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Motivation

• Main problem with 

systematic testing:

explosion in number of 

paths and interleavings

• Even state of the art has 

scalability problems

Execution tree



Alleviating the Path Explosion

• Testing different 

execution paths is 

mainly independent

• Great potential for 

parallelization

Execution tree



LCT – Lime Concolic Tester

LCT

Java Program

void test() {

x = input();

foo(x);

}

int foo(int x) {…}

Test Output

1438 paths 

explored

2 uncaught 

exceptions
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How Does LCT Work?

• Input value generation: concolic testing

• Eliminating irrelevant interleavings: dynamic partial 

order reduction

• Work distribution: client-server architecture

LCT
Java 

Program

Test 

Output



Concolic Testing

• Concolic testing aims to explore different execution 

paths of the program under test 

Control flow graph

x = input

x = x + 5

if (x > 10) {

...

}

...



Concolic Testing

• Concolic typically starts with a random execution
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Concolic Testing

• Symbolic execution generates constraints that can be 

solved to obtain new test inputs for unexplored paths

Control flow graph

x = input

x = x + 5

if (x > 10) {

...

}

...

c1 c2

c3 c4

c1 = input1 + 5 > 10 

c2 = input1 + 5 ≤ 10 



What about Multithreaded Programs?

• Execute threads one by one until a global operation 

(e.g., access shared variable) is reached

• Branch the execution tree for each enabled operation

Scheduling decision



What about Multithreaded Programs?

• Execute threads one by one until a global operation 

(e.g., access shared variable) is reached

• Branch the execution tree for each enabled operation

Problem: a large number of irrelevant interleavings



Dynamic Partial-Order Reduction (DPOR)

• Ignore provably irrelevant parts of the symbolic 

execution tree

• LCT uses the variant of DPOR that offers most reduction 

and works in a client server setting [ACSD 2012]



Distributing the Testing Process
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Experiments

program paths time Speedups

Indexer 671 285s 1.89 4.68 8.94 16.97

File System 138 47s 1.92 4.55 8.88 14.91

Parallel Pi 1252 250s 1.95 4.73 9.14 18.06

Synthetic 1 1020 176s 1.99 4.91 9.74 18.13

Synthetic 2 4496 783s 2.00 4.86 9.61 18.17

1 client 2, 5, 10 and 20 clients

Can DPOR keep a large number of clients busy? 

(Yes, it can) 



Conclusions

• LCT can automatically test multithreaded Java programs

• Testing can be efficiently distributed to multiple workers

• Scales well at least up to 20 clients

• LCT is open source

http://www.tcs.hut.fi/Software/lime


