
Lightweight State Capturing for

Automated Testing of

Multithreaded Programs

Kari Kähkönen and Keijo Heljanko

The Main Goal

• How to cover reachable local states in multithreaded
programs that read input values (e.g., find assertion
violations)

• In principle easy: test each input value combination
together with all thread interleavings

Thread 1: Thread 2:
a = input(); b = X;
if (a > 100) { c = input();

X = 7; while (b != 7) {
… …

} }
… …

The Main Goal

• How to cover reachable local states in multithreaded
programs that read input values (e.g., find assertion
violations)

• In principle easy: test each input value combination
together with all thread interleavings

Thread 1: Thread 2:
a = input(); b = X;
if (a > 100) { c = input();

X = 7; while (b != 7) {
… …

} }
… …

Infeasible to explicitly test all combinations

One Approach

• Use dynamic symbolic execution to avoid testing

irrelevant input values

• Use partial order reduction methods to avoid exploring

irrelevant interleavings of threads

Example

Thread 1:
a = input();
if (a > 100) {

b = X;
…

Thread 2:
c = input();
if (c != 5)

d = X;
…

Example

Thread 1:
a = input(); // = 412
if (a > 100) {

b = X;
…

Thread 2:
c = input();
if (c != 5)

d = X;
…

input1 ≤100input1 >100

Example

input2 ≠ 5

input1 ≤100input1 >100

input2 = 5

Thread 1:
a = input(); // = 412
if (a > 100) {

b = X;
…

Thread 2:
c = input(); // = 0
if (c != 5)

d = X;
…

Example

input2 ≠ 5

input1 ≤100input1 >100

input2 = 5

T2: read(x)T1: read(x)

Thread 1:
a = input(); // = 412
if (a > 100) {

b = X;
…

Thread 2:
c = input(); // = 0
if (c != 5)

d = X;
…

Example

input2 ≠ 5

input1 ≤100input1 >100

input2 = 5

T2: read(x)

T1: read(x)

Thread 1:
a = input(); // = 412
if (a > 100) {

b = X;
…

Thread 2:
c = input(); // = 0
if (c != 5)

d = X;
…

T2: read(x)

Example

input2 ≠ 5

input1 ≤100input1 >100

input2 = 5

T2: read(x)

T1: read(x)

Thread 1:
a = input(); // = 412
if (a > 100) {

b = X;
…

Thread 2:
c = input(); // = 0
if (c != 5)

d = X;
…

T2: read(x)

Use partial order

reductions to eliminate

unnecessary interleavings

The Problem

• Typical partial order reduction approaches explore all

interleavings of dependent state transitions

– Can sometimes lead to unnecessary test executions

Thread 1: Thread 2:
acquire(lock1); acquire(lock1);
X = 1; Y = 1;
release(lock1); release(lock1);
… …

The Problem

• Typical partial order reduction approaches explore all

interleavings of dependent state transitions

– Can sometimes lead to unnecessary test executions

Thread 1: Thread 2:
acquire(lock1); acquire(lock1);
X = 1; Y = 1;
release(lock1); release(lock1);
… …

Both ways to interleave the executions lead to the same state

Solution: Capture and Match States

• Capturing concrete states of programs can be expensive

• Symbolic state matching can require expensive solver

calls

– E.g., symbolic states resulting from dynamic symbolic execution

• The approach in this paper:

– Model test executions as a Petri net

– Use the model to determine when a previously visited state is

encountered

Model Example
Thread 1: Thread 2:
acquire(lock1); acquire(lock1);
X = 1; Y = 1;
release(lock1); release(lock1);

Thread 1 Thread 2lock1X Y

• Local states, shared variables and locks are represented as

places

• A marking == an abstract representation of a program state

• The initial state of the program is illustrated above

Model Example
Thread 1: Thread 2:
acquire(lock1); acquire(lock1);
X = 1; Y = 1;
release(lock1); release(lock1);

Thread 1 Thread 2lock1X Y

Model Example
Thread 1: Thread 2:
acquire(lock1); acquire(lock1);
X = 1; Y = 1;
release(lock1); release(lock1);

Thread 1 Thread 2lock1X Y

Model Example
Thread 1: Thread 2:
acquire(lock1); acquire(lock1);
X = 1; Y = 1;
release(lock1); release(lock1);

Thread 1 Thread 2lock1X Y

Model Example
Thread 1: Thread 2:
acquire(lock1); acquire(lock1);
X = 1; Y = 1;
release(lock1); release(lock1);

Thread 1 Thread 2lock1X Y

Model Example
Thread 1: Thread 2:
acquire(lock1); acquire(lock1);
X = 1; Y = 1;
release(lock1); release(lock1);

Thread 1 Thread 2lock1X Y

Both ways to interleave the executions lead to the same marking!

Conrete values of variables are not stored at all.

Modeling Constructs

Automated Testing

• Model a random test execution

• Systematically explore the states of the model by

unwinding it (into a tree or an acyclic Petri net)

• Store visited markings and cut the state space

exploration if the same marking is encountered again

• If the model is incomplete at some state, perform a test

execution to extend the model and return to step 2

Example

Thread 1: Thread 2: Thread 3:
X = 1; X = 2; X = 3; T2

T1 T3

Example

Thread 1: Thread 2: Thread 3:
X = 1; X = 2; X = 3; T2

T1

T2 T3

T3

Example

Thread 1: Thread 2: Thread 3:
X = 1; X = 2; X = 3; T2

T1

T2

T3

T3

T3

Example

Thread 1: Thread 2: Thread 3:
X = 1; X = 2; X = 3; T2

T1

T2

T3

T3

T3

Example

Thread 1: Thread 2: Thread 3:
X = 1; X = 2; X = 3; T2

T1

T2

T3

T3

T3

• Transition for thread 3 is missing

• Model can be extended by performing

test execution (T1, T3, …)

• In this case the missing transition can

also be predicted from the model!

Example

Thread 1: Thread 2: Thread 3:
X = 1; X = 2; X = 3; T2

T1

T2

T3

T3

T3

T2

Example

Thread 1: Thread 2: Thread 3:
X = 1; X = 2; X = 3;

T3

T2
T1

T1

T1

T1

T1

T2

T2

T2

T2T3

T3

T3

T3

An Alternative to Trees: Unfoldings

Unfolding Example

Experiments

program tests time tests time tests time tests time

Fib 1 19605 0m 17s 21102 0m 21s 5746 0m 11s 4946 0m 15

Fib 2 218243 4m 18s 232531 4m 2s 53478 3m 45s 46829 3m 15s

File 2 3 0m 0s 2227 0m 46s - > 30m 3 0m 0s

Dining 2 5746 0m 14s 10065 0m 22s 3 0m 1s 3 0m 1s

Dining 3 36095 1m 29s 81527 3m 29s 2 0m 7s 4 0m 1s

Dining 4 205161 12m 55s - > 30m - > 30m 2 0m 3s

Locking 2 22680 0m 56s 22680 0m 47s 29 0m 2s 26 0m 9s

Locking 3 - > 30m - > 30m 115 0m 21s 89 3m 32s

Szymanski 65138 2m 3s 65138 0m 30s 50264 0m 43s 46679 2m 35s

Writes - > 30m - > 30m 1 0m 0s 1 0m 0s

Stateless unf. Stateful treeDPOR Stateful unf.

Conclusions and Future Work

• Lightweight state capturing based on modeling

behaviour encountered during test executions

– Additional tests are used to extend the model

• Can be combined with dynamic symbolic execution and

partial order reduction approaches

• Future: it is possible to make the model more succint

– Track concrete values of shared variables

– Model special cases such as wait/notify loops

