Implementing a CTL Model checker

Keijo Heljanko

Helsinki University of Technology, Digital Systems Laboratory
Otakaari 1, FIN-02150 Espoo, Finland
Keijo.Heljanko@hut.fi

July 29, 1996

Abstract

This paper discusses the implementation of a branching time temporal logic CTL model checker
for the PROD Pr/T-Net Reachability analysis tool. A new algorithm for model checking CTL is
presented. This algorithm doesn’t need the converse of the transition relation as the EMC algorithm
does [4]. The algorithm also provides a counterezample and witness facility using one-pass reachabil-
ity graph traversal. The ALMC local model checking algorithm as presented in [10] uses a two-pass
algorithm. The new algorithm presented here is a global model checking algorithm and requires less
memory in the worst case than the local model checking ALMC algorithm.

Classification: Concurrency, distributed systems

1 Introduction

This paper discusses the implementation of a branching-time temporal logic CTL model checker
for the PROD Pr/T-Net Reachability analysis tool [7], [9] . The need for a new branching time
model-checker was raised by the users of PROD. The model checker would be implemented in the
reachability graph traversal tool PROBE, so the implementation would have the reachability graph
generated for it.

The partial order methods implemented in the PROD tool set reachability graph generation
do not preserve the branching time temporal logic CTL, and can’t be applied to the reachability
graph generation when checking CTL properties. Therefore the full reachability graph needs to be
generated. The full reachability graph generation is the bottleneck in using the CTL model checker.

Model checking CTL has been know to have a linear complexity in terms of the size of the
reachability graph to be checked and also in the size of the CTL formula to be checked [4]. We
studied two existing algorithms for model checking CTL: the EMC algorithm [4] by Clarke, Emerson
and Sistla, and the ALMC algorithm [10] by Vergauwen and Lewi.

What was discovered was that while both of the algorithms could be used as a basis for a linear
time model checker, they both had some drawbacks in our application.

The EMC model checker needs both the forward transition relation, and the converse of the
transition relation during model checking. While the converse of the transition relation can be
theoretically computed in linear time, it requires additional storage space which is proportional to
the number of edges in the reachability graph. Another problem with the EMC algorithm is that it
doesn’t contain a counterezample and witness facility [3]. These are in our experience very valuable
when for example verifying an unfinished design that contains faults. The model checker can give a
counterexample path along which a universally quantified formula does not hold, or a witness path
along which an existentially quantified the formula holds.

The ALMC model checker is a so called local model checker. It evaluates the truth value of the
formula to be checked in a top-down manner evaluating only those subformulas that are needed to
decide the truth value of the top level formula. The ALMC algorithm stores information about
which subformulas it has already evaluated and the truth values of those subformulas. Evaluating
a subformula in ALMC algorithm requires space for search structures which is propositional to the
number of nodes in the reachability graph in the worst case. Because evaluating a subformula might
trigger the evaluating its subformulas, the search structures for the ALMC algorithm can require



several times more memory than a global model checker in the worst case. The added memory used
for book-keeping enables a local model checker to evaluate only a subset of those formulas that a
global model checker does. In the worst case it needs to evaluate all the subformulas in the same
way a global model checker does.

Because the model checking algorithms presented in the literature were not a perfect match for
our needs, we developed a new model checking algorithm. It is based on the same basic ideas as the
EMC and ALMC algorithm, but also contains some new ideas. The resulting new algorithm is a
global model checker with a counterexample and witness facility.

Our algorithm uses directed graph depth-first search as the basic algorithm on which the model
checking algorithm is implemented. It enables us to do CTL model checking memory-efficiently with
a counterexample and witness facility provided without increasing the time or space complexity of
the algorithm.

One implementation option was to make the CTL model checker a BDD-data structure [1], [8]
based one. It was discovered that we couldn’t get all the benefits of the BDD-based model checking
without a major rewrite of the PROD tools. We decided that a more conventional approach would
fit the current tools better and we could still be able to obtain very significant improvements in CTL
model checking compared to the older versions of the PROD tools.

In chapter 2 we shortly define the branching time temporal logic CTL. Chapter 3 discusses CTL
model checking complexity and the local vs. global model checking. In chapter 4 we present our new
algorithm. Chapter 5 discusses the PROD implementation issues.

2 Branching time temporal logic CTL

Here we briefly discuss the branching time temporal logic CTL. For a more thorough discussion on
different temporal logics we direct the reader to [5]. This section is largely based on the paper by
Clarke, Emerson and Sistla [4]. We discuss model checking finite-state systems that are described as
a labeled state-transition graph. This structure is a triple M = (S, R, P) where

1. S is a finite set of states

2. R is a binary relation on S(R C S x S) which gives the possible transitions between states. It
must be total; Vo € S3y € S[(z,y) € R]

3. P: S — 2%% assigns to each state atomic proposition true in that state
The formal syntax of CTL is given below:

1. Every atomic proposition p € AP is a CTL formula
2. If f1 and f> are CTL formulas, so are =f1, fi A fo, EX f1, A[f1U f2] and E[f1 U f2].

A pathis an infinite sequence of states (so, s1,...) such that Vi[(s;, siy1) € R]. For any structure
M = (S, R, P) there is an infinite computation tree with root labeled sg. s — ¢ is a arc in the tree iff
(s,t) € R. The relation M, s |= f means that the formula f holds at state sg in structure M. The
relation |= is defined inductively as follows:

1. M,so =piff p € P(so)

2. M,sq = —f iff not(M,so = f)

3. Myso|=finfoifl M,so |= f1 and M, so |= f2

4. M,so |= EX f1 iff M,t = fi for some state ¢ such that (so,t) € R
5

. M,s0 = A[f1 U f2] iff for all paths (so, s1,...),
BE>0AM,s; |= 2AV[0< <1 = M,s; | fi]]

6. M,sq = E[f1U f2] iff for some path (so, s1,...),
FHE>20AM,si = 2AVj[0< <1 = M,s; F fi]]

We can use some abbreviation to help us in writing CTL formulas more easily:

1. AX(f)=-EX(—f) means that f holds in all the immediate successor states of s

2. AF(f) = A[True U f] means that f holds in the future along every path

3. EF(f) = E[True U f] means that there is some path which leads to a state at which f holds
4. AG(f) = —~EF(—f) means that f holds in every state on every path

5. EG(f) = ~AF(—f) means that there is some path on which f holds in every state



3 CTL Model checking

CTL model checker is a program that answers the problem stated as follows: Given a structure M
and a CTL formula f, determine which states of M satisfy f. We may be only interested whether the
formula is satisfied in a state s of the structure M. This is called local model checking [10]. Another
possibility is that we want to know the satisfiability of formula f in all the states of the structure
M. This is called global model checking correspondingly.

The model checking problem for CTL has been shown to be linear in both the length of the
formula f and the size of the structure M [4]. Therefore in the worst case CTL model checkers
discussed here require O(length(f) x (card(S) + card(R))) running time.

A global model checker evaluates the truth value of the top-level formula in a bottom-up manner.
It always evaluates the truth values of subformulas in all states of a graph before trying to evaluate a
formula that depends on these subformulas. If some of these subformula truth values are not needed
to evaluate the truth value of the top-level formula, unnecessary work has been performed. One way
of looking at globally evaluating a subformula is that it creates a new atomic proposition that is
evaluated to either true or false for all the states of the reachability graph.

A local model checker, which only wants to know the satisfiability of a formula in one state can
evaluate only those of the subformulas it requires to show whether the top-level formula is satisfied
or not. The drawback is that it needs to do more complicated book-keeping to lazily evaluate only
those subformulas it needs. This translates into a slower execution when compared to a simpler global
model checking algorithm. The ALMC [10] local model checking algorithm also has to keep in memory
the search structures needed for evaluating a top-level formula when encountering a non-evaluated
subformula. Evaluating this subformula can recursively cause an evaluation of its subformulas. The
size of each of these search structures are proportional to the number of nodes in the reachability
graph for each subformula.

We decided to develop a global model checking algorithm because it requires less memory for
both storing the subformulas and the subformula evaluation search structures in the worst case. This
combined with the reduced book-keeping overhead of the model checking algorithm will hopefully
make up for the potentially larger number of subformulas required to be evaluated.

4 A Global Model Checking Algorithm

Here we present a new algorithm for model checking CTL. It owes a lot to the algorithms EMC
[4] and ALMC [10]. Tt presents an algorithm which has the reduced book-keeping overhead of the
EMC algorithm, without the need for the backward transition relation. Another major benefit is
the counterexample and witness facility, which is provided without affecting the complexity of the
algorithm. The paper presenting the ALMC algorithm uses a two-pass depth-first search method
to implement model checking the temporal subformula F[fi U f2]. The basic idea of used by our
algorithm for model checking the temporal formula F[fi U f2] is the same as used in the ALMC
algorithm, but our algorithm uses simpler datatypes and completes the model checking using only
one-pass depth-first search.

Our algorithm implements local model checking for the top-level subformula. This can be seen as
an optimization which is provided because it required no extra memory or running-time overhead.

Because of space considerations we won’t duplicate the parts of the model checking algorithm
that are identical to the ones represented in [4] and [10]. We present here the procedures needed for
model checking only the temporal subformulas A[f1 U f2] and E[f1 U f2]. The main program and
the algorithms needed for model checking other temporal subformulas are either trivial or identical
to the algorithms presented in [4], [10].

4.1 Model checking the formula A[f; U f5]

Implementation of the subroutine check au, which is used to model check the temporal formula
A[f1U f2], is very similar to the one used in the ALMC algorithm. Because our algorithm is a global
model checker, some of the logic needed in evaluating a formula can be replaced by initialization
which uses only simple boolean operations on subformula truth values.

Subroutine check_auis provided with truth values of the subformulas f7 and f2 evaluated in all
states. It labels states marked when the truth of the formula has been evaluated in that state, and
it stores the truth values of the formula to be evaluated for each state in labeled. All of these can be
simply implemented with bit-arrays containing as many bits as there are states.

The actual subroutine check auis called with additional parameters state and check_ global. The
parameter state is the state we want the formula A[f; U f2] to be evaluated in, and check global is



false when the formula to be checked is a top-level subformula, and a counterexample path is to be
produced instead. Here is the pesudo-code for the subroutine check au:

1 proc check au(state, f1, f2, check_global) =

2 init_f and_marked(f1, f2); Initialize from subformula values
3 if check _global then
4 foreach s € S do Evaluate formula in all states
5 if —marked(s) then
6 st := empty_stack;
7 visit_au(s, st);
8 it
9 od;
10 else
11 st := empty_stack; Evaluate formula in state
12 if —visit_au(state, st) then
13 process_ counterexample (st);
14 fi;
15 fi;
16 return (labeled(state));
17 .

4.1.1 Initialization

Apart from the counterexample facility the subroutine check_ awualso differs from other model checkers
in the initialization of the marked and labeled. We want the bit-array marked to be initialized to true
when we can decide the truth value of the formula without searching any successor states. We want
the bit-array labeled to be initialized to true only when we can decide that the formula is true
without searching any successor states. From the definition of the temporal formula A[fi U f2] we
can create a truth table presenting all the possible cases:

fi 2 marked | labeled
false | false true false
false true true true
true false false false
true true true true

From the column marked in the truth table we see that only those states in which ff holds but
f2 doesn’t hold require further processing. Implementing these initializations can be easily be made
fast by processing several states at a time in one machine word. Also if the subformulas ff and f2
are no longer needed, they can be overwritten as marked and labeled respectively.

4.1.2 Searching for a counterexample

The subroutine wvisit_auis a non-recursive subroutine with explicit stack manipulation to implement
depth-first search. The logic of the visit auis to try to find a counterexample that shows that the
formula A[fi1 U f>] doesn’t hold in an unmarked state s. If no such counterexample can be found,
the formula must be true in that state.

A counterexample is either a path of initially unmarked states to a state in which neither ff nor
f2 holds, or an infinite path (i.e. a path ending in a loop) of initially unmarked states along which
f1 holds, but f2 does not hold. We do not need to tell these two cases apart, if we do not want to. If
we have found a counterexample, all states on the search stack are part of this counterexample path
and we must conclude they should be labeled false, which is their initialization value in the truth
table above. A formal definition of the two possible cases of counterexample paths is below:

A path 7. = s0,51,... is a counterexample for formula A [fi U f2] in state so iff:

F[E>0AM,si E(nin-f2)AV0<j<i = M,s; E(fi A=f2)]]



or

B[ >0ATj[J>0As =84, AVE[O<k<i+7 = M,sx = (fi A=f2)]]]

The definition above is suitable for our purposes when noticing that one can replace in the
definition (—f1 A = f2) with (marked A —labeled), and (f1 A = f2) with (—marked A —labeled). This
definition of counterexample paths is derived from the following equality of CTL formulas presented
in[4]: 1 A[AUf]= 1 A(E[RLU-fin-f] V EG(=f)) .

We only need to evaluate the formula in those states in which it is unknown i.e. which are
not marked. If we find a marked and labeled state, it can’t belong to a counterexample path, and
therefore we do not need to consider paths going trough it as potential counterexamples.

Each time we encounter a new unmarked state, we mark it. By doing this we accomplish two
things: We know the truth value of the formula in all visited states after returning from wvisit auw,
and therefore no state needs to be visited more than once. Secondly we notice if a counterexample
path ending in a loop is found by encountering a state marked when it was first seen by wvisit_au,
and which is not yet labeled.

When all successor states of a state have been visited and no counterexample has been found, we
must conclude that the formula is true in that state and label the state accordingly. If the search
stack st is empty, all states reachable from the state s have been visited and the formula A[f; U f2]
must be true in state s.

Here 1s the pseudo-code for visit _au:

1 proc visit_au(s,st) =

2 while TRUFE do

3 while TRUE do

4 if —marked(s) then

5 mark_state(s); Unmarked state found, mark it.
6 succ_num = 0; Search succs for counterexample
7 push({s, succ_num), st); Push state
8 $ 1= successor(s, succ_num); Get first successor
9 else
10 if —labeled (s) then
11 push({s, 0}, st); Counterexample
12 return (FALSE); found
13 it
14 break ; Already labeled, backtrack to parent
15 it
16 od;
17 while TRUE do

18 if empty(st) then

19 return (TRUE); No counterexample found
20 it
21 (s, succ_num) := pop(st); Get parent
22 succnum = succnum + 1; Try next successor
23 if has successor(s, succ_num) then
24 push({s, succ_num), st); Push state
25 $ 1= successor (s, succ_num); Next succ
26 break ; Visit succ
27 else
28 add_label(s); Succs visited, formula true
29 it
30 od;
81 od;
32 .

The stack st contains tuples (s, succ_num), the succ_ numis a index to the successor state table of
state s. The subroutine has_successor(s,succ_ num)returns true if the state s has over succ_ num+1
successors. The subroutine successor(s,succ_ num)returns the successor state indexed by succ_ num.
Note that because the structures over which CTL is interpreted are total, each state has at least one
SUCCessor.



4.2 Model checking the formula F [f; U f;]

Also the implementation of the subroutine check eu, which is used to model check the temporal
formula E[f1 U f2], is very similar to the one used in the ALMC algorithm. The difference here is
that our algorithm is a global model checker that uses one-pass depth-first traversal of the reachability
graph. The ALMC algorithm as presented in [10] is a local model checking algorithm which uses a
two-pass depth-first traversal of the reachability graph.

Another major difference is that ALMC algorithm uses linked lists and sharing to keep track of

those states which have been encountered during the depth-first search and from which the currently
visited state can be reached. Our algorithm uses a stack to store these states.
Here 1s the pseudo-code for check eu:

1 proc check eu(state, f1, f2, check_global)

(SR R S - T A B SR VU )

4.2.1

fst .= empty_stack;

clear _min_and modified (); Initialize min to zeroes and modified to false
init_f and_marked(f1, f2); Initialize from subformula values
if check _global then

foreach s € S do Evaluate formula in all states

if —marked(s) then
st := empty_stack;
visit_eu(s, st, fst);
fi;
od;
else
st := empty_stack; Evaluate formula in state
if visit_eu(state, st, fst) then
process_ witness(st);
fi;
fi;
return (labeled(state));

Initialization

As before we use the bit-array marked to mark those states for which the final truth value of the

evaluated formula is known. Also we use the bit-array labeled to mark those states in which the

formula is true.
We can see from the definition of the formula F[f1 U f2] that the bit-arrays marked and labeled
should be initialized with exactly the same truth table as for the formula A[fi U f2]:

fi 2 marked | labeled
false | false true false
false true true true
true false false false
true true true true

4.2.2 Searching for a witness

The logic used in evaluating the subformula F [f1 U f2] is the following: We try to find a path of
initially unmarked states to a state which is both marked and labeled. If no such path can be found
the formula must be false.

For the formula E[f1 U f2] defining which paths are witness paths is straightforward. We can get
this almost directly from the CTL definition:

A path 7y = so, $1,... is a witness for formula F [fi U f2] in state sq iff:

[ >0AM,si = L AVF0<j<i = M,s; = (fi A=f2)]]



Again using the initialization truth table we can replace in the definition above (fi A —f2) with
(mmarked A =labeled), and f; with (marked A labeled).

Unfortunately creating an algorithm for model checking E [f1 U f2] while keeping the model check-
ing algorithm linear in the number of states is much more challenging than model checking A [f1 U f2].

When we find the last state of a witness path, we must decide for all visited states, whether the
formula is true or false in them.

The EMC algorithm in [4] depends on the converse of the transition relation to implement this.
It first globally finds those states in which f2 holds and then does a depth-first starting from these
states using states in which f; holds. All these states are such that F [fi1 U f] holds in them and are
labeled when found.

The drawback of using the EMC method is that the amount of additional storage needed to store
the converse of the transition relation is proportional to the number of transitions in the reachability
graph.

The method we use here i1s to continuously keep track of those states encountered before state s
the depth-first search from which the currently visited state can be reached. First we define < to be
the total ordering relation on visited states: Vs,s' € S : s < s', iff state s was encountered before
8" during the depth-first search. We use the symbol ~+ to represent those edges of the reachability
graph which have been traversed by the current call to the subroutine wvisit eu. The s is used to
represent the reflexive, transitive closure of ~+». The set of father’ states is defined here to be function

F:5S—=7P(8):
F(s)= {s/ <s| s"\*»s}

When a state which is the last state of a witness path is encountered in the depth-first search, all
states in F'(s) must also be labeled. Our algorithm visit_eu keeps track of the set F'(s) by using a
stack fst. At the time the state s is first visited the stack fst contains all those visited states s’ from
which s can be reached: Vs’ € fst[s' ~ s].

Here we present only a sketch why the states stored on the stack fst are exactly those visited
states from which the currently visited state s can be reached.

Each time a state s is visited for the first time, the stack fst contains the visited states from which
the state s can be reached. The state s always belongs to the set F(s) and is added to stack fst
before visiting any successor state t. After this the array min is set to the depth-first search number
of the state s and min value is marked unmodified.

Next we visit successor states of s one at a time. We return from searching a successor state ¢
only if no witness path end state could be found from ¢.

When returning from a successor state ¢ back to the parent state s, the array min value for the
successor contains the depth-first search number of the smallest state reachable from the successor,
or 0 if there is no way of finding a counterexample which contains the successor state. If the smallest
state reachable through the successor ¢ is smaller than the current smallest depth-first number stored
in the variable min of s, the following is true: 3s’ € F(s)[s ~+ t 5 s']. The min value of s is in this
case updated to the value of the successor f i.e depth first search number of the state s’ and the min
value of s is marked modified.

After all successor states of state s have been visited, and the min value of state s hasn’t been
modified, there can’t exist a witness path that contains state s or any state reachable from it. Before
we return to the parent state of s we must update the stack fst by removing s and all states found
after s from the stack fst.

If the min value has been modified, we have found a loop: 3s' € F(s)[s ~> s’ > s A s’ < s]. This
loop requires us to keep s and all states found after it on the stack fst. The logic for this is that
through s we can get to a state s’ found earlier in the depth-first search. We can now from s’ get
to any new state found during the depth-first search at least as long as state s’ has not been fully
processed. Now we can return to the parent state of s and the stack fst has been updated for the
next unmarked state to be visited.

All that is left for us to do in wvisit_euis to combine the updating of the stack fst with detection
of the end state of a witness path. When an end state of a witness path is encountered, the stack
fst will contain all the initially unmarked states from which it can be reached. All that is left for us
to do is to label the formula true for all the states in the stack fst. If no witness can be found from
the start state of the search, no witness can be found and the formula must therefore be false in all
visited states. This is the initialized value, so nothing more needs to be done in this case.



Here i1s the pseudo-code for visit_ eu:

1 proc visit_eu(s, st, fst) =

2 dfs:=1;
3 while TRUFE do
4 while TRUF do
5 if —marked(s) then
6 mark_state(s); Unmarked state found, mark it.
7 push(s, fst); Store state on father state stack
8 set_min(s,dfs); Store the state depth-first search number
9 reset_modified(s); Mark minimum reachable state as unmodified
10 dfs:=dfs+1;
11 succ_num = 0; Search succs for witness
12 push({s, succ_num), st); Push state
13 $ 1= successor(s, succ_num); Get first successor
14 else
15 if labeled(s) then Witness found
16 push({s, 0}, st); Yt € fstt 5 8]
17 while —empty(fst) do
18 t := pop(fst); Get state
19 set_min(t,0); Cleanup
20 reset_ modified (t);
21 add_label(t); Label state
22 od;
23 return (TRUE);
24 it
25 break ; Not labeled, backtrack to parent
26 it
27 od;
28 while TRUF do
29 if empty(st) then
30 return (FALSE); No witness found
81 it
32 successor_min := get_ min(s); Get smallest dfs of reachable states
33 (s, succ_num) := pop(st); Get parent
34 if ((successor_min # 0) A (get__min(s) > successor_min))
35 then
36 set_min(s, successor_min); Update smallest dfs of reachable states
37 set_modified(s); Mark the smallest dfs reachable form s modified
38 it
39 succ_num 1= succ_num + 1; Try next successor
40 if has successor (s, succ_num)
41 then
42 push((s, succ_num), st); Push state
43 s := successor (s, succ_num); Next succ
44 break ; Visit succ
45 else All succs visited
46 if —modified(s) then Can a state with a smaller dfs number be reached?
47 repeat No. — No witness can be reached from s
48 t := pop(fst); or any states ¢t reachable from it
49 set_min(t,0); Cleanup
50 reset_ modified (t);
51 until ¢ = s; All states reachable form s popped?
52 fi;
53 it
54 od;
55 od;
56



5 PROD implementation of the algorithm

We have implemented the model checking algorithm presented in the previous section of this pa-
per and integrated it into the PROD tool set reachability graph traversal tool PROBE. It will be
distributed in a future release of the PROD tool set.

The implementation of the CTL model checking algorithm presented in previous section has been
straightforward. Initializing the bit-arrays marked and labeled several states at a time enables the
model checker to avoid calling the visit au and visit_ eu subroutines for many states.

In our experience most of the time in CTL model checking is spent in evaluating the atomic
subformulas for all states in the reachability graph. The current implementation evaluates all atomic
subformulas for all states in one pass over the markings generated by the PROD reachability graph
generator. This is to avoid accessing the large marking file several times for each state as atomic
subformulas are evaluated. This is possible, because the amount of memory needed to store the
truth values of the atomic subformulas is usually very small when compared to for example memory
needed to store the markings of the Pr/T-Net reachability graph. The current code used to evaluate
the atomic subformulas has been reused from the old PROBE query language. One way of speeding
up the model checking would be to rewrite this code to better fit the CTL model checking algorithm.

Model checking for the top-level formula is local in the current implementation, but the imple-
mentation still evaluates the needed atomic subformulas in all states. We could easily implement
a local model checker with small modifications to the algorithms presented in the previous section.
The user of the tool could then choose the method better suited for his or her purpose, based on
intuition of the problem at hand. A global model checker might have smaller worst case memory
requirements, while a local model checker might require evaluating less subformulas.

The algorithm presented in the previous section always gives an counterexample or witness path
when one can be found. This path is the first one found during the depth-first search. In some cases
this path might be longer than necessary. Another algorithm could be added to the tool set, which
would try to find shorter counterexample and witness paths.

6 Conclusions

Partial order reductions used in the PROD reachability graph generation do not preserve the branch-
ing time temporal logic CTL properties. Therefore we need to generate the full reachability graph for
the problem at hand. This limits the usefulness of the CTL model checking algorithm presented here.
Partial order reductions can be used while preserving the temporal logic CTL-X, the branching time
logic CTL without the next-state operator, as demonstrated by [6], [11]. We do not currently know
of any implementation combining the CTL-X preserving partial-order reductions with an on-the-fly
branching time model checker.

The CTL model checker presented in this paper has linear time complexity both in the size of
the formula to be checked and the reachability graph to be model checked. The algorithm is a global
model checking algorithm with a counterexample and witness facility. 1t is more memory efficient
than the ALMC algorithm [10] in the worst case. The algorithm is a one-pass depth-first search
algorithm with small book-keeping overhead.

In their paper Cheng, Christensen and Morgensen [2] discuss a way of using the strongly connected
components of a graph when model checking some often used CTL queries. The methods presented
in their paper can be used also with the model checking algorithm presented here. The strongly
connected components of a graph could also be used to optimize the order in which the global model
checking is performed for the unmarked states in the reachability graph. We can use topological
sorting to arrange the order in which the strongly connected components should be marked, starting
from the terminal components. In this way we would minimize the amount of memory needed for
different search stacks.



References

[1] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions
on Computers, C-35 (1986) 8. pp. 677-691

[2] Cheng, A., Christensen, S., Mortensen, K. H.: Model Checking Coloured Petri Nets; Ezploit-
ing Strongly Connected Components. Proceedings of 3rd Workshop on Discrete Event Systems,
Edinburgh, Scotland, UK, August 1996. To appear.

[3] Clarke, E., Grumberg, O., McMillan, K., Zhao, X.: Efficient Generation of Counterezamples
and Witnesses in Symbolic Model Checking. Pittsburg, October 1994, Technical Report, Carnegie
Mellon University, School of Computer Science, TR CMU-CS-94-204, 15 p.

[4] Clarke, E. M., Emerson, E. A., and Sistla, A. P.: Automatic Vertfication of Finite-State Concur-
rent Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages
and Systems 8 (1986) 2. pp. 244-263.

[5] Emerson, E. A.: Temporal and modal logic, in van Leeuwen, J. (ed): Handbook of Theoretical
Computer Science, Volume B, Formal Models and Semantics, 1990, Elsevier, pp. 995-1072

[6] Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A Partial Order Approach to Branching Time
Logic Model Checking. Proceedings of the 3rd Israel Symposium on the Theory of Computing and
Systems, Tel Aviv, Israel, 1995, IEEE Computer Society Press, pp. 130-139

[7] Grénberg, P., Tiusanen, M., and Varpaaniemi, K.: PROD—A Pr/T-Net Reachability Analysis
Tool. Otaniemi 1993, Digital Systems Laboratory, Helsinki University of Technology, Series B:
Technical Reports, No. 11. 44 p.

[8] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., Hwang, L. J.: Symbolic Model Checking:
10%° States and Beyond. Information and Computation, 98 (1992) 2. pp. 142-170

[9] Varpaaniemi, K., Halme, J., Hiekkanen, K., and Pyssysalo, T.: PROD Reference Manual.
Otaniemi 1995, Digital Systems Laboratory, Helsinki University of Technology, Series B: Tech-
nical Reports, No. 13. 56 p.

[10] Vergauwen, B., Lewi, J.: A Linear Local Model Checking Algorithm for CTL. Best, E. (ed), Pro-
ceedings of 4th International Conference on Concurrency Theory, Hildesheim, Germany, August
1993, Lecture Notes in Computer Science 715, Springer-Verlag, pp. 447-461

[11] Willems, B., Wolper, P.: Partial-Order Methods for Model Checking: From Linear Time to
Branching Time. Proceedings of 11th Annual IEEE Symposium on Logic in Computer Science,
New Jersey, USA, July 1996. To appear.

10



