LCT: A Parallel Distributed Testing
Tool for Multithreaded Java

Programs

Kari Kahkonen, Olli Saarikivi, Keijo Heljanko

Motivation

« Main problem with

systematic testing: ‘ ‘
explosion in number of

paths and interleavings () L @ Q

 Even state of the art has

scalability problems &5 & S S A OO O

Execution tree

Alleviating the Path Explosion

« Testing different

execution paths Is ‘ ‘
mainly independent

« Great potential for - ‘ ‘ ‘
parallelization
@ OO0 O

Execution tree

LCT — Lime Concolic Tester

Java Program Test Output
void test() { 1438 paths
X = input(); explored
foo(x);
} 2 uncaught
exceptions

int foo(int x) {...}

Aalto University
School of Science
| |

LCT — Lime Concolic Tester

Java Program

void test() {
X = input();
foo(X);

}

int foo(int x) {...}

Aalto University
School of Science
| |

Test Output

1438 paths
explored

2 uncaught
exceptions

How Does LCT Work?

* Input value generation: concolic testing

« Eliminating irrelevant interleavings: dynamic partial
order reduction

 Work distribution: client-server architecture

Java Test
Program = —> LCT —_ Output

Aalto University
School of Science
O

Concolic testing aims to explore different execution
paths of the program under test

X = input
X=X+5

if (x> 10){
}
Control flow graph

Ao Aalto University
O

Concolic typically starts with a random execution

X = input
X=X+5

if (x> 10){
}
Control flow graph

Ao Aalto University
O

« Symbolic execution generates constraints that can be
solved to obtain new test inputs for unexplored paths

X = input
X=X+5

if (x > 10) {

}
~ c, = input, + 5> 10

C, =input; + 5<10
Control flow graph

Ao Aalto University
O

« EXxecute threads one by one until a global operation
(e.g., access shared variable) is reached

« Branch the execution tree for each enabled operation

Scheduling decision

Aalto University
School of Science
O

What about Multithreaded Programs?

« EXxecute threads one by one until a global operation
(e.g., access shared variable) is reached

« Branch the execution tree for each enabled operation

Problem: a large number of irrelevant interleavings

Aalto University
School of Science
| |

* Ignore provably irrelevant parts of the symbolic
execution tree

« LCT uses the variant of DPOR that offers most reduction
and works in a client server setting [ACSD 2012]

Ao Aalto University
O

Distributing the

Java

esting Process

Instrumentation

program

Test
results

Aalto University
School of Science
| |

Client + Constraint
solver

Client + Constraint

Server
solver

Client + Constraint
solver

Experiments

1 client 2,5, 10 and 20 clients
Indexer 285s 1.89 4.68 8.94 16.97
File System 138 47s 1.92 4.55 8.88 14.91
Parallel Pi 1252 250s 1.95 4.73 9.14 18.06
Synthetic 1 1020 176s 1.99 4.91 9.74 18.13
Synthetic 2 4496 783s 2.00 4.86 9.61 18.17

Can DPOR keep a large number of clients busy?
(Yes, it can)

Aalto University
School of Science
O

Conclusions

LCT can automatically test multithreaded Java programs
Testing can be efficiently distributed to multiple workers
Scales well at least up to 20 clients

LCT is open source

http://www.tcs.hut.fi/Software/lime

Aalto University
School of Science
O

