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 How to cover reachable local states in multithreaded
programs that read input values (e.g., find assertion
violations)

 In principle easy: test each input value combination
together with all thread interleavings

Thread 1: Thread 2:
a = input(); b = X;
if (a > 100) { c = input();
X =7; while (b !=7) {

} }
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he Main Goal

 How to cover reachable local states in multithreaded
programs that read input values (e.g., find assertion
violations)

 In principle easy: test each input value combination
together with all thread interleavings

Thread 1: Thread 2:

Aalto University
School of Science
O



One Approach

« Use dynamic symbolic execution to avoid testing
Irrelevant input values

« Use partial order reduction methods to avoid exploring
irrelevant interleavings of threads
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Example

Thread 1:

a = input();

if (a > 100) {
b = X;

Thread 2:
c = input();
if (c !=5

d = X;
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Example

Thread 1:
a = input(); // = 412
if (a > 100) { _ _
b = X; Input; >100 input, <100

Thread 2:
c = input();
if (c !=5

d = X;
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Example

Thread 1:
a = input(); // = 412
if (a > 100) {

b = X; input, >100 input, <100
input, # 5 input, = 5
Thread 2:
c = input(); // = ©
if (c !'=5
d = X;
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Example

Thread 1:

a = input(); //

if (a > 100) {
b = X;

Thread 2:
c = input(); //
if (c !'=5

d = X;
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Example

Thread 1:

a = input(); //

if (a > 100) {
b = X;

Thread 2:
c = input(); //
if (c !=5

d = X;
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Example

Thread 1:
a = input(); // = 412

if (a > 100) { _
b = X; Input; >100

input, <100

input, # 5 input, = 5
Thread 2:
c = input(); // = ©
if (c I=5 T1: read(x) T2: read(x)
d = X;

Use partial order
T2: read(x) reductions to eliminate
unnecessary interleavings
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« Typical partial order reduction approaches explore all
Interleavings of dependent state transitions
— Can sometimes lead to unnecessary test executions

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X =1; Y = 1;
release(lockl); release(lockl);
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he Problem

» Typical partial order reduction approaches explore all
Interleavings of dependent state transitions
— Can sometimes lead to unnecessary test executions

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X =1; Y = 1;
release(lockl); release(lockl);

Both ways to interleave the executions lead to the same state
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« Capturing concrete states of programs can be expensive

« Symbolic state matching can require expensive solver
calls
— E.g., symbolic states resulting from dynamic symbolic execution

* The approach in this paper:
— Model test executions as a Petri net

— Use the model to determine when a previously visited state is
encountered
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Thread 1: Thread 2:

acquire(lockl); acquire(lockl);
X:l; Y=1;
release(lockl); release(lockl);

Thread 1 lockl Thread 2 Y

© © ® © ©

» Local states, shared variables and locks are represented as
places

A marking == an abstract representation of a program state

« The Initial state of the program is illustrated above
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Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X =1; Y = 1;
release(lockl); release(lockl);

Thread 1 lockl Thread 2 Y

® O © ©

L

®

Aalto University
School of Science
| |



Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X = 1; Y = 1;
release(lockl); release(lockl);
X Thread 1 lockl Thread 2 Y
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Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X = 1; Y = 1;
release(lockl); release(lockl);
X Thread 1 lockl Thread 2 Y
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Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X = 1; Y = 15
release(lockl); release(lockl);
X Thread 1 lockl Thread 2 Y
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Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X =1; Y = 1;
release(lockl); release(lockl);
X Thread 1 lockl Thread 2 Y

Both ways to interleave the executions lead to the same marking!

Conrete values of variables are not stored at all.
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Locking and unlocking Reading a shared variable Writing to a shared variable
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« Model a random test execution

« Systematically explore the states of the model by
unwinding it (into a tree or an acyclic Petri net)

« Store visited markings and cut the state space
exploration if the same marking is encountered again

 If the model is iIncomplete at some state, perform a test
execution to extend the model and return to step 2
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Example

Thread 1: Thread 2:
X =1; X = 2;
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Example

Thread 1:
X =1;

A?

Thread 2:
X = 2;
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Thread 1: Thread
X =1; X = 2;
W
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Thread 1: Thread
X =1; X = 2;
W

Aalto University
School of Science
O

2:

Thread 3:
X = 3;
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Thread 1: Thread 2: Thread 3: T1
X = 1; X = 2; X = 3; T2

T2 T3
« Transition for thread 3 is missing

» Model can be extended by performing

test execution (T1, T3, ...) T3
* In this case the missing transition can

also be predicted from the model!
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Thread 1: Thread 2: Thread 3:
X =1; X = 2; X = 3;
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Thread 1: Thread 2: Thread 3:

X =1; X = 2; X = 3;
® ° ®
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Stateless unt. DPOR
Fib 1 19605 Om1l7s 21102 Om 21s
Fib 2 218243 4m 18s 232531 4m2s
File 2 3 Om Os 2227 0m 46s
Dining 2 5746 Om 14s 10065 Om 22s
Dining 3 36095 1m29s 81527 3m 29s
Dining 4 205161 12m 55s - > 30m
Locking 2 22680 O0Omb56s 22680 O0m47s
Locking 3 - > 30m - > 30m
Szymanski 65138 2m3s 65138 Om 30s
Writes - > 30m - > 30m
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Stateful tree

5746 Om 1l1s
53478 3m 45s
- > 30m

3 Om 1s

2 Om 7s

- > 30m
29 Om 2s
115 Om 21s
50264 0Om 43s
1 Om Os

Stateful unf.

4946 Om 15
46829 3m 15s
3 Om Os
3 Om 1s
4 Om 1s
2 Om 3s
26 Om 9s
89 3m 32s
46679 2m 35s
1 Om Os



« Lightweight state capturing based on modeling
behaviour encountered during test executions
— Additional tests are used to extend the model

« Can be combined with dynamic symbolic execution and
partial order reduction approaches

* Future: it is possible to make the model more succint
— Track concrete values of shared variables
— Model special cases such as wait/notify loops
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