
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

The LIME Interface Specification Language
and Runtime Monitoring Tool

(Tool Paper)

Kari Kähkönen, Jani Lampinen, Keijo Heljanko, Ilkka
Niemelä

Department of Information and Computer Science
Helsinki University of Technology

June 26, 2009

Runtime Verification 2009 1/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Outline

Introduction

LIME Interface Specification Language

LIME Interface Monitoring Tool

Conclusions

Demo

Runtime Verification 2009 2/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Introduction

The LIME specification language allows defining how
components can interact through interfaces in Java

How the methods in Java interfaces can be called and how
they should respond

Specifications can be expressed as past time LTL formulas,
(safety) future LTL formulas, regular expressions and NFAs
The specification language is supported by LIME Interface
Monitoring Tool
Tools such as MOP, JML, Java PathExplorer and the tool
of Stolz and Bodden have been sources of inspiration

Runtime Verification 2009 3/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Goals

Extend the design by contract approach to behavioral
aspects of interfaces
Allow the user to target the critical parts of the system by
allowing partial and incremental specifications
Provide a structured and modular way of writing and
testing specifications

Runtime Verification 2009 4/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

LIME Interface Specification Language

LIME ISL divides a
component interface to two
parts

Call specifications (CS)
Return specifications
(RS)

The component that
violates a specification can
be identified

Runtime Verification 2009 5/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Example - LIME ISL

1 @CallSpecifications (
2 regexp = {”Fi leUsage : := ” +
3 ” (open () ; (read () | wr i t e ())∗ ; c l o s e ())∗ ” } ,
4 valuePropositions = {” va l i dS t r i n g : := (#entry != nu l l) ” } ,
5 pltl = {”ProperData : := G (wr i t e () −> va l i dS t r i n g) ”}
6)
7 @ReturnSpecifations (
8 valuePropositions = {
9 ”okLength : := #th i s . l ength () == ” +

10 ”#pre(#th i s . l ength () + #entry . l ength ()) ”
11 }
12 pltl = { ”ProperWrites : := G (wr i t e () −> okLength) ” }
13)
14 pub l i c i n t e r f a c e LogFile {
15 pub l i c void open () ;
16 pub l i c void close () ;
17 pub l i c String read () ;
18 pub l i c void write (String entry) ;
19 pub l i c long length () ;
20 }

Runtime Verification 2009 6/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

LIME Interface Monitoring Tool

Runtime Verification 2009 7/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Implementation

Runtime observers are created by translating the
specifications into minimal deterministic finite state
automata
DFAs are translated into Java code that is instrumented
with AspectJ to the monitored program
As an optimization, past time LTL formulas are translated
directly to Java code using the technique by Havelund and
Roşu
Past time subformulas are allowed inside future time
formulas

Runtime Verification 2009 8/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Closing Partially Implemented Systems

The monitoring tool can
generate stub code that
simulates the calling
environment
Nondeterministic
environment where call
specifications describe the
allowed call sequences
The method is intended to
be used with a directed
randomized testing tool
(similar to, e.g., jCUTE
and Pex)

Runtime Verification 2009 9/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Example - Log File

1 pub l i c c l a s s TestDriver {
2 pub l i c s t a t i c void main (String [] args) {
3 /∗ . . . v a r i a b l e d e c l a r a t i o n s . . . ∗/
4
5 ExceptionOverride . setCallException (obj ,
6 InconclusiveException . c l a s s) ;
7
8 whi l e (testDepth++ < 5) {
9 i n t i = r . nextInt (5) ;

10
11 switch (i) {
12 case 0 : obj . length () ; break ;
13 case 1 : javalangString1 = RandString . getString (r) ;
14 obj . write (javalangString1) ; break ;
15 case 2 : obj . read () ; break ;
16 case 3 : obj . close () ; break ;
17 case 4 : obj . open () ; break ;
18 }
19 }
20 }
21 }

Runtime Verification 2009 10/11

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Conclusions

LIME ISL allows specifying component interactions
Runtime monitoring tool supporting LIME ISL has been
implemented

Future research directions:
Extending LIME ISL to C programming language
Implementing the test generator tool
Adding support for multi-threaded programs
Investigating the notion of interface composition

LIME Interface Monitoring Toolkit is available for download at
http://www.tcs.hut.fi/~ktkahkon/LIMT/

Runtime Verification 2009 11/11

http://www.tcs.hut.fi/~ktkahkon/LIMT/

