School of Science

Lightweight State Capturing for
Automated Testing of
Multithreaded Programs

Kari Kahkonen and Keijo Heljanko

 How to cover reachable local states in multithreaded
programs that read input values (e.g., find assertion
violations)

 In principle easy: test each input value combination
together with all thread interleavings

Thread 1: Thread 2:
a = input(); b = X;
if (a > 100) { c = input();
X =7; while (b !=7) {

} }

Ao Aalto University
O

he Main Goal

 How to cover reachable local states in multithreaded
programs that read input values (e.g., find assertion
violations)

 In principle easy: test each input value combination
together with all thread interleavings

Thread 1: Thread 2:

Aalto University
School of Science
O

One Approach

« Use dynamic symbolic execution to avoid testing
Irrelevant input values

« Use partial order reduction methods to avoid exploring
irrelevant interleavings of threads

Aalto University
School of Science
O

Example

Thread 1:

a = input();

if (a > 100) {
b = X;

Thread 2:
c = input();
if (c !=5

d = X;

Aalto University
School of Science
| |

Example

Thread 1:
a = input(); // = 412
if (a > 100) { _ _
b = X; Input; >100 input, <100

Thread 2:
c = input();
if (c !=5

d = X;

Aalto University
School of Science
| |

Example

Thread 1:
a = input(); // = 412
if (a > 100) {

b = X; input, >100 input, <100
input, # 5 input, = 5
Thread 2:
c = input(); // = ©
if (c !'=5
d = X;

Aalto University
School of Science
| |

Example

Thread 1:

a = input(); //

if (a > 100) {
b = X;

Thread 2:
c = input(); //
if (c !'=5

d = X;

Aalto University
School of Science

A?

= 412

]
Q)

input, >100 input, <100
input, # 5 input, = 5
T1: read(x) T2: read(x)

Example

Thread 1:

a = input(); //

if (a > 100) {
b = X;

Thread 2:
c = input(); //
if (c !=5

d = X;

Aalto University
School of Science

A?

= 412

]
Q)

input, >100 input, <100
input, # 5 input, = 5
T1: read(x) T2: read(x)
T2: read(x)

Example

Thread 1:
a = input(); // = 412

if (a > 100) { _
b = X; Input; >100

input, <100

input, # 5 input, = 5
Thread 2:
c = input(); // = ©
if (c I=5 T1: read(x) T2: read(x)
d = X;

Use partial order
T2: read(x) reductions to eliminate
unnecessary interleavings

Aalto University
School of Science
| |

« Typical partial order reduction approaches explore all
Interleavings of dependent state transitions
— Can sometimes lead to unnecessary test executions

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X =1; Y = 1;
release(lockl); release(lockl);

Ao Aalto University
O

he Problem

» Typical partial order reduction approaches explore all
Interleavings of dependent state transitions
— Can sometimes lead to unnecessary test executions

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X =1; Y = 1;
release(lockl); release(lockl);

Both ways to interleave the executions lead to the same state

Aalto University
School of Science
O

« Capturing concrete states of programs can be expensive

« Symbolic state matching can require expensive solver
calls
— E.g., symbolic states resulting from dynamic symbolic execution

* The approach in this paper:
— Model test executions as a Petri net

— Use the model to determine when a previously visited state is
encountered

Ao Aalto University
O

Thread 1: Thread 2:

acquire(lockl); acquire(lockl);
X:l; Y=1;
release(lockl); release(lockl);

Thread 1 lockl Thread 2 Y

© © ® © ©

» Local states, shared variables and locks are represented as
places

A marking == an abstract representation of a program state

« The Initial state of the program is illustrated above

Ao Aalto University
O

Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X =1; Y = 1;
release(lockl); release(lockl);

Thread 1 lockl Thread 2 Y

® O © ©

L

®

Aalto University
School of Science
| |

Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X = 1; Y = 1;
release(lockl); release(lockl);
X Thread 1 lockl Thread 2 Y

o 0 © ©

L

Q

W

ol

Aalto University
School of Science
| |

Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X = 1; Y = 1;
release(lockl); release(lockl);
X Thread 1 lockl Thread 2 Y

? © ©

Aalto University
School of Science
| |

Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X = 1; Y = 15
release(lockl); release(lockl);
X Thread 1 lockl Thread 2 Y
L L
u u

Aalto University
School of Science
| |

Model Example

Thread 1: Thread 2:
acquire(lockl); acquire(lockl);
X =1; Y = 1;
release(lockl); release(lockl);
X Thread 1 lockl Thread 2 Y

Both ways to interleave the executions lead to the same marking!

Conrete values of variables are not stored at all.

Aalto University
School of Science
| |

Locking and unlocking Reading a shared variable Writing to a shared variable

O,

Y
L

7

Symbolic branching

TRUE FALSE

i
O

Ao Aalto University
O

« Model a random test execution

« Systematically explore the states of the model by
unwinding it (into a tree or an acyclic Petri net)

« Store visited markings and cut the state space
exploration if the same marking is encountered again

 If the model is iIncomplete at some state, perform a test
execution to extend the model and return to step 2

Ao Aalto University
O

Example

Thread 1: Thread 2:
X =1; X = 2;

Aalto University
School of Science
| |

Thread 3:
X = 3;

T1

T2

T3

Example

Thread 1:
X =1;

A?

Thread 2:
X = 2;

AV

W

S

Aalto University
School of Science

Thread 3:

X = 3;

®

T1

T3

T2

T3

Thread 1: Thread
X =1; X = 2;
W

Aalto University
School of Science
O

2:

Thread 3:
X = 3;

T3

T1

13

T2

T3

Thread 1: Thread
X =1; X = 2;
W

Aalto University
School of Science
O

2:

Thread 3:
X = 3;

T3

T1

13

T2

T3

Thread 1: Thread 2: Thread 3: T1
X = 1; X = 2; X = 3; T2

T2 T3
« Transition for thread 3 is missing

» Model can be extended by performing

test execution (T1, T3, ...) T3
* In this case the missing transition can

also be predicted from the model!

3 @

<€

Be é

Ao Aalto University
O

T3

Thread 1: Thread 2: Thread 3:
X =1; X = 2; X = 3;

Aalto University
School of Science
O

Thread 1: Thread 2: Thread 3:

X =1; X = 2; X = 3;
® ° ®
v

Ao Aalto University
O

Ao Aalto University
O

S

TRUE t8 FALSE
S

e

Ao Aalto University
O

Stateless unt. DPOR
Fib 1 19605 Om1l7s 21102 Om 21s
Fib 2 218243 4m 18s 232531 4m2s
File 2 3 Om Os 2227 0m 46s
Dining 2 5746 Om 14s 10065 Om 22s
Dining 3 36095 1m29s 81527 3m 29s
Dining 4 205161 12m 55s - > 30m
Locking 2 22680 O0Omb56s 22680 O0m47s
Locking 3 - > 30m - > 30m
Szymanski 65138 2m3s 65138 Om 30s
Writes - > 30m - > 30m

Ao Aalto University
O

Stateful tree

5746 Om 1l1s
53478 3m 45s
- > 30m

3 Om 1s

2 Om 7s

- > 30m
29 Om 2s
115 Om 21s
50264 0Om 43s
1 Om Os

Stateful unf.

4946 Om 15
46829 3m 15s
3 Om Os
3 Om 1s
4 Om 1s
2 Om 3s
26 Om 9s
89 3m 32s
46679 2m 35s
1 Om Os

« Lightweight state capturing based on modeling
behaviour encountered during test executions
— Additional tests are used to extend the model

« Can be combined with dynamic symbolic execution and
partial order reduction approaches

* Future: it is possible to make the model more succint
— Track concrete values of shared variables
— Model special cases such as wait/notify loops

Ao Aalto University
O

