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Abstract. In this paper, we consider the automatic identification of
video shots that are relevant to a given semantic concept from large video
databases. We apply a method of representing semantic concepts as class
models on a set of parallel Self-Organizing Maps trained with multimodal
low-level features. The presented experiments were conducted using a set
of 170 hours of video containing recorded television news programs.

1 Introduction

Matching semantic concepts and visual data has attracted a lot of research atten-
tion recently in order to facilitate semantic indexing and concept-based retrieval
of multimedia content. Traditional example-based retrieval via relevance feed-
back or other methods can be enriched with semantic concept models that have
been trained off-line with considerably more positive and negative examples than
what are available on-line for an ordinary image or video query. For producing
large-scale semantic concept models of visual data, the predominant approach
is to treat the problem as a generic learning problem in which existing sets of
training data is used to learn models of different concepts over low-level feature
distributions. This is due to scalability requirements, as a comprehensive visual
lexicon needs models for hundreds or thousands of concepts.

In this paper, we study the problem of general semantic concept detection
from news videos by utilizing a hierarchical approach to indexing video and by
extracting multiple parallel features from the different data modalities. A set
of Self-Organizing Maps (SOMs) is then trained on these features to provide
a common indexing structure across the different modalities. The rest of the
paper is organized as follows. The use of SOMs for indexing video and the used
multimodal features are briefly described in Section 2. In Section 3 we discuss
the use of parallel low-level SOM indices in modeling semantic concepts. A set of
experiments in high-level concept detection on the TRECVID 2005 news video
data are described in Section 4, and conclusions are presented in Section 5.
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Fig. 1. A hierarchical view on video data and associated multimodal feature indices.

2 Indexing Video Shots with Self-Organizing Maps

The Self-Organizing Map (SOM) [1] is a powerful tool for exploring huge amounts
of high-dimensional data. It defines an elastic, topology-preserving grid of points
that is fitted to the input space. In a typical data mining, visualization, or
information retrieval application, a SOM is trained in a fully unsupervised mode,
using a large batch of training data. Yet, it is often known that the data contain
some semantically related object groupings or classes, and there are available
subsets of vectors belonging to such user-defined classes. Such a set of vectors
can be mapped on a trained SOM by finding the best matching unit (BMU) for
each vector in the set. These “hits” over the units of the SOM surface form a
discrete probability distribution which characterizes the object class. Different
distributions can be obtained by using different feature extraction techniques,
leading to different representations of the same data items.

2.1 Indexing Hierarchical Objects

The PicSOM system [2] is a general framework for research on content-based
indexing and retrieval of visual objects. An extension to PicSOM for indexing
any multi-part and multimodal objects having a natural hierarchy with multiple
SOMs was presented in [3]. Such object hierarchies can be found e.g. in web
pages, e-mail and MMS messages, and digital video. The multi-part hierarchy
used for indexing video shots in this paper is illustrated in Fig. 1. The video shot
itself is considered as the main or parent object. The keyframes (i.e. represen-
tative still images captured within the shot), audio track, and automatic speech



recognition (ASR) text data are linked as children of the parent object. This
hierarchy could also be extended further, e.g. the keyframe objects could have
image segments as subobjects, the original full video is the video shot’s parent,
etc. All object modalities may have one or more SOMs or other feature indices,
and thus all objects in the hierarchy may have links to a set of associated indices.

In this setting, the relevance of each object in the tree structure can be
considered as a property of not only the object itself, but to some extent also
of the other objects in the same structure. The ground-truth assessments are
propagated from the parent, i.e. video shot, object to all children objects, which
are then mapped to their corresponding SOMs, as described in more detail in
Section 3. Finally, before deciding on the most likely shots associated with a
semantic concept, the subobject scores are propagated back to the corresponding
video shots.

2.2 Multimodal Features

In indexing video data with SOMs, we used in total four video features, six
still image features, and one audio feature. A separate 256×256-sized SOM was
trained for each of these eleven features. For the ASR text data, we used two
alternative conceptwise text features based on an inverted file. These features
are only briefly listed below, see [4] for more details.

Video features. On the video shot level, we used the MPEG-7 [5] Motion
Activity (MA) descriptor and temporal versions of three still image features:
Average Color (AC), Color Moments (CM) and Texture Neighborhood (TN).
The temporal image features are calculated by dividing the shot into five equal
parts and extracting averaged feature vectors for each part. The feature vector
of the shot is then obtained by concatenating these five vectors.

Image features. For the keyframe indices we used a set of six standard
MPEG-7 [5] descriptors, viz. Color Layout (CL), Color Structure (CS), Domi-
nant Color (DC), Scalable Color (SC), Edge Histogram (EH), and Homogeneous
Texture (HT). The descriptors were extracted globally from every keyframe in
the collection, i.e. no segmentation or zoning was used.

Audio features. The Mel-scaled cepstral coefficient, or shortly Mel Cep-
strum (CE) is the discrete cosine transform applied to the logarithm of the
mel-scaled filter bank energies, appended with the total power of the signal.

Text features. Unlike the other features, an inverted file instead of a SOM
index was used for the ASR output. The text features were constructed by
gathering concept-dependent lists of 10 and 100 most informative terms.

3 Semantic Concepts as SOM Class Models

Assume that we have trained a SOM in an unsupervised fashion, using a large
set of high-dimensional vectors. Let us choose a subset of vectors, which may
be included in the original training set or be a new sample of similar data. The
subset contains objects that are semantically related, as defined by a human user.
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Fig. 2. Stages in creating a class model from the very-high-dimensional pattern space
through the high-dimensional feature space to the two-dimensional SOM grid.

Such a subset is standardly mapped on the trained SOM by finding the BMU
for each vector and counting the number of hits for each map unit. Normalized
to unit sum, the hit frequencies give a discrete histogram which is a sample
estimate of a probability distribution of the class on the SOM surface [6].

The shape of the distribution on the SOM surface depends on several factors:

– The distribution of the original data in the very-high-dimensional pattern
space is generally given and cannot be controlled.

– The feature extraction technique in use affects the metrics and thus the
distribution of all the generated feature vectors.

– The overall shape of the training set, after it has been mapped from the
original data space to the feature vector space, determines the overall orga-
nization of the SOM.

– The class distribution of the studied object subset or class, relative to the
overall shape of the feature vector distribution, specifies the layout of the
class on the formed SOM.

Figure 2 visualizes how the pattern space is projected to feature space, the
vectors of which are then used in training the SOM. The areas occupied by
objects of a particular class are shown with gray shades.

In the very-high-dimensional pattern space the distribution of any non-trivial
object class is most certainly sparse. As a consequence, in most cases it is mean-
ingless to talk about the uni- or multimodality of class distributions in the pat-
tern space. On the other hand, if the feature extraction stage is working properly,
semantically similar patterns will in the feature space be mapped nearer to each
other than semantically dissimilar ones. In the most advantageous situation, the
pattern classes match clusters in the feature space, i.e. there exists a one-to-one
correspondence between feature vector clusters and pattern classes. The relative
distances between the feature vectors of a class compared to the overall distri-
bution of the feature space data determine how well the class is concentrated on
nearby SOM units. This can also be measured quantitatively [6].

Due to the topology preservation property of the SOM, one may now force
the neighboring SOM units to interact by low-pass filtering or convolving the
hit distributions on the SOM surface. When the surface is convolved, the one-
to-one relationship between input vectors’ SOM indices and hits on the SOM



Fig. 3. An example class model (concept explosion/fire on the Color Layout SOM).
Areas occupied by objects of the concept are shown with gray shades.

surface is broken. Instead, each hit results in a spread point response around the
BMU. These class-conditional distributions or class models can be considered
as estimates of the true distributions of the semantic concepts in question, not
on the original feature spaces, but on the discrete two-dimensional grids defined
by the used SOMs (see Fig. 3 for an example). Thereby, instead of modeling
the probability density function in the high-dimensional feature spaces, we are
essentially performing kernel-based estimation of class densities at the discrete
distributions over the SOM surface. Depending on the variance of the kernel
function, these kernels will overlap and weight vectors close to each other will
partially share each other’s probability mass.

For example, the most representative objects of a given semantic concept
can be obtained by locating the SOM units, and the objects mapped to these
units, that have the highest responses on the estimated class distribution. And,
as the response values of the parallel indices are mutually comparable, we can
determine a global ordering and the overall best candidate objects also when
using multiple SOMs. By locating the corresponding objects in all SOM indices,
we get their scores with respect to different features. The total scores for the
candidate objects are then obtained by summing up the mapwise values. Fur-
thermore, the shortcomings of different features with certain semantic concepts
can be examined by studying the objects that yield a strong response on the
class distributions but do not share the semantic content in question.

The responses invoked by different class models on the SOMs can also be
directly used in automatic annotation of new objects. For this purpose, there are
two distinct approaches. First, we can enumerate over all concepts and annotate
those new objects that have the overall highest responses on the class models
with the corresponding concept or annotation [7]. Alternatively, the input objects
we want to annotate can be used to construct a new class distribution which is
then compared to the existing models of semantic concepts using some distance
measure suitable for probability distributions [8]. The latter approach is suited
for the annotation of object groups sharing a semantic concept in a natural way;
with more reference objects of a given concept available, the estimate of the
corresponding distribution can be expected to become more accurate.



Table 1. Features used in the experiments for each concept to be detected.

semantic concept video image audio text
MA AC CM TN CL CS DC SC EH HT CE 10 100

walking/running × × ×
explosion/fire × × × ×
maps × × × × × × ×
flag-us × × × × ×
building × × × × × ×
waterscape/waterfront × × × × × × ×
mountain × × × × × ×
prisoner ×
sports × × × × × ×
car × × × × × × × × ×

4 Experiments

For associating specific semantic concepts with visual objects by using a genera-
tive approach, a method is needed for estimating the distribution of the concept
over the feature representations of the training data. For this purpose, we use
an existing lexicon for the development set of the TRECVID 2005 corpus and
construct class models for the concepts to be detected (listed in Table 1; for the
full definitions see [9, 10]), as described in Section 3. Thus, in these experiments,
we do not use specialized detectors, but instead, all concepts are detected using
the same procedure based on the ground-truth annotation of that concept.

The main video data for TRECVID 2005 [9] evaluations consists of about
170 hours of TV news in three languages (English, Chinese, Arabic) recorded in
November 2004. In addition to the original videos transcoded to MPEG-1 format,
a master shot reference [11], common keyframes for each shot, and automatic
speech recognition output followed by automatic machine translation for the
non-English news programs are provided. The data is split into development and
test sets, with 43 907 and 45 766 shots in them, respectively. Furthermore, a joint
effort to the participants to annotate the whole development set for 39 concepts
(including the 10 concepts in the evaluation and 29 others) was organized. For
this purpose, a downloadable tool for Windows platform provided by Carnegie
Mellon University and a web-based tool [10] from IBM were available. In the end,
most of the development set was in fact annotated twice, so we adopted a rule
that a shot is considered relevant if either one of the annotators had accepted it.

In the high-level feature (concept) extraction task of TRECVID 2005, the
purpose was to evaluate different detection methods for semantic concepts. Based
on the annotation effort on the development set, the task was to return an
ordered list of at most 2000 shots ranked according to the possibility of detecting
the presence of the given concept in the shot. Due to the size of the test set, it
was not evaluated in full for each concept. Instead, a pool of possibly relevant
shots was first obtained by gathering sets of shots returned by the participating
groups. These sets were then merged, duplicates removed, and the relevance of



Table 2. Detection results for each concept.

semantic concept average precision precision at depth a priori prec.
PicSOM median max 100 1000 2000 devel. test

walking/running 0.166 0.145 0.346 0.860 0.395 0.298 0.084 0.079
explosion/fire 0.026 0.037 0.129 0.160 0.055 0.037 0.010 0.009
maps 0.415 0.185 0.526 1.000 0.754 0.465 0.019 0.044
flag-us 0.064 0.071 0.253 0.280 0.091 0.065 0.007 0.011
building 0.226 0.236 0.511 0.970 0.465 0.350 0.073 0.076
waterscape/waterfront 0.344 0.187 0.493 0.970 0.340 0.218 0.026 0.019
mountain 0.305 0.155 0.458 0.920 0.282 0.180 0.013 0.016
prisoner 0.001 0.001 0.056 0.000 0.004 0.005 0.002 0.002
sports 0.210 0.231 0.521 0.560 0.234 0.143 0.040 0.013
car 0.200 0.181 0.369 0.960 0.441 0.297 0.067 0.045

mean 0.196 0.143 0.366 0.668 0.306 0.201 0.034 0.031

this subset is assessed manually. There were 22 participating groups submitting
a total of 110 runs, all of which were pooled and judged to depth of 250 shots.

Instead of using a fixed set of features, we selected the set of used features
for each concept separately. For this purpose, we applied a SFS-type feature
selection scheme, in which we begin with an empty set and compute a criterion
value for each of the potential features. If adding the feature with the highest
value improves the overall result, that feature is added to the set of used features
for that concept and the process is continued. Otherwise we stop the selection
process. As the optimization criterion we used the average precision at 2000
returned items with two-fold cross validation on the development set.

The eleven features with SOM indices described in Section 2.2 along with the
two concept-dependent text features were always included as potential features.
The text features were alternative to each other, so only one of them could
be selected. The conceptwise sets of selected features are listed in Table 1 (the
feature abbreviations are listed in Section 2.2). As can be seen, the selection
process typically resulted in 4–7 parallel features. The prisoner concept was
a notable exception as adding any second feature, including the text features,
beside Homogeneous Texture resulted in performance degradation.

The conceptwise results of detection performance are listed in Table 2. The
(non-interpolated) average precision values are obtained by first determining and
summing the precision at each location where a relevant shot is found and then
dividing the result with the minimum of the total number of relevant shots or
the maximum number of returned shots allowed (i.e. 2000). The maximum and
median average precisions in Table 2 are also conceptwise, and do not there-
fore correspond to any single submission. The best single submission had a
mean average precision of 0.336. It can be seen that the success of detecting
different concepts varies considerably. Some concepts, such as maps, building,
waterscape/waterfront, and car produce rather good results, especially in the
beginning of the result list as can be seen from the “precision at depth 100”
column, whereas detecting shots of the concept prisoner fails completely.



5 Conclusions

Statistical modeling of mid-level semantic concepts can be a very useful step
in supporting high-level querying on visual data. In this paper, we described a
method for applying multiple SOMs trained with multimodal features in seman-
tic concept representation and detection. The class models for different semantic
concepts were produced using a manually annotated video shot collection as the
ground truth. For indexing video shots, we utilized a recently proposed method
to support general hierarchical multimodal objects. The video shot, audio track,
keyframes and ASR text data are all indexed separately and the ground-truth
information and detection scores are propagated intrinsically.

The experiments reported in this paper were a part of our first time partici-
pation [4] in the annual TRECVID evaluation, and so we faced a lot of system
development and other non-recurring work in order to be able to run the experi-
ments. Therefore, we had limited time to study the effects of different setups and
parameter values on the overall performance. Still, the results of the experiments
are promising and can be seen to validate that SOM-based class models can be
successfully used for detecting semantic concepts from multimodal data.
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