
LCT: A Parallel Distributed Testing 

Tool for Multithreaded Java 

Programs

Kari Kähkönen, Olli Saarikivi, Keijo Heljanko



Motivation

• Main problem with 

systematic testing:

explosion in number of 

paths and interleavings

• Even state of the art has 

scalability problems

Execution tree



Alleviating the Path Explosion

• Testing different 

execution paths is 

mainly independent

• Great potential for 

parallelization

Execution tree



LCT – Lime Concolic Tester

LCT

Java Program

void test() {

x = input();

foo(x);

}

int foo(int x) {…}

Test Output

1438 paths 

explored

2 uncaught 

exceptions



LCT – Lime Concolic Tester

Java Program

void test() {

x = input();

foo(x);

}

int foo(int x) {…}

Test Output

1438 paths 

explored

2 uncaught 

exceptions

server

client
client

client

client

client



How Does LCT Work?

• Input value generation: concolic testing

• Eliminating irrelevant interleavings: dynamic partial 

order reduction

• Work distribution: client-server architecture

LCT
Java 

Program

Test 

Output



Concolic Testing

• Concolic testing aims to explore different execution 

paths of the program under test 

Control flow graph

x = input

x = x + 5

if (x > 10) {

...

}

...



Concolic Testing

• Concolic typically starts with a random execution

Control flow graph

x = input

x = x + 5

if (x > 10) {

...

}

...



Concolic Testing

• Symbolic execution generates constraints that can be 

solved to obtain new test inputs for unexplored paths

Control flow graph

x = input

x = x + 5

if (x > 10) {

...

}

...

c1 c2

c3 c4

c1 = input1 + 5 > 10 

c2 = input1 + 5 ≤ 10 



What about Multithreaded Programs?

• Execute threads one by one until a global operation 

(e.g., access shared variable) is reached

• Branch the execution tree for each enabled operation

Scheduling decision



What about Multithreaded Programs?

• Execute threads one by one until a global operation 

(e.g., access shared variable) is reached

• Branch the execution tree for each enabled operation

Problem: a large number of irrelevant interleavings



Dynamic Partial-Order Reduction (DPOR)

• Ignore provably irrelevant parts of the symbolic 

execution tree

• LCT uses the variant of DPOR that offers most reduction 

and works in a client server setting [ACSD 2012]



Distributing the Testing Process

Server

Client + Constraint 

solver

Client + Constraint 

solver

Client + Constraint 

solver

Java 

program

Test 

results

Instrumentation



Experiments

program paths time Speedups

Indexer 671 285s 1.89 4.68 8.94 16.97

File System 138 47s 1.92 4.55 8.88 14.91

Parallel Pi 1252 250s 1.95 4.73 9.14 18.06

Synthetic 1 1020 176s 1.99 4.91 9.74 18.13

Synthetic 2 4496 783s 2.00 4.86 9.61 18.17

1 client 2, 5, 10 and 20 clients

Can DPOR keep a large number of clients busy? 

(Yes, it can) 



Conclusions

• LCT can automatically test multithreaded Java programs

• Testing can be efficiently distributed to multiple workers

• Scales well at least up to 20 clients

• LCT is open source

http://www.tcs.hut.fi/Software/lime


