
LCT: An Open Source Concolic

Testing Tool for Java Programs
Kari Kähkönen, Tuomas Launiainen, Olli
Saarikivi, Janne Kauttio, Keijo Heljanko and
Ilkka Niemelä

BYTECODE 2011

Overview

• Concolic Testing

• Tool Overview

• Experiments

• Tool Demonstration

Concolic Testing

• Concolic testing (dynamic symbolic execution) is an

automated testing method

– Generate test inputs

– Execute program with these inputs

– Catch runtime errors (uncaught exceptions, assertion violations)

• Can we cover all the reachable statements with the

tests?

– E.g., random testing can have a very low probability on reaching

certain statements

– Concolic testing: Attempt to explore all feasible execution paths

Concolic Testing

• Concolic testing combines concrete and symbolic

execution

– Program is instrumented with additional statements to enable

symbolic execution

– Concrete execution guarantees that all the found bugs are real

• Symbolic execution collects path constraints that can be

used to compute new test inputs that explore previously

unexplored execution paths

• Path constraint are typically solved using SMT-solvers

Example

int x = input();

if (x > 10) {

 x = x + 5;

 if (x == 50)

 error;

}

Input > 10 Input <= 10

Input + 5 != 50 Input + 5 == 50

ERROR

Path constraint is a conjunction of constraints

along a path from root of the tree to a leaf node

LCT – LIME Concolic Tester

• An open source concolic testing tool for sequential Java

programs

• Instruments the program under test using Soot

• Uses Boolector for bit-precise constraint solving

– For example, overflows and modulo-operator are handled

precisely

• Supports distributed testing by allowing several tests to

be executed in parallel

• Reports uncaught exceptions as errors

• Several related tools exists: CUTE/jCUTE, Pex, Klee,…

Tool Architecture

Distributed Testing

• Concolic testing suffers from path explosion problem

• Testing separate execution paths can be done

independently

– Keep track of all the unexplored branched in the execution tree

– Distribute the path constraints related to these branches to test

executors

– Solving path constraints centrally could cause a performance

bottleneck

• Distributed testing allows taking advantage of multicore

architectures and networks of computers

Limitations

• Java core classes can be problematic to instrument

directly

– LCT replaces some of the core classes with custom

implemented counterparts that can be instrumented

• If the program under test contains un-instrumented

classes, full path coverage cannot be guaranteed

• Floating point input values are not supported as the

constraint solver does not support floating points

• LCT makes a non-alising assumption

– A[i] = 0; A[j] = 1; if (A[i] != 0) ERROR;

Experiments

Benchmark Paths 1 executor 10 executors 20 executors

AVL tree 3840 16m 57s 2m 6s / 8.1 1m 8s / 15.0

Quicksort (5) 514 3m 11s 21s / 5.2 13s / 8.4

Quicksort (6) 4683 28m 22s 3m 29s / 8.1 1m 39s / 17.2

GCD 2070 11m 12s 1m 13s / 9.2 38s / 17.7

• The distributed nature of LCT has been evaluated by

testing Java programs with varying number of test

executors running concurrently

Experiments

Approach 1-bounded 2-bounded 3-bounded

Decoupled 121 (54.50%) 185 (83.33%) 221 (99.95%)

Coupled 123 (55.41%) 187 (84.23%) 221 (99.95%)

Random 95 (42.79%) 151 (68.02%) 184 (82.88%)

• LCT has been used in a case study to compare random

testing and concolic testing (SPIN 2010)

• Here LCT was used on a large number of mutants of a

Java Card application to discover if the mutations

changed the behavior of the program

Future Work

• We are currently extending LCT to support testing of

multi-threaded Java programs

– Support for multi-threaded programs will be released soon in

LCT 2.0

• Support for C language based on the LLVM compiler

infrastructure is also in development

• We are investigating how to support incremental testing

by exploring only execution paths affected by recent

changes

Availability

• LCT is open source and available from

http://www.tcs.hut.fi/Software/lime

