
Improving Dynamic Partial Order Reductions for
Concolic Testing

Olli Saarikivi, Kari Kähkönen and Keijo Heljanko
Department of Information and Computer Science

Aalto University
FI-00076 AALTO, FINLAND

{Olli.Saarikivi, Kari.Kahkonen, Keijo.Heljanko}@aalto.fi

Abstract—Testing multi-threaded programs is hard due to the
state explosion problem arising from the different interleavings
of concurrent operations. The dynamic partial order reduction
(DPOR) algorithm by Flanagan and Godefroid is one solution
to reducing this problem. We present a modification to this
algorithm that allows it to exploit the commutativity of read
operations and provide further reduction. To enable testing of
multi-threaded programs that also take input we show that it
is possible to combine DPOR with concolic testing. We have
implemented our modified DPOR algorithm in the LCT concolic
testing tool. We have also implemented the sleep set algorithm,
which can be used along with DPOR to provide further reduction.
As the LCT tool was designed for distributed use we have
modified the sleep set algorithm for use in a distributed testing
client-server setting.

I. INTRODUCTION

Testing programs to find software bugs is typically accom-
plished by executing the program with different inputs to
search for executions that end up in an error state. Often a
program has many inputs that result in the same paths through
the program’s instructions, which can produce test executions
that are repeatedly testing the same externally observable
behavior of the program over and over again. As exhaustively
testing all potential test cases is often impractical even for
small programs, various dynamic analysis methods have been
devised to prune the search space of the test cases by grouping
them into equivalence classes and trying to test only one
representative test case from each equivalence class.

For single-threaded programs concolic testing [1]–[3] can
be used to systematically explore all possible execution paths
without testing all input combinations. This is achieved by
running the program concretely, that is with real input values,
and monitoring it symbolically. The information gathered from
the symbolical execution is used to generate new inputs for
exploring previously unexplored execution paths.

The inputs for single-threaded programs consist of com-
mand line parameters, anything read from the environment,
etc. However, for multi-threaded programs the execution may
also be affected by the schedule, i.e., the order in which
operations from different processes are executed. Exhaustively
testing all schedules suffers from the same problems as ex-
haustive exploration of inputs, namely that there can be too
many schedules to test.

In multi-threaded programs some operations might be in-
dependent meaning that their executions do not affect each
other. For example, after executing any two read operations a
program will be in the same state regardless of the order in
which the operations were executed. Partial order reduction
methods aim to exploit these independencies to reduce the size
of the search space [4]. In this paper we present a modification
to the dynamic partial order reduction algorithm of Flanagan
and Godefroid [5].

The execution path of a multi-threaded program that takes
input is determined by the schedule as well as the input
values. The schedule and input values also affect each other:
a program may only be multi-threaded on some inputs or a
multi-threaded program may read some input in only some
of its schedules. To effectively test these programs we have
in this work combined concolic testing with dynamic partial
order reduction.

The main contributions of this work are as follows:
• A modification to the dynamic partial order reduction

algorithm that allows it to exploit the independence of
read operations.

• Modifications to the dynamic partial order reduction
algorithm and the sleep set algorithm for implementing
them in a distributed testing client-server setting.

• The first open source tool combining dynamic partial
order reduction with concolic testing.

The sections of this paper are organized as follows. In
Section II we describe the dynamic partial order reduction
algorithm and present our modification to it. Section III
provides a description of how to combine concolic testing
with dynamic partial order reduction. In Section IV we present
our implementation of the dynamic partial order reduction
algorithm and the modified sleep set algorithm. Section V has
a brief experimental evaluation of our modified algorithm and
we provide some concluding remarks in Section VI.

II. DYNAMIC PARTIAL ORDER REDUCTION

The aim of a partial order reduction algorithm is to exploit
the knowledge of causal relationships between operations
to avoid exploring redundant executions. In this section we
provide an overview of the dynamic partial order reduction
(DPOR) algorithm of Flanagan and Godefroid [5] and present
a modification to the algorithm. Two versions of the original

algorithm are described in Sections II-B and II-C. In Section
II-D we present our modification, which can be viewed as an
intermediate between the two previously presented algorithms.

A. Definitions

A concurrent program consists of a finite set P of processes
or threads. Each process executes a deterministic program
made up of atomic operations. The execution of an operation
acts on the programs state, which is made up of the processes’
local states and the program’s shared state. The program’s state
space S is the set of states that are reachable by executing
sequences of operations from the program’s initial state.

The operations that processes execute are divided into
visible operations and invisible operations. Visible operations
are those that operate on the shared state, while invisible
operations operate only on the process’ local state. Thus visi-
ble operations are the only operations that can directly affect
the execution of operations in other processes. These include
accesses to shared variables and usage of synchronization
constructs. We write the set of all visible operations in the
program as V . For a process p the next visible operation from
the state s is next(s, p).

An operation is enabled in a state if it is the next operation
of the process it belongs to and it is not blocked. For example,
lock acquires for owned locks are blocked. Invisible operations
are never blocked. For a visible operation v that is enabled in
the state s we denote the execution of v from s with s v−→ s′,
where s′ ∈ S is state the program is in after the visible
operation v and any subsequent invisible operations from the
same process have been applied. Note how this definition
groups the execution of any invisible operations together
with the previous visible one, thus omitting interleavings of
invisible operations from the state space, while still being
sufficient for finding all deadlocks and assertion errors in a
program [6]. For a sequence of visible operations w ∈ V ∗ we
write the execution of the visible operations in w as s w−→ s′.

Concurrent programs often encounter situations where the
order in which some visible operations from different pro-
cesses are executed does not change the externally observable
behavior of the program. For example, operations on different
shared variables will always produce the same result regardless
of the order in which they are executed. To reason about such
operations we define a dependency relation. The following
definition is adapted from Flanagan and Godefroid [5].
D ⊆ V × V is a valid dependency relation if and only if

for all visible operations v1, v2 ∈ V such that (v1, v2) 6∈ D
and states s, s′ ∈ S it satisfies the following properties:

1) If v1 is enabled in s and s v1−→ s′, then v2 is enabled in
s′ if and only if v2 is enabled in s.

2) If v1 and v2 are enabled in s, then there is a unique state
s′ such that s v1v2−−−→ s′ and s v2v1−−−→ s′.

Two visible operations are independent if they are not
in the dependency relation. Note that the definition of the
dependency relation only limits which visible operations can
be considered independent. A dependency relation can be

larger than it needs to: for example, D = V × V is a valid,
albeit trivial, dependency relation.

An execution sequence is a sequence of visible operations
E = v1v2 . . . vn ∈ V ∗ such that given the initial state of the
program s0 the visible operations can be executed as:

s0
v1−→ s1

v2−→ · · · sn−1
vn−→ sn

A single visible operation vi is referred to with Ei. We
write the extension of E with a new visible operation v as
E.v. The empty sequence is written as ε. To refer to the state
a visible operation Ei was executed from we use pre(E, i).
For the state sn we write last(E). The process that executed
a visible operation Ei is referred to with proc(Ei).

In an execution sequence any two adjacent independent
visible operations can be swapped without changing the final
state that sequence leads to. Thus, an execution sequence is
part of an equivalence class of execution sequences, which can
be obtained from each other by repeatedly swapping adjacent
independent visible operations [5]. Each such equivalence
class corresponds to a partial order, which we capture with
a happens-before relation between the indices of an execution
sequence E. The happens-before relation →E is the smallest
relation such that:

1) If i ≤ j and Ei is dependent with Ej then i→E j.
2) If i →E j and j →E k then i →E k, i.e., the relation

is transitive.
Given an execution sequence E and two indices a and b,

if it holds that a 6→E b and b 6→E a then the two visible
operations Ea and Eb are said to be concurrent.

As a shorthand we also define the happens-before relation
between an index i of an execution sequence E and a process
p as follows. It holds that i →E p if and only if there exists
a k such that i →E k and p = proc(Ek). This means that
a visible operation happened before a process if it happened
before any visible operation executed by the process.

The following section shows how the happens-before re-
lation can be implemented with vector clocks. These are
maps from processes to indices in an execution sequence, i.e.,
functions from the space V C = P → N. Given two vector
clocks u, v ∈ V C we adopt the following notation:
• The pointwise maximum is vmax(u, v) = f(p) =

max(u(p), v(p)).
• Updating a vector clock with a new value c for some

process q is written as:

u[q := c] = f(p) =

{
c if p = q, and
u(p) otherwise.

• The zero vector clock is written ⊥ = f(p) = 0.

B. Basic DPOR

A basic version of the DPOR algorithm of Flanagan and
Godefroid [5] is presented in Figure 1. The algorithm consists
of a procedure Explore(E, CP , CE), which receives as its
arguments the current execution sequence E and maps to the
vector clocks for the processes and the visible operations, CP

start: Explore(ε, λx.⊥, λx.⊥)
1 procedure Explore(E, CP , CE)
2 s← last(E)
3 forall the processes p do
4 v ← next(s, p)
5 if ∃i = max({i ∈ {1 . . . |E|} |Ei is dependent

and may be co-enabled with v and
i 6≤ CP(p)(proc(Ei))}) then

6 if v ∈ enabled(pre(E, i)) then
7 add v to backtrack(pre(E, i))
8 else
9 add enabled(pre(E, i)) to

backtrack(pre(E, i))
10 end
11 end
12 end
13 if ∃v0 ∈ enabled(s) then
14 backtrack(s)← {v0} // Initialize the

backtracking set
15

16 done ← ∅
17 while ∃vnext ∈ (backtrack(s) \ done) do
18 add vnext to done
19 E′ ← E.vnext
20 cv ← vmax({CE (i) | i ∈ 1..|E| and Ei

dependent with vnext})
21 cv ← cv[proc(vnext) := |E′|]
22 CP ′ ← CP [proc(vnext) := cv]
23 CE ′ ← CE [|E′| := cv]
24 Explore(E′, CP ′, CE ′) // Execute

the visible operation vnext
25

26 end
27 end
28 end

Fig. 1. DPOR using vector clocks

and CE respectively. The same notation is used for updating
these maps as is for updating vector clocks. To start the
algorithm the procedure Explore is called with an empty
execution sequence and zeroed vector clocks as the arguments.
Each state that the algorithm explores corresponds to one
call to Explore. The algorithm consists of two parts: (1)
on lines 3 – 12 backtracking points are identified and added
and (2) on lines 13 – 27 visible operations are explored. The
algorithm is presented here in a recursive fashion so that
visible operations are executed with calls to Explore. In
an actual implementation the algorithm might be structured
differently. Section IV details one such implementation.

In addition to the execution sequence and vector clocks,
which are passed as arguments to Explore, the algorithm has
access to all the processes and their visible operations in the
current and previous states. Also, a global variable backtrack
associates a backtracking set with each state, which is used

to store identified backtracking points. For a state s each
visible operation in backtrack(s) is one that will eventually
be explored from that state.

To identify backtracking points, when a state s is explored
the next visible operation next(s, p) is examined for all pro-
cesses p. For each such visible operation v the algorithm, on
line 5, searches for the last visible operation Ei in the current
execution sequence that satisfies the following conditions:

1) Ei is dependent with v
2) Ei may be co-enabled with v
3) i 6≤ CP(p)(proc(Ei))

Condition 1 excludes visible operations that are independent
with v and as such do not need to be reordered. Condition 2
filters out visible operations that are never co-enabled with
v. For example, if v is an acquire on a lock and some other
visible operation r is a release on the same lock then these two
visible operations are never co-enabled. In this situation it is
safe to ignore r as a candidate backtracking point. Condition
3 ensures using vector clocks that the two visible operations
are concurrent [5]. Together these conditions identify a race
between v and Ei.

If a visible operation Ei satisfying these conditions exists,
then visible operations will be added, on lines 6 – 10, to the
backtracking set of its preceding state pre(E, i). If the visible
operation v is enabled in pre(E, i) then it is added. Otherwise
the algorithm defaults to adding all the visible operations that
are enabled in pre(E, i), which can happen for example, when
the process p has since the backtracking point executed some
other unrelated visible operation before reaching v.

Once backtracking sets for previous states have been up-
dated the algorithm will, on lines 13 – 15, select a single
visible operation that is enabled in the current state and
initialize the current state’s backtracking set with the selected
operation. The visible operation may be selected randomly,
although the selection may significantly affect the amount
of reduction achieved [7]. The algorithm will then proceed
to execute visible operations from the backtracking set until
no new operations remain. On the first iteration of the loop
on lines 17 – 26 the previously selected visible operation is
executed. On subsequent iterations the operations executed
will be ones added to the backtracking set by some call to
Explore further in the call stack.

Before executing the selected visible operation vnext the
algorithm will, on lines 20 – 23, maintain the vector clocks. A
new vector clock cv is computed as the maximum of the vector
clocks of all previously executed visible operations dependent
with vnext. Also the vector clock’s entry for proc(vnext) is
updated to the index of vnext in the new execution sequence
E′. Then new vector clock maps, CP ′ for processes and CS′

for indices of the execution sequence, are created by updating
the old maps to point to the new vector clock cv for both the
process and for the top of the new execution sequence.

C. Avoiding Stack Traversals

The algorithm in Figure 1 may use, on lines 5 and 20, time
proportional to the size of the execution sequence E. Flanagan

start: Explore(ε, λx.⊥, λx.⊥, λx.0)

1 procedure Explore(E, CP , CO , L)
2 s← last(E)
3 forall the processes p do
4 v ← next(s, p)
5 i← L(α(v))
6 if i 6= 0 and i 6≤ CP(p)(proc(Ei)) then
7 if v ∈ enabled(pre(E, i)) then
8 add v to backtrack(pre(E, i))
9 else

10 add enabled(pre(E, i)) to
backtrack(pre(E, i))

11 end
12 end
13 end
14 if ∃v0 ∈ enabled(s) then
15 backtrack(s)← {v0}
16 done ← ∅
17 while ∃vnext ∈ (backtrack(s) \ done) do
18 add vnext to done
19 E′ ← E.vnext
20 p← proc(vnext)
21 o← α(v)
22 cv ← vmax(CP(p), CO(o))[p := |E′|]
23 CP ′ ← CP [p := cv]
24 CO ′ ← CO [o := cv]
25 L′ ← L[o := |E′|]
26 Explore(E′, CP ′, CO ′, L′)
27 end
28 end
29 end

Fig. 2. DPOR without execution sequence traversals

and Godefroid [5] present a modified algorithm, shown in
Figure 2, that avoids these traversals of the execution sequence.

As before, the modified algorithms Explore procedure
takes as parameters the execution sequence E and the pro-
cesses’ vector clocks CP . However, instead of vector clocks
for each index of the execution sequence the procedure re-
ceives vector clocks, in CO , for each communication object
(e.g. a shared variable or a lock) that a previous visible
operation has used. Finally, the last parameter L is a map
from the communication objects to the index of the last
visible operation in the execution sequence that used that
communication object.

The switch to per-object vector clocks is justified by assum-
ing that each visible operation v uses exactly one communi-
cation object α(v). It is also assumed that two operations are
dependent if and only if they use the same communication
object. Flanagan and Godefroid [5] show that with these
assumptions accesses to a single communication object are
totally ordered in the happens-before relation and that it is suf-
ficient to only keep a vector clock CO(o) for the last access to
each communication object o. When maintaining these vector

clocks, on lines 22 – 24 of Figure 2, the execution sequence
no longer needs to be searched for dependent operations.

To avoid the stack traversal on line 5 of Figure 1, for each
communication object o the index of the last visible operation
in the execution sequence that accessed o is stored in L(o).
When identifying a potential backtracking point for the next
visible operation v of a process it is sufficient to only check the
visible operation at index L(α(v)), which by our assumptions
must be dependent with v. If the visible operation happens
before v then it is the correct backtracking point. There cannot
be any other backtracking point as the accesses to α(v) are
totally ordered in the happens-before relation [5]. The last
accesses are maintained on line 25 of Figure 2.

In Figure 1 potential backtracking points are excluded if
they are never co-enabled with the next visible operation
of the process under consideration. However, in Figure 2 it
is assumed that all visible operations may be co-enabled,
which is safe but may result in less reduction. Flanagan
and Godefroid [5] present an optimization, omitted here for
simplicity, that exploits the fact that an acquire and a release
on the same lock are never co-enabled.

D. Exploiting the commutativity of reads

The algorithm in Figure 2 assumes that two visible opera-
tions are always dependent if they operate on the same com-
munication object. However, two reads from the same commu-
nication object do not interact and can safely be excluded from
the dependency relation. Flanagan and Godefroid [5] mention
that the algorithm can be modified to exploit this independence
by using two vector clocks for each communication object,
but do not present the details of such a modification. As one
of the main contributions of this work Figure 3 presents our
modification to the algorithm.

In this algorithm the map for the per-object vector clocks
has been replaced with two maps: the write clocks, CW ,
and the access clocks, CA. On lines 26 – 40 these and
the processes’ vector clocks are updated according to the
following rules:
• If the visible operation is a write then the process’ vector

clock CP(p) is updated from the access clock CA(o). For
reads the update is made from the write clock CW (o).
The process’ vector clock entry for itself is updated as
normal to point to the index of the visible operation being
executed.

• If the visible operation is a write then the write clock is
updated to match the process’ vector clock.

• The access clock is always updated to match the process’
vector clock.

In effect, when a process executes a read it skips the vector
clock updates from all the preceding reads up to the last write.
For writes this works as before, as on writes the process’
vector clock updates from the read clock, which is always
updated. This method of updating the vector clocks correctly
implements causality with reads and writes [8].

The way backtracking points are identified is adapted to the
modified vector clocks and, therefore, a modified happens-

start: Explore(ε, λx.⊥, λx.⊥, λx.⊥, λx.0, λx.ε)

1 procedure Explore(E, CP , CW , CA, LW , LR)
2 s← last(E)
3 forall the processes p do
4 v ← next(s, p)
5 if v may write and ∃k = max({ k | LR(α(v))k 6≤

CP(p)(proc(Ei)) }) then
6 i← LR(α(v))k
7 else
8 i← LW (α(v))
9 end

10 if i 6= 0 and i 6≤ CP(p)(proc(Ei)) then
11 if v ∈ enabled(pre(E, i)) then
12 add v to backtrack(pre(E, i))
13 else
14 add enabled(pre(E, i)) to

backtrack(pre(E, i))
15 end
16 end
17 end
18 if ∃v0 ∈ enabled(s) then
19 backtrack(s)← {v0}
20 done ← ∅
21 while ∃vnext ∈ (backtrack(s) \ done) do
22 add vnext to done
23 E′ ← E.vnext
24 p← proc(vnext)
25 o← α(v)
26 if v may write then
27 cv ← vmax(CP(p),CA(o))[p := |E′|]
28 CP ′ ← CP [p := cv]
29 CW ′ ← CW [o := cv]
30 CA′ ← CA[o := cv]
31 LW ′ ← LW [o := |E′|]
32 LR′ ← LR[o := ε]
33 else
34 cv ← vmax(CP(p),CW (o))[p := |E′|]
35 CP ′ ← CP [p := cv]
36 cv ← vmax(cv,CA(o))
37 CA′ ← CA[o := cv]
38 LW ′ ← LW
39 LR′ ← LR[o := LR(o).|E′|]
40 end
41 Explore(E′, CP ′, CW ′, CA′, LW ′, LR′)
42 end
43 end
44 end

Fig. 3. DPOR exploiting the commutativity of reads

before relation. The last accesses map is replaced with two
new maps: (1) the index of the last write is stored in LW and
(2) the indices of the last reads since the last write are stored
in LR. As LR is a sequence of indices we adopt the same
notation for working with it as we use for execution sequences.

Both of these are maintained on lines 26 – 40. Accordingly,
we modify the way backtracking points are identified on lines
5 – 9. If the current process’ p next visible operation v is a
write then the sequence of last read operations LR(α(v)) is
searched to find the last read that did not happen before p.
If such a visible operation exists then it is the backtracking
point. Otherwise or if v is not a write the backtracking point
is LW (α(v)), provided it did not happen before p.

We will now argue that like the DPOR algorithm with per-
object vector clocks in Figure 2, this modified algorithm is
a specialization of the basic DPOR algorithm in Figure 1.
For a detailed proof of why DPOR can be used for finding
deadlocks and assertion errors refer to Flanagan and Godefroid
[5], who show that when a call to Explore returns it will
have explored a persistent set [9] from the corresponding state.

On lines 20 – 23 of Figure 1 the vector clocks are main-
tained so that the next process’ vector clock is updated to be
the maximum of the vector clocks of all preceding dependent
visible operation. In the algorithm in Figure 3 the maximum
of all preceding dependent visible operations is always found
in either CW or CA. Specifically, for a read operation the
maximum of all preceding dependent visible operation is
found in CW , while for a write operation it is found in CA.

In Figure 1 on line 5 to identify a backtracking point for
process p the algorithm searches for the last dependent visible
operation in the execution sequence that did not happen before
next(s, p). In the modified algorithm all write operations
for a single communication object are totally ordered in the
happens-before relation. In the pseudocode this can be seen
on lines 27 – 30, where the write clock CW is updated from
the access clock CA, which in turn aggregates vector clock
updates from all visible operations. Therefore, for processes
which have a read operation next it is sufficient to consider
only the last write. If the last write happened before the process
then all preceding writes did too. For processes that have a
write operation next any reads since the last write are checked
in addition to the last write. Reads preceding the last write do
not have to be checked as they necessarily happened before
the last write. This property of the happens-before relation in
use is reflected on lines 34 – 37, where for read operations the
process and the CA vector clock are updated from the read
clock CW .

Compared to the algorithm in Figure 2, which requires
constant time to find backtracking points for each process, the
modified algorithm in Figure 3 does add a potential traversal
of the execution sequence on line 5. A trivial worst case for
finding a backtracking point is O(|E|). This happens, for ex-
ample, when a program consists of a single process executing
multiple successive reads from a single communication object
followed by a write to the same communication object. To
find a backtracking point for the process when the write is
enabled all preceding reads will be checked. In this case the
search can not end early as no suitable backtracking point
will be found among the preceding reads. In the best case the
algorithm requires constant time to find a backtracking point
for a single process. This happens, for example, when only

write operations are executed, which keeps the sequences of
last reads in LR empty (on line 32 in Figure 3).

III. COMBINING DYNAMIC PARTIAL ORDER REDUCTION
AND CONCOLIC TESTING

Concolic testing has been previously combined with other
dynamic partial order reduction algorithms than the one by
Flanagan and Godefroid [5]: the race detection and flipping
algorithm in [10] includes concolic testing. In this section we
describe how the DPOR algorithm of Flanagan and Godefroid
[5] can be used together with concolic testing.

A. Concolic Testing

Concolic testing [1]–[3] is a technique for systematically
exploring a program’s execution paths by running it with
different inputs. To this end, concrete execution of the program
is paired with symbolic execution so that concrete operations
are interleaved with their symbolic equivalents. The symbolic
execution yields a set of constraints which are used to generate
new concrete input values for further testing.

To prepare a program for concolic testing its input values
are marked for the testing tool. Any variables that may
be affected by these input values are considered symbolic
variables. A program is then instrumented so that for each
concrete operation that uses a symbolic variable a symbolic
counterpart is added. These operations generate constraints on
the program’s input values. In particular branching operations
that use symbolic variables produce path constraints.

On the first test run the program is executed with random
input values. From the constraints generated by the execution
a single path constraint is selected, which is then negated,
producing the constraint for the unexplored branch. The
constraints from the beginning of the execution up to and
including the negated constraint are then fed into a constraint
solver. If the set of constraints is satisfiable we get a new
set of input values that will cause the program to deviate
from the previous execution path at the branching operation
corresponding to the negated path constraint. An unsatisfiable
set of constraints means that a concrete execution of the
program can never follow the corresponding path. Once a new
set of input values is obtained they are used as the input in
the next test run. By repeating this process we can explore all
the possible execution paths that the program can take.

A more in depth explanation of concolic testing is given in
[11], [12] also describing the LCT concolic testing tool that
was extended in this work.

B. Adding DPOR

Concolic testing can be thought of as systematically ex-
ploring a tree of a program’s paths through its branching
operations. DPOR, on the other hand, explores a tree where
each new branch corresponds to an identified backtracking
point. To employ both these algorithms simultaneously these
trees must be combined. This can be achieved by constructing
an execution tree where nodes for symbolic operations and
nodes for scheduling decisions are interleaved in the order they

are encountered during execution. To think of it in another way
the resulting tree will contain nodes for scheduling decisions
followed by a “concolic subtree” for each visible operation.
The subtree is in turn formed by symbolic operations from
the executing process of the corresponding visible operation.
The leaves of the subtree are the scheduling points at the next
visible operations that the process encounters.

The DPOR algorithm presented in Section II backtracks to
previously explored states by returning from the Explore
procedure. In an actual implementation this can be performed
by, for example, re-executing the program with the same
schedule, storing backtracking states or a combination of these
[13]. In this case re-execution is a natural choice as the same
technique is used by concolic testing. Furthermore, storing
previous states might not be straightforward as in concolic
testing a node in the execution tree is a set of constraints on
the input and thus corresponds to many concrete states.

Recall that executing a visible operation was defined to
include applying the visible operation as well as any invisible
operations until the next visible operation is encountered.
However, when combining with concolic testing the next visi-
ble operation may no longer be unique, as the invisible opera-
tions after a visible operation is executed can vary depending
on the input to the program. Thus when a visible operation is
explored the first path through the invisible operations will be
arbitrary. The other paths through the invisible operations will
be explored by concolic testing in subsequent test executions.
This change does not greatly affect the implementation of the
DPOR algorithm. Because the past of the execution and the
next visible operation for each process is still known during
each call to Explore, the logic for updating the vector clocks
and identifying the backtracking points stays the same.

From the concolic testing algorithm’s point of view this
change to the execution tree adds some extra nodes that
need to be handled correctly. Normally when a node that
corresponds to an open branch is selected for exploration the
input constraints are gathered from the nodes on the path
from the root node to the selected node. In the combined
execution tree this path will include extra nodes from the
DPOR algorithm. However, these do not affect the input
constraints and thus can safely be ignored.

IV. IMPLEMENTATION

We have implemented the DPOR algorithm with support
for reads as an extension to the Lime Concolic Tester (LCT)
[11], [12], which is an open source concolic testing tool for
Java programs. To implement the DPOR algorithm we first
added support for testing multi-threaded programs. We will
now provide an overview of LCT, describe the support for
multi-threaded programs, and finally show how the DPOR
algorithm is implemented in this setting.

To prepare a Java program for testing with LCT it is
modified to retrieve its inputs from the LCT runtime library.
This can be, for example, achieved by writing a separate
test driver that retrieves values from the LCT runtime library
and then calls the original program with these values. The

1 while threads running do
2 wait until all running threads are blocked in the

scheduler
3 V ← set of next visible operations for all threads
4 v ← Select(V)
5 apply v
6 end

Fig. 4. The main scheduler loop

modified program is then instrumented with a tool that adds
for each operation that might be affected by the input values
a call to a symbolic counterpart in the LCT runtime library.
The instrumentation tool uses the Soot Java optimization
framework [14] to perform the required transformations.

For the actual testing LCT uses a client-server model
with potentially multiple concurrent clients executing tests in
different parts of the execution tree. The testing server keeps
track of the execution tree explored thus far. When a client
connects the testing server selects a new path to explore and
sends the relevant constraints to the client. The client then
solves a set of inputs from these constraints (or asks for
another path to be tested if they are unsatisfiable) and starts a
new test execution, where these input values are used as the
return values for the calls the test harness or modified program
makes to the LCT runtime library to retrieve input. During
its execution it sends details of each symbolic operation it
executes to the server, which the server in turn uses to follow
the client in the execution tree and update it as necessary. The
clients do not persist any information between executions.

The version 2.2.0 of LCT that includes our extensions is
available at http://www.tcs.hut.fi/Software/lime/.

A. Scheduling

To control the execution of visible operations a scheduler
is introduced into the client side of LCT. The threads that
constitute the program under test make a call to the scheduler
asking for permission to execute before each visible operation
they encounter. For each such call the visible operation about
to be executed is recorded and the calling thread enters a wait
until it is given permission to run. These permissions are in
turn issued by a main scheduler loop from a separate thread.

A simplified pseudocode listing for the main scheduler loop
can be seen in Figure 4. On each iteration of the loop it first
waits for all threads of the program to enter the scheduler
and begin the wait for permission to execute. Threads that
terminate without executing any visible operations are ignored.
Next the main scheduler loop constructs a set of the next
visible operations for all threads. These include the ones that
are not enabled, e.g., acquires for locked objects. Finally,
a visible operation is selected to run through the Select
procedure and the returned operation is then given permission
to run. The Select procedure contains the client side part of
our DPOR implementation and is presented in Section IV-C.

B. Instrumentation

To enable threads to ask permission for executing visible
operations we extended the instrumentation based approach
already present in LCT. All basic reads and writes that operate
on shared variables are instrumented so that scheduler is called
right before the operation is executed. This is similar to the
approach used by Godefroid [6]. The call blocks, i.e., it does
not return, until the scheduler gives permission for that visible
operation to be executed. For example, consider the following
write to a shared variable.

someObject.fieldName = 1;

To instrument this operation a call to the scheduler is added:

Scheduler.preWrite(someObject, "fieldName");
someObject.fieldName = 1;

The parameters for the call to Scheduler.preWrite are:
(1) the base object of the variable and (2) the variable name. In
the actual implementation the call would also include the code
file name and line number for debugging purposes. Operations
on elements of arrays are handled similarly with the variable
name being replaced by the array index. The synchronized

blocks in Java compile down to the monitorenter and
monitorexit bytecode instructions [15]. These are in turn
instrumented similarly to read and write operations.

The Object.wait operation is instrumented differently
from the previous operations. Instead of adding a call before
the operation, the whole operation is replaced with a call
to the scheduler. For example, the call obj.wait() would
be replaced by Scheduler.doWait(obj). The method
Scheduler.doWait internally uses and has the same se-
mantics as Object.wait. The instrumentation for the meth-
ods Object.notify and Object.notifyAll, and thread
parking related methods in java.util.concurrent-
.locks.LockSupport are all implemented similarly to
Object.wait, with semantically equivalent alternative im-
plementations in the scheduler.

This covers the most common constructs used for com-
munication and synchronization between threads in Java.
While not used for communication, the Thread.start

method also receives some instrumentation. A call to
Scheduler.informThreadStart(Thread) is added after
each call to Thread.start, which notifies the scheduler that
it may have to start tracking a new thread.

C. DPOR in a Client-Server Setting

This section describes how we have implemented DPOR in
the client-server setting of LCT. DPOR has been previously
parallelized in [16]. For a parallel partial order reduction
approach based on ample sets see [17].

Our implementation of DPOR resides in the Select
procedure, referred to in Figure 4, as well as on the testing
server. Figure 5 presents a rough pseudocode for the Select
procedure. Two larger changes have been made to fit the
algorithm into the LCT tool: (1) to reach previous states the
execution sequence is replayed instead of returning from the

1 procedure Select(V)
2 s← last(E)
3 if SE is not empty then
4 v ← pop(SE)
5 else
6 forall the visible operations v ∈ V do
7 p← proc(v)
8 if v may write and ∃k =

max({ k | LR(α(v))k 6≤ CP(p)(proc(Ei)) })
then

9 i← LR(α(v))k
10 else
11 i← LW (α(v))
12 end
13 if i 6= 0 and i 6≤ CP(p)(proc(Ei)) then
14 e← enabled(pre(E, i))
15 if v ∈ e then
16 SendBacktrack({v}, i)
17 else
18 SendBacktrack(e, i)
19 end
20 end
21 end
22 v ← r ∈ V such that r is enabled
23 end

2525 // Maintain the vector clocks and
last accesses.

26

27 SendExecution(v, V)
28 return v
29 end

Fig. 5. Client side part of our DPOR implementation

Explore procedure, (2) backtracking points are reported to
the testing server instead of being stored locally.

The Select procedure has access to a stack of visible
operations SE , which is initialized from the testing server
at the beginning of the execution. When Select is called
visible operations will be taken and executed from the stack
SE until it is empty. The stack is always such that the last
visible operation executed from it is one that was previously
added to a backtracking set.

The LCT client loses all state when the execution ends. As
such backtracking decisions are, on lines 16 and 18, sent to the
testing server instead of being stored locally. To make sense of
the backtracking decisions the server must keep track of where
the client is in the server’s execution tree. For this purpose, on
line 27, each scheduling decision that Select makes is also
sent to the server. On the server the backtracking decisions
received from the client are handled by adding new nodes to
the execution tree at the point indicated by the received index.
These nodes will then be explored in a later execution.

From the way we have implemented DPOR in Figure 5

s0

s1 s2

s3

a b

b a

Fig. 6. Program with two independent visible operations

it is apparent that multiple concurrent clients may be used
for testing: when one client discovers a backtracking point
another one may start a test execution to explore it before the
first one has finished. While no client side modifications are
required to enable this, the server will have to be properly
synchronized. In [16] an alternative approach to distribute
DPOR is presented where the testing is divided to multiple
workers without relying on a synchronizing server as in LCT.
This approach provides excellent scalability to the number
of workers but in some cases results in exploring a same
schedule multiple times. The client-server approach of LCT
avoids this problem and based on initial results of distributing
concolic testing of single-threaded programs [11], the tighter
synchronization still scales well up to at least 20 clients.

D. Sleep Sets in a Client-Server Setting

In this section we describe the sleep set algorithm, which
was first described by Godefroid [18]. As one of our main
contributions we also present our modification to it for imple-
mentation in a client-server setting. The following explanation
of sleep sets is adapted from Godefroid [9].

Consider a program that consists of two processes, which
execute the independent visible operations a and b. Figure 6
presents the state space of such a program, where from the
initial state s0 the program will move to the state s1 or s2
depending on the operation executed and will end up in the
state s3 after the execution of the second operation. The final
state s3 is shared for both interleavings of the operation due
to their independence.

The sleep set algorithm is based on the observation that if a
visible operation t1 is already explored from some state s, then
when any visible operation s t2−→ s′, where t2 is independent
of t1, is explored there is no need to explore t1 from s′. To this
end for each state we associate a sleep set, which is a set of
visible operations that will not be explored from that state. For
example, in Figure 6 if the first execution is s0

a−→ s1
b−→ s3

then when b is executed from s0 the visible operation a will
be added to the sleep set in state s2. In this case we can avoid
exploring s2

a−→ s3.
The sleep set for the initial state of a program sleep(s0)

is the empty set. When a visible operation is explored from
any state, s v−→ s′, the sleep set for the successor state s′ is

computed as follows. Let explored(s) be the visible operations
that have already been explored from the state s. The candidate
sleep set for s′ is the union sleep(s) ∪ explored(s). This
candidate sleep set is then filtered to only include visible
operations that are independent with the executed operation
v thus producing the final sleep set sleep(s′).

Our setting presents two complications to implementing
sleep sets: (1) only the server knows which visible operations
have been explored from a given state and (2) only the
client knows the dependencies between visible operations,
because on the server a visible operation is identified only
by its executing thread (or also the target thread in case
of Object.notify). Therefore we split the implementation
between the server and client as follows.

In the beginning of the execution the server sends the
candidate sleep set for the state the client will reach once
it has re-executed the visible operations sent by the server (as
described in Section IV-C). Once the client has executed the
last visible operation from the server the dependent operations
are removed from the sleep set, which is then sent back to the
server. For the rest of the execution no new visible operations
need to be added to the sleep set as the client is always
executing the first operation from the states it is in. Dependent
visible operations are removed after each executed operation
and the resulting sleep sets are sent to the server.

Combining sleep sets with DPOR is straightforward and the
resulting Select procedure is shown in Figure 7. The sleep
set is stored in the global variable SLP , which is initialized
with the candidate sleep set from the server. On line 9 the
selection of the next visible operation to execute is limited to
the enabled operations that are not in the current sleep set.
If all enabled visible operations are in the sleep set then the
execution ends immediately. On lines 11 – 14 if the visible
operations from the server have been exhausted then the visible
operations that are dependent with the operation that was
selected to be executed are removed from the sleep set. Then,
on line 13, the resulting sleep set is sent to the server.

V. EXPERIMENTS

In this section we provide some experimental results for the
modified DPOR algorithm with support for commutative reads
(DPOR-CR from now on). We tested it against the unmodified
DPOR algorithm and the race detection and flipping algorithm
in the closed source jCUTE [3] tool. The DPOR-CR algorithm
was tested both with sleep sets and without. All algorithms,
except for the race detection and flipping algorithm, were
implemented in LCT. In these experiments we have used a
single client for testing with LCT. We have left the evaluation
of DPOR with multiple concurrent clients to future study.

In the experiments we compare the number of executions
needed by each partial order reduction algorithm to test a
program. All the programs under test have a finite state space
and, therefore, the differences in the numbers depend on how
much reduction the algorithms achieve.

The File System and Indexer programs are from Flanagan
and Godefroid [5], where they were used to evaluate the DPOR

1 procedure Select(V)
2 s← last(E)
3 if SE is not empty then
4 v ← pop(SE)
5 else
77 // Identify backtracking points.
8

9 v ← r ∈ V such that r ∈ enabled(s) \ SLP or
end the execution if no such visible operation
exists.

10 end

11 if SE is empty then
12 SLP ← {r ∈ SLP | r is not dependent with v}
13 SendSleepSet(SLP)
14 end

1616 // Maintain the vector clocks and
last accesses.

17

18 SendExecution(v, V)
19 return v
20 end

Fig. 7. Client side of our sleep set implementation

algorithm. The Parallel Pi program implements a parallel
algorithm for calculating the value of π. All three of these
programs were tested using a varying number of threads.
The Bounded Buffer and Synchronous Queue programs are
two larger programs that test implementations of thread-safe
containers. The container in the Bounded Buffer program is
an example from [19] while the container in the Synchronous
Queue program is from the Java Collections Framework.

The results can be seen in Figure 8. The number in paren-
theses beside the Indexer, File System and Parallel Pi programs
is the number of threads used. The number of executions
for the Synchronous Queue with jCUTE is missing due to
a bug or incompatibility we encountered. As noted before,
the amount of reduction achieved by the DPOR algorithm
can vary depending on in which order visible operations are
explored [7]. In these tests we explored visible operations in a
random order while running each test a five times. We report
the average number of test executions in these five tests. The
jCUTE tool explores visible operations deterministically and
thus the reduction it provides does not vary.

The DPOR-CR algorithm fares better than the unmodified
DPOR algorithm on the Indexer, File System and Parallel Pi
programs. This is a straightforward result from the presence of
reads on shared variables in these programs. On the Bounded
Buffer program the DPOR-CR algorithm provided no benefit
over the unmodified DPOR algorithm. This is due to all
operations on shared variables in the program being protected
by synchronized blocks.

The results for the Synchronous Queue program show a very
low number of executions for the DPOR-CR algorithm when

Number of test executions

Program No reductions DPOR DPOR-CR DPOR-CR, sleep sets jCUTE

Indexer (12) > 10000 8614.6 154 27 8
Indexer (13) > 10000 > 10000 > 10000 722.4 343
File System (14) > 10000 6.8 3.2 2.6 2
File System (16) > 10000 568.4 26.8 19.5 31
File System (18) > 10000 > 10000 250.2 145.8 2026
Parallel Pi (3) > 10000 > 10000 3217.8 19.2 6
Parallel Pi (5) > 10000 > 10000 > 10000 1220.6 120
Bounded Buffer > 10000 64.4 67.2 16 8
Synchronous Queue > 10000 > 10000 > 10000 9 N/A

Fig. 8. Average number of test executions explored for each program and algorithm

combined with sleep sets while all other combinations went
over our testing limit of 10000 executions. We are unsure of
the exact reason for the stark difference between the DPOR-
CR algorithm with and without sleep sets. It would, however,
seem that the two algorithms complement each other very well
on the Synchronous Queue program. For example, on the File
System program the benefit from using sleep sets is much less
pronounced.

Compared to the unmodified DPOR algorithm, the race
detection and flipping algorithm of jCUTE often achieves
significantly better results. However, once our modification
and and sleep sets are added the DPOR based approach is
much more competitive. Particularly on the File System (18)
program the DPOR-CR algorithm with sleep sets outperforms
jCUTE by a wide margin. One difference between jCUTE
and DPOR-based approaches is that when a race is detected,
jCUTE remembers one operation participating in the race
for the next test run and in some cases is able to use
this information to avoid unnecessary backtracks caused by
the same race. DPOR does not have this extra information
and therefore can backtrack unnecessarily. One direction for
future work is to investigate if similar optimization can be
implemented to DPOR.

VI. CONCLUSIONS

We have modified the dynamic partial order reduction
(DPOR) algorithm of Flanagan and Godefroid [5] to exploit
the commutativity of read operations and have combined the
modified algorithm with concolic testing to enable systematic
testing of multi-threaded programs that take input. We have
implemented our modified algorithm and the sleep set algo-
rithm in the Lime Concolic Tester (LCT) [11], [12], which is
an open source concolic testing tool designed for distributed
use. Our versions of the DPOR algorithms also allow paral-
lelization of testing in a client-server setting. Our experimental
evaluation shows that the modified DPOR algorithm greatly
improves on the unmodified DPOR algorithm.

REFERENCES

[1] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proceedings of the ACM SIGPLAN 2005 Conference

on Programming Language Design and Implementation (PLDI 2005).
ACM, 2005, pp. 213–223.

[2] K. Sen, “Scalable automated methods for dynamic program analysis,”
Doctoral thesis, University of Illinois, 2006. [Online]. Available:
http://osl.cs.uiuc.edu/∼ksen/paper/sen-phd.pdf

[3] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools,” in Proceedings of the 18th Inter-
national Conference on Computer Aided Verification (CAV 2006), ser.
Lecture Notes in Computer Science, vol. 4144. Springer, 2006, pp.
419–423, (Tool Paper).

[4] A. Valmari, “The state explosion problem,” in Petri Nets, ser. Lecture
Notes in Computer Science, W. Reisig and G. Rozenberg, Eds., vol.
1491. Springer, 1996, pp. 429–528.

[5] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in POPL, J. Palsberg and M. Abadi, Eds.
ACM, 2005, pp. 110–121.

[6] P. Godefroid, “Model checking for programming languages using
VeriSoft,” in POPL, 1997, pp. 174–186.

[7] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha, “Evaluating
ordering heuristics for dynamic partial-order reduction techniques,” in
FASE, ser. Lecture Notes in Computer Science, D. S. Rosenblum and
G. Taentzer, Eds., vol. 6013. Springer, 2010, pp. 308–322.

[8] K. Sen, G. Rosu, and G. Agha, “Runtime safety analysis of multi-
threaded programs,” in ESEC / SIGSOFT FSE. ACM, 2003, pp. 337–
346.

[9] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, ser. Lecture
Notes in Computer Science. Springer, 1996, vol. 1032.

[10] K. Sen and G. Agha, “A race-detection and flipping algorithm for
automated testing of multi-threaded programs,” in Haifa Verification
Conference, ser. Lecture Notes in Computer Science, E. Bin, A. Ziv,
and S. Ur, Eds., vol. 4383. Springer, 2006, pp. 166–182.

[11] K. Kähkönen, T. Launiainen, O. Saarikivi, J. Kauttio, K. Heljanko,
and I. Niemelä, “LCT: An open source concolic testing tool for Java
programs,” in Proceedings of the 6th Workshop on Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE’2011), 2011, pp.
75–80.

[12] K. Kähkönen, “Automated test generation for software components,”
Helsinki University of Technology, Department of Information and
Computer Science, Espoo, Finland, Technical Report TKK-ICS-R26,
Dec 2009.

[13] P. Godefroid, “Software model checking: The VeriSoft approach,”
Formal Methods in System Design, vol. 26, no. 2, pp. 77–101, 2005.

[14] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundare-
san, “Soot - a Java bytecode optimization framework,” in Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collaborative
Research (CASCON 1999). IBM, 1999, p. 13.

[15] J. Engel, Programming for the Java virtual machine. Addison-Wesley,
1999.

[16] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Distributed
dynamic partial order reduction based verification of threaded software,”
in SPIN, ser. Lecture Notes in Computer Science, D. Bosnacki and
S. Edelkamp, Eds., vol. 4595. Springer, 2007, pp. 58–75.

[17] L. Brim, I. Cerná, P. Moravec, and J. Simsa, “Distributed partial order
reduction of state spaces,” Electr. Notes Theor. Comput. Sci., vol. 128,
no. 3, pp. 63–74, 2005.

[18] P. Godefroid, “Using partial orders to improve automatic verification
methods,” in CAV, ser. Lecture Notes in Computer Science, E. M. Clarke
and R. P. Kurshan, Eds., vol. 531. Springer, 1990, pp. 176–185.

[19] J. Magee and J. Kramer, Concurrency - state models and Java programs
(2. ed.). Wiley, 2006.

