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« Concolic testing (dynamic symbolic execution) is an
automated testing method
— Generate test inputs
— Execute program with these inputs
— Catch runtime errors (uncaught exceptions, assertion violations)

« Can we cover all the reachable statements with the
tests?

— E.g., random testing can have a very low probability on reaching
certain statements

— Concolic testing: Attempt to explore all feasible execution paths
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« Concolic testing combines concrete and symbolic
execution

— Program is instrumented with additional statements to enable
symbolic execution

— Concrete execution guarantees that all the found bugs are real

« Symbolic execution collects path constraints that can be
used to compute new test inputs that explore previously
unexplored execution paths

« Path constraint are typically solved using SMT-solvers
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int X = input();

if (x > 10) { Input <= 10 Input > 10
X=X+D5;
iIf (x == 50)
error, Input + 5 1= 50 Input + 5 == 50
} ERROR

Path constraint is a conjunction of constraints
along a path from root of the tree to a leaf node
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* An open source concolic testing tool for sequential Java
programs

 Instruments the program under test using Soot

« Uses Boolector for bit-precise constraint solving

— For example, overflows and modulo-operator are handled
precisely

« Supports distributed testing by allowing several tests to
be executed in parallel

« Reports uncaught exceptions as errors
« Several related tools exists: CUTE/|JCUTE, Pex, Klee,...
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« Concolic testing suffers from path explosion problem

« Testing separate execution paths can be done
Independently
— Keep track of all the unexplored branched in the execution tree

— Distribute the path constraints related to these branches to test
executors

— Solving path constraints centrally could cause a performance
bottleneck

 Distributed testing allows taking advantage of multicore
architectures and networks of computers
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« Java core classes can be problematic to instrument
directly

— LCT replaces some of the core classes with custom
Implemented counterparts that can be instrumented

 If the program under test contains un-instrumented
classes, full path coverage cannot be guaranteed

« Floating point input values are not supported as the
constraint solver does not support floating points

 LCT makes a non-alising assumption
— AJi] = 0; A[j] = 1, if (A[i] '= 0) ERROR;
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Experiments

AVL tree 3840 16m 57s 2m 6s /8.1 1m 8s/15.0
Quicksort (5) 514 3m 11s 21s /5.2 13s/8.4
Quicksort (6) 4683 28m 22s 3m 29s/8.1 1m 39s/17.2
GCD 2070 11m 12s 1m 13s/9.2 38s/17.7

« The distributed nature of LCT has been evaluated by
testing Java programs with varying number of test
executors running concurrently
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Experiments

2-bounded ___| 3-bounded

Decoupled 121 (54.50%) 185 (83.33%) 221 (99.95%)
Coupled 123 (55.41%) 187 (84.23%) 221 (99.95%)
Random 95 (42.79%) 151 (68.02%) 184 (82.88%)

* LCT has been used in a case study to compare random
testing and concolic testing (SPIN 2010)

 Here LCT was used on a large number of mutants of a
Java Card application to discover if the mutations
changed the behavior of the program
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« We are currently extending LCT to support testing of
multi-threaded Java programs
— Support for multi-threaded programs will be released soon in
LCT 2.0
« Support for C language based on the LLVM compiler
Infrastructure is also in development

« \We are investigating how to support incremental testing
by exploring only execution paths affected by recent
changes
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 LCT is open source and available from
http://www.tcs.hut.fi/Software/lime
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