl
em

en
ta

tio
n 

fro
m

 N
uS

M
V 

2.
4.

3 
wi

th
 o

bs
er

ve
r

SBMC implementation from Cimatti et al. (TCAD 2008)

Figure 4. Run times (in seconds) of BDD-based implementations (above)
and SBMC-based implementations (below) for the PSL benchmarks.

subset our main contribution is that we impose no syntactic
restrictions on the model checked formulas unlike the safety
simple subset that is quite restricted in its allowed syntax.
In comparison to the explicit automata approach of [12] we
can state that our symbolic encoding is exponentially more
compact and also handles a larger set of properties, not only
the LTL subset.

As a summary, the experiments show that for finding bugs
by detecting finite, informative counter-examples to general
(non-safety) properties, as well as for model checking safety
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Figure 5. Run times (in seconds) of BDD-based implementations (above)
and SBMC-based implementations (below) for the real life benchmarks.

properties, our tool is competitive compared to the state-of-
the-art.

VI. CONCLUSIONS

We have detailed a fast PSL model checking algorithm
for safety properties. The approach uses transducers imple-
mented symbolically, inspired by temporal testers of [21].
The formal semantics of PSL capturing the informative
bad prefixes was defined in Sect. II and is based on the
latest revision of PSL semantics [3], [2]. The transducers
formalism used to construct the observers is detailed in

Sect. III. We would like to stress that every PSL property
can be expressed with the subset presented here, but only
informative bad prefixes of the properties can be detected by
our approach. Thus the subset we use is strictly larger than
for example the PSL safety simple subset [7], which is used
by many runtime monitoring implementations. For example,
the formula (p R q) R r is a safety property that is not
syntactically in the safety simple subset without rewriting
the formula. Because of the inclusion of regular expressions
in the safety simple subset, many safety properties can
be rewritten to it, but this makes the specified properties
much harder to understand, and we are not aware of any
automated tool that rewrites formulas into the safety simple
subset. The experimental results show the approach to be a
quite competitive bug finding tool and safety property model
checker when compared to a state-of-the-art implementation
of PSL model checking. Especially in combination with
symbolic model checking with BDDs it avoids the use of
costly algorithms used to find accepting cycles with BDDs
and instead relies on simple and more efficient invariant
checking.

There are interesting topics for further work. The ap-
proach presented in this work is a complete model check-
ing method for many PSL properties used in practical
specification work. For example, the LTL subset of PSL
contains many syntactic subsets that result in formulas where
every counterexample has an informative bad prefix. Similar
careful characterization of all of PSL properties should result
in larger syntactic subsets of PSL properties where our
approach can fully replace general PSL model checking
algorithms.

On the algorithmic side, the paper [12] describes a tool
that analyzes an LTL specification used in model checking,
and detects exactly those formulas for which our approach
is a complete model checking approach. Namely, given a
specification, the tool looks for an infinite counterexample
word that does not have a finite informative bad prefix. If no
such infinite counterexample can be found, the transducer we
generate for it is called fine [4], and for these LTL formulas
our model checking approach can fully replace a generalized
PSL model checking approach. The same approach should
be extended to all of PSL in future work. This can clearly
be done using the same basic approach as presented in [12].
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