School of Science

LCT:. An Open Source Concolic
Testing Tool for Java Programs

Kari Kahkonen, Tuomas Launiainen, Olli

Saarikivi, Janne Kauttio, Keijo Heljanko and
Ilkka Niemela

BYTECODE 2011

Concolic Testing
Tool Overview
Experiments

Tool Demonstration

A’ Aalto University
[|

« Concolic testing (dynamic symbolic execution) is an
automated testing method
— Generate test inputs
— Execute program with these inputs
— Catch runtime errors (uncaught exceptions, assertion violations)

« Can we cover all the reachable statements with the
tests?

— E.g., random testing can have a very low probability on reaching
certain statements

— Concolic testing: Attempt to explore all feasible execution paths

A’ Aalto University
[|

« Concolic testing combines concrete and symbolic
execution

— Program is instrumented with additional statements to enable
symbolic execution

— Concrete execution guarantees that all the found bugs are real

« Symbolic execution collects path constraints that can be
used to compute new test inputs that explore previously
unexplored execution paths

« Path constraint are typically solved using SMT-solvers

A’ Aalto University
[|

int X = input();

if (x > 10) { Input <= 10 Input > 10
X=X+D5;
iIf (x == 50)
error, Input + 5 1= 50 Input + 5 == 50
} ERROR

Path constraint is a conjunction of constraints
along a path from root of the tree to a leaf node

Aalto University
School of Science
[|

* An open source concolic testing tool for sequential Java
programs

 Instruments the program under test using Soot

« Uses Boolector for bit-precise constraint solving

— For example, overflows and modulo-operator are handled
precisely

« Supports distributed testing by allowing several tests to
be executed in parallel

« Reports uncaught exceptions as errors
« Several related tools exists: CUTE/|JCUTE, Pex, Klee,...

A’ Aalto University
[|

_—— = = — = = = = — = = = = = = = — = = = = = = - = = = = = = = = = = = = = = = =

Java Instrumenter Byte Code
Class Foo { S — 0: iconsi_2
int %, ¢ fatore_
nty; Byte code — Jimple —Byte code
void main (Arg

| Test Executor

—® | (Constraint solver

List of
generated
test inputs

- Test Selector

~—— Test Executor
—

Constraint solver !

A’ Aalto University
[|

« Concolic testing suffers from path explosion problem

« Testing separate execution paths can be done
Independently
— Keep track of all the unexplored branched in the execution tree

— Distribute the path constraints related to these branches to test
executors

— Solving path constraints centrally could cause a performance
bottleneck

 Distributed testing allows taking advantage of multicore
architectures and networks of computers

A’ Aalto University
[|

« Java core classes can be problematic to instrument
directly

— LCT replaces some of the core classes with custom
Implemented counterparts that can be instrumented

 If the program under test contains un-instrumented
classes, full path coverage cannot be guaranteed

« Floating point input values are not supported as the
constraint solver does not support floating points

 LCT makes a non-alising assumption
— AJi] = 0; A[j] = 1, if (A[i] '= 0) ERROR;

A’ Aalto University
[|

Experiments

AVL tree 3840 16m 57s 2m 6s /8.1 1m 8s/15.0
Quicksort (5) 514 3m 11s 21s /5.2 13s/8.4
Quicksort (6) 4683 28m 22s 3m 29s/8.1 1m 39s/17.2
GCD 2070 11m 12s 1m 13s/9.2 38s/17.7

« The distributed nature of LCT has been evaluated by
testing Java programs with varying number of test
executors running concurrently

Aalto University
School of Science
[|

Experiments

2-bounded ___| 3-bounded

Decoupled 121 (54.50%) 185 (83.33%) 221 (99.95%)
Coupled 123 (55.41%) 187 (84.23%) 221 (99.95%)
Random 95 (42.79%) 151 (68.02%) 184 (82.88%)

* LCT has been used in a case study to compare random
testing and concolic testing (SPIN 2010)

 Here LCT was used on a large number of mutants of a
Java Card application to discover if the mutations
changed the behavior of the program

Aalto University
School of Science
[|

« We are currently extending LCT to support testing of
multi-threaded Java programs
— Support for multi-threaded programs will be released soon in
LCT 2.0
« Support for C language based on the LLVM compiler
Infrastructure is also in development

« \We are investigating how to support incremental testing
by exploring only execution paths affected by recent
changes

A’ Aalto University
[|

 LCT is open source and available from
http://www.tcs.hut.fi/Software/lime

A’ Aalto University
[|

