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ABSTRACT

SEGMENTATION OF COLON GLANDS BY OBJECT
GRAPHS

Melih Kandemir

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Çiğdem Gündüz Demir

July, 2008

Histopathological examination is the most frequently used technique for clinical

diagnosis of a large group of diseases including cancer. In order to reduce the

observer variability and the manual effort involving in this visual examination,

many computational methods have been proposed. These methods represent

a tissue with a set of mathematical features and use these features in further

analysis of the biopsy. For the tissue types that contain glandular structures, one

of these analyses is to examine the changes in these glandular structures. For

such analyses, the very first step is to segment the tissue into its glands.

In this thesis, we present an object-based method for the segmentation of

colon glands. In this method, we propose to decompose the image into a set of

primitive objects and use the spatial distribution of these objects to determine

the locations of glands. In the proposed method, pixels are first clustered into

different histological structures with respect to their color intensities. Then, the

clustered image is decomposed into a set of circular primitive objects (white

objects for luminal regions and black objects for nuclear regions) and a graph

is constructed on these primitive objects to quantify their spatial distribution.

Next, the features are extracted from this graph and these features are used to

determine the seed points of gland candidates. Starting from these seed points,

the inner glandular regions are grown considering the locations of black objects.

Finally, false glands are eliminated based on another set of features extracted from

the identified inner regions and exact boundaries of the remaining true glands are

determined considering the black objects that are located near the inner glandular

regions.

Our experiments on the images of colon biopsies have demonstrated that

our proposed method leads to high sensitivity, specificity, and accuracy rates
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and that it greatly improves the performance of the previous pixel-based gland

segmentation algorithms. Our experiments have also shown that the object-based

structure of the method provides tolerance to artifacts resulting from variances

in biopsy staining and sectioning procedures. This proposed method offers an

infrastructure for further analysis of glands for the purpose of automated cancer

diagnosis and grading.

Keywords: Histopathological image analysis, gland segmentation, object-based

segmentation, object-graphs.



ÖZET

KALIN BAĞIRSAK BEZLERİNİN NESNE
ÇİZGELERİYLE BÖLÜMLENMESİ

Melih Kandemir

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Çiğdem Gündüz Demir

Temmuz, 2008

Histopatolojik inceleme, kanseri de içeren büyük bir hastalık grubunun tanısı için

en sık kullanılan klinik tanı tekniklerinden birisidir. İnsan gözüyle uygulanan

bu yöntemin içerdiği gözlemci tutarsızlığını ve manüel harcanan eforu azaltmak

için birçok sayısal yöntem önerilmiştir. Bu yöntemler, dokuyu bir matematiksel

özellikler kümesi olarak tanımlar. Tanımlanan özellikleri sonraki biyopsi anali-

zleri için kullanır. Bez yapıları içeren doku tiplerinde, bezlerde meydana gelen

değişikliklerin incelenmesi bu analizlerden bir tanesidir. Böyle analizlerde ilk

adım, dokudaki bezsel alanları bölümlemektir.

Bu tezde, bağırsak bezlerinin bölümlenmesi için nesne tabanlı bir yöntem

önerilmektedir. Bu yöntemde, görüntüden bir basit nesneler kümesi çıkartılması

ve bu nesnelerin uzamsal dağılımları kullanılarak bezlerin konumlarının tespit

edilmesi önerilmiştir. Önerilen bu yöntemde, pikseller öncelikle çeşitli histolojik

yapılara karşılık gelecek şekilde, renk yoğunluklarına göre gruplanır. Ardından,

kümelenmiş görüntüden bir basit dairesel nesneler kümesi (lümen bölgeleri için

beyaz nesneler ve hücresel bölgeler için siyah nesneler) elde edilir ve bu nesneler-

den uzamsal dağılımlarını nicelemek amacıyla bir çizge oluşturulur. Sonrasında,

bu çizgeden bir dizi özellik çıkartılır ve çıkartılan bu özellikler bez adaylarının

baslangıç çekirdek noktalarını belirlemek için kullanılır. Bu çekirdek nokta-

larından başlayarak ve siyah nesnelerin konumları gözetilerek, bezlerin iç bölgeleri

alan büyütme yöntemiyle tespit edilir. Son olarak, bezlere ait olmayan alanlar,

tespit edilen iç bölgelerden çıkartılmış bir diğer özellik kümesi sayesinde elenir

ve geriye kalan gerçek bezlerin sınırları, bu bezlerin yakınındaki siyah nesnelerin

konumları gözetilerek belirlenir.

Kalın bağırsak biyopsi görüntüleri üzerinde yaptığımız deneyler, önerdiğimiz

bu yöntemin yüksek hassasiyet, belirlilik ve doğruluk oranları sağlayabildiğini
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göstermiştir. Ayrıca, deneylerimizden elde ettiğimiz sonuçlar bu yöntemin,

daha önceki çalışmalarda önerilmiş piksel tabanlı bez bölümleme algorit-

malarının performanslarını istatistiksel anlamlı bir şekilde iyileştirdiğini ortaya

koymuştur. Yapılan deneyler, yöntemin nesne tabanlı yapısının, boyama ve

kesme yöntemindeki farklılıkların yan etkilerine karşı tolerans sağladığını da

göstermiştir. Önerilen bu yöntem, otomatik kanser tanısı ve derecelendirmesi

amacıyla, bezlerin daha ileri düzey analizi için bir altyapı da sunmaktadır.

Anahtar sözcükler : Histopatolojik görüntü analizi, bez bölümlenmesi, nesne ta-

banlı bölümleme, nesne çizgeleri.
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Chapter 1

Introduction

1.1 Overview & Motivation

In histopathological examination of a biopsy tissue, the pathologist visually ex-

amines the tissue under a microscope to identify tissue changes related to disease

of the interest. This histopathological examination is the most important tool for

routine clinical diagnosis of a large group of diseases including cancer. However,

this examination may lead to considerable amount of intra- and inter-observer

variability as it mainly relies on the visual examination [1, 2]. To reduce the ob-

server variability, computational methods that provide objective measures have

been proposed [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. These computational

methods quantify a tissue image and the tissue changes related to disease by

extracting different types of mathematical features from the tissue and make de-

cisions based on the extracted features. In literature, different types of features

have been used (e.g., morphological [3, 4], textural [5, 6, 7, 8, 9], fractal [10, 11],

and structural [6, 12, 13, 14, 15] features) as the tissue structure shows differences

from one tissue type to another. Several types of tissues such as prostate, colon,

breast, and thyroid include glandular structures. To quantify such tissues, and

hence to identify the related diseases, the very first step is to segment these issues

into their gland structures.
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CHAPTER 1. INTRODUCTION 2

In literature, there are only few studies that focus on the problem of the auto-

matic gland segmentation for tissues that contain gland structures [16, 17, 18, 19].

These studies make use of the fact that glands are characterized by their lumi-

nal areas surrounded by the epithelial cells; an example of the histopathological

image of a colon tissue is given in Figure 1.1. In order to capture this character-

ization, these studies first identify the pixels of different histological structures

in a tissue (e.g., nucleus, stroma, cytoplasm, and lumen). Then, they detect the

seed regions at the locations that contain significant amount of lumen pixels and

grow these regions until nucleus pixels are encountered. Finally, they eliminate

false gland regions based on their areas and/or the color properties of their pixels.

(a) (b)

Figure 1.1: (a) An example image of a colon tissue sample that is stained with
hematoxylin-and-eosin and (b) an individual gland of a tissue.

These previous studies yield promising results for tissues where the gland ap-

pearance has relatively more regular structure, the gland boundaries are more

prominent, and the tissue has fewer amounts of noise and artifacts. However,

many tissue sections commonly consist of considerable amount of noise and arti-

facts due to the staining and/or sectioning procedures. Moreover, the variations

in these procedures may result in huge variances in gland appearances. First,

glands could have different sizes depending on the orientation of a tissue at the

time of sectioning. For example, the gland sizes are different in the tissue images

shown in Figures 1.2(a-c) although all of these images are taken with the same

magnification; glands with different sizes could even exist within the same image

(Figure 1.2(d)). Therefore, false gland elimination based on area might lead to

misleading results; no single area threshold could be found for all these images.
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Second, because of the density difference between the glandular and connective

tissue structures, the sectioning procedure may result in large white artifacts on

the boundaries of the glands (Figures 1.2(e and f)). These areas are not luminal

areas and do not belong to gland structures; thus, they should be eliminated.

However, it is much more difficult to distinguish these white regions and the true

luminal areas by using only the pixel-based information. Third, due to the stain-

ing procedures, it is rare to find continuous nucleus pixels around the luminal

area. Thus, the growing process of the seed region could not be stopped and

flooding occurs. For example, although it is possible to find such continuous nu-

cleus pixels in the tissue shown in Figure 1.2(g), it is much more difficult to find

those in a tissue shown in Figure 1.2(h). Because of all these issues, using only

the pixel-based information leads to incorrect gland segmentations for especially

tissues with artifacts and variations.

The contribution of this thesis is as follows: it presents a new gland segmenta-

tion algorithm that relies on decomposing the image into a set of primitive objects

and employs the spatial relations between these objects instead of directly using

the pixel-based information. This object-based algorithm suggests constructing

a graph on all of the primitive objects and determining the gland seeds based on

the features extracted from this object graph. Then, it constructs another graph

on the nucleus objects, and uses this second graph to grow the gland seeds. At

the last step, it eliminates false glands based on another set of features, which

are extracted from these glands, and determines the final boundaries of the true

glands regarding the locations of nucleus objects. As opposed to the previous

approaches that use only the pixel-based information, this thesis proposes to use

object-based information for the automatic segmentation of colon glands.

This thesis is organized as follows: In Chapter 2, we introduce the medical

terminology that we refer in our work and give summary about the related studies.

In Chapter 3, we describe our object-based algorithm in detail. In Chapter 4, we

present our experimental results. Finally, we provide a summary of our work and

a future perspective for our research in Chapter 5.



CHAPTER 1. INTRODUCTION 4

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.2: Histopathological images of colon tissues, which are stained with the
routinely used hematoxylin-and-eosin technique. All of the images are taken with
the same magnification and the same lightning conditions.



Chapter 2

Background

In this thesis, we focus on the segmentation of colon glands stained with the

hematoxylin-and-eosin technique. In this chapter, we first introduce the medical

terminology that we refer in the text. We then provide a survey of related studies

in the context of both general image segmentation and gland segmentation.

2.1 Terminology

In this thesis, we focus on the images stained with the hematoxylin-and-eosin

technique. This staining technique is the one that is routinely used in hospitals.

In this technique, the basic dye hematoxylin color basophilic structures with

blue-purple hue, and alcohol-based acidic eosin color eosinophilic structures with

bright pink [20]. Therefore, the color spectra of the images of tissues stained by

this technique are commonly rich of blue-purple, pink, and white pixels.

In the context of gland segmentation, histological structures in the colon tissue

and the spatial relations between these structures are the primary concern. The

histological structures that we refer in this work are marked on the colon tissue

image in Figure 2.1.

A gland is defined as a specialized group of cells that secrete a substance for use

5
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Figure 2.1: The histological structures in a colon tissue.

in the body [21]. Several types of tissues such as prostate, small intestine, colon,

thyroid, and breast include glandular structures. The appearance of glands vary

with the type of the tissue. In this thesis, we focus on the automatic detection

of the borders of glands in colon tissue images; in the image given in Figure 2.1,

the border of a gland is marked with green.

There are two types of cells in a colon tissue: epithelial cells and stromal cells.

The gland is formed by a chain of epithelial cells. In the image, the borders of an

epithelial cell is marked with red, the dark purple region inside these borders is

the nucleus of the epithelial cell, and the large white region below the nucleus is

its cytoplasm. Epithelial cells appear side by side around an oval vacant region

called luminal area. As shown in Figure 2.1, the luminal area locates at the center

of the glandular region and is surrounded by the epithelial cells.

We refer all other type of cells in the connective tissue as stromal cells. They

appear as scattered around the area outside the gland bodies. In the context of

gland segmentation problem, they should not be included into the gland region

since they are not a part of the gland structure.

There exists a pink area between all of the cells in the tissue. This is a non-

cellular material called lamina propria. This material is the connective tissue

that holds all the entities in the tissue together. Since the connective tissue exists

among every type of entity, it does not provide any discriminative information
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that is useful for gland segmentation.

In a typical colon tissue, there may also exist empty white regions outside the

gland bodies. These regions do not include any epithelial cells, stromal cells, and

lamina propria. They are the artifacts that arise from the sectioning procedure

(e.g., the one shown with blue arrow in Figure 2.1). For the gland segmentation

problem, they are considered as noisy content.

2.2 Related Work

In this section, we first discuss the general image segmentation approach. We then

discuss the previous gland segmentation approaches for different tissue types.

2.2.1 Image Segmentation

Image segmentation is defined as the process of partitioning an image into non-

overlapping and connected pixel groups (regions) that are semantically coherent

in a particular context. It is a special case of pixel classification, in which pixels

do not have to be connected and instead of semantic coherence, similarity of

low-level features (i.e., intensity) is the primary concern [22].

There are numerous approaches to image segmentation in literature. These

approaches can mainly be grouped into three categories [23]:

1. Feature-space based approaches

2. Image-domain based approaches

3. Physics based approaches

In feature-space based approach, the units of data in the image, often the pix-

els (or voxels), are grouped into several classes regarding their values in a certain
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feature space. The definition of the feature space is application-dependent. To

this extent, the feature-space based approaches, when used alone, offer solutions

to the pixel classification phases of segmentation problems.

One of the oldest methods among feature-space based pixel classification ap-

proaches is histogram thresholding. Although being more trivial, these are gen-

erally most efficient methods in terms of computational requirements. Otsu [24]

has a seminal work in which he proposed a statistical threshold determination

method for grayscale images. The primary disadvantage of thresholding is that

it can only be applied to grayscale images. However, some recent statistical tech-

niques are developed which can learn the best parameters for transforming a

multichannel image to grayscale. For example, Mao et al. [25] propose a method

for cell segmentation that maps the color image into grayscale by a transform

whose parameters are determined through supervised-learning over a training

set.

Different learning algorithms have also been used after the feature-space has

been defined. In the case of unsupervised pixel classification, k-means clustering

[26] is widely preferred. For example, Park et al. [27] use the k-means algorithm

by defining RGB channels as the feature-space. They extract a number of initial

seeds from the difference-of-Gaussian (DoG) smoothed 3-D color histogram. Wu

et al. [28] use the c-means algorithm, which is the fuzzy extension of k-means.

Apart from the clustering schemes, statistical pattern recognition methods are

also used in image segmentation. Belongie et al. [29]. define a transformation

from raw pixel data to image regions that are coherent in color and texture

space, which they call Blobworld. Segmentation is made using an expectation-

maximization algorithm on combined color and texture features. The Blobworld

representation is used for query evaluation in a content-based image retrieval

(CBIR) system.

In image-domain based approaches, in addition to the classification of pixels

according to some criteria, the spatial relationships of the pixels are also taken

into consideration. These methods are frequently used together with feature-

space based methods. One of the ways of combining the two approaches is the
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split-and-merge scheme, in which the image is first split into regions by a feature-

space based pixel classification technique (i.e, k-means [30]), then the regions are

merged according to an application-specific homogeneity metric. For example,

Deng and Manjunath [31] use the J-value, which is a function of the variance of

color intensities of pixels belonging to the same class, as a homogeneity metric.

Region growing scheme is an alternative combiner of homogeneity and com-

pactness concepts. In this scheme, initial seeds are determined, then the neigh-

bors of these seeds are assigned to the seeds according to a homogeneity measure.

When determining the seeds, selecting the local minima of pixel intensities [32] is

one of the most accepted seed determination strategies. As in k-means clustering,

region growing algorithms also have fuzzy counterparts [33, 34].

There are several alternative techniques that approach segmentation problem

as a special case of edge-detection problem. There has been developed advanced

mathematical models for dynamic contour detection. Kass et al. [35] propose ac-

tive contour models (snakes) that are deformed with respect to an energy function

along a vector field defined on the image.

The physics-based techniques approach the segmentation problem in the in-

verse direction. Given an image, considering the physical illumination models,

these methods try to infer by what kind of objects the light should have inter-

acted when forming that image. Healey [36, 37] proposes several segmentation

algorithms based on this principle that work when there is one illumination source

in the environment. Maxwell and Shafer [38] introduce a more general algorithm

that can work for arbitrary number of illumination sources.

2.2.2 Gland Segmentation in Histopathological Images

In this section, a survey of methods related to gland segmentation in various

types of tissues is presented.

In [16], Wu et al. propose a method that adopts seed detection and region-

growing paradigm for segmenting glands of small intestine tissues stained with
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hematoxylin-and-eosin. In the proposed method, the color image is first converted

to grayscale and then manually thresholded in order to mark the nuclear pixels.

The method suggests detecting the seed regions from where region growing will

start. These regions correspond to vacant regions in which there is no nuclear

pixel. This is done by detecting the pixel coordinates in which a large round

window of non-nuclear pixels can fit. The pixels in these windows are regarded as

gland seeds. Then an iterative region growing starts from each seed by dilating the

image with another round window. The size of this window should be chosen to

be larger than the largest gap between two epithelial cells in the image, otherwise

flooding occurs. After region growing, false glands are eliminated based on two

assumptions. First, it is assumed that if a seed corresponds to a gland, growing

should stop after a small number iterations. Otherwise, it is regarded as a false

gland and the entire region is eliminated. Second, it is assumed that the epithelial

cell nuclei around a true gland form a thick dam. After eliminating false glands

based on these assumptions, the epithelial cell nuclei that belong to each true

gland seed are detected using a dilation belt.

In [17], same authors introduce another method that works on the grayscale

images of small intestine tissues stained with hematoxylin-and-eosin. The method

suggests enhancing the image so that the chains of epithelial cell nuclei that sur-

round the luminal area become more apparent. Enhancement is done by lower-

ing the intensities of the dark pixel groups that have a specific orientation and

smoothing the others. They produce four intermediary images using directional

2-dimensional linear filters with four different orientations; each of these filters

enhance the pixels of epithelial cells in a particular orientation. Then, these four

images are combined into a single image by taking the minimum intensity for

each pixel. The resultant image is expected to contain apparently dark and thick

regions at the places of epithelial cell nuclei since it is produced by collection

of enhancement in all directions. The dark dam around the gland body is then

extracted by manual thresholding. After several morphological operations such

as dilation and region filling are applied, the gland borders are obtained. In [18],

Wu et al. use the same idea with four median filters biased along four different

orientations. The idea is identical to the one in [17] except that instead of using
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directional Gaussian filters, biased median filters are applied over the input image

for enhancing the epithelial cells. The filtered images are combined into a single

image just in the same way as in [17].

Naik et al. [19] propose a Bayesian approach for automatic segmentation

of prostate glands. The algorithm works on color images of the tissue samples

stained with hematoxylin-and-eosin. A Bayesian classifier is trained by manu-

ally labeling the pixels of the images in the training set with the histological

structures they belong to (luminal region, epithelial cytoplasm, and epithelial

nucleus). For a query image, luminal regions are first detected by collecting the

pixels with highest posterior conditional probability for the lumen class. From

the detected regions, ones with very small and very large sizes are considered as

false detections and they are eliminated. The boundaries of the detected luminal

regions are used to initialize a level-set curve which evolves until it reaches a

region which most likely belongs to nuclei. Another elimination of false detec-

tions is performed considering the final sizes of the resulting level-set curves. By

augmenting the nuclear regions at the neighborhood of the level-set curves to the

regions surrounded by the curves, the borders of the glands are determined.

In [39], Farjam et al. propose a textural approach for the segmentation of

glands in prostate tissues stained with hematoxylin-and-eosin. After clustering

the pixels according to their textural properties, they obtain prostate glands by

excluding the regions that contain nucleus pixels from those that contain stroma

and lumen pixels.

In [40], Fernandez-Gonzalez et al. define an algorithm for automatic segmen-

tation of ductal regions in mammary gland tissues and reconstruction of surface

geometries of the glands in 3-D. The images are obtained from the tissue blocks

stained with hematoxylin-and-eosin. The image is first enhanced by background-

correction. Then the approximate contours of the ductal regions are extracted

using the Fast-Marching algorithm. The borders are then refine using the Level-

Set method. Finally, the 3-D surface geometries of the ducts are generated by

combining the 2-D results obtained at the earlier steps.

The main motivation of segmenting glands is to detect malignancies. One
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alternative approach to malignancy detection in histopathological images sug-

gests segmenting the cells and analyzing their morphological features instead of

detecting the gland borders. The seminal survey paper published by Fernandez-

Gonzalez et al. [41] presents a concise summary of recent approaches to quanti-

tative analysis of mammary gland images. Various morphological tissue analysis

methods are briefly described for different imaging technologies. In the paper,

several techniques for the segmentation of mammary cell nuclei are also described.

There exist less automated primitive methods [42, 43] that require user interven-

tion. Thresholding based methods [44, 45, 46, 47, 48] rely on the assumption

that an intensity threshold determines whether or not a pixel belongs to a nu-

clear region. These methods are generally easy to implement, but they are quite

sensitive to noise. Pixel classification based approaches [49, 50] make use of the

supervised and unsupervised machine learning techniques when determining the

nuclei pixels in an image. Model fitting based approaches [51, 52, 53, 54, 55] uti-

lize a priori information such as nuclei size and shape over regions in the image.

Although these methods provide accurate and smooth results, they are compu-

tationally expensive and sensitive to noise. Another cell segmentation scheme is

region growing using active contours [56, 57, 58, 59, 60, 61]. This scheme also

provides accurate and smooth results. However, high computational cost and

need of user intervention for initial seeding of the nuclei are among the disad-

vantages of this scheme. The cell segmentation problem becomes more difficult

for the images of biopsy tissues that are prepared by routinely used staining and

sectioning procedures as these procedures lead to a significant amount of noise.

Hence, the studies focus on analyzing hyperspectral data, rather than intensity

based images taken from optical microscopes. Although they provide more infor-

mation, hyperspectral images can be taken by electron microscopes which are not

very prevalent due to their high cost. In one of these studies that use hyperspec-

tral data, Rajpoot et al. [62] propose an algorithm that segments the malignant

regions in a hyperspectral colon image by classifying the nuclei as normal and

malignant regarding their morphological properties. For this purpose, as the first

step, they use the k-means clustering algorithm to segment the image into four

constituent parts of a gland tissue (nuclei, cytoplasm, lamina propria, and lumen)

over the hyperspectral data. Thanks to the high-dimensional spectral data, the
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segmentation step gives quite accurate results. The borders of the glands can be

straightforwardly obtained from this segmented image. However, such a success-

ful segmentation can not be obtained when the k-means clustering algorithm is

applied over color intensities of an image taken from an optical microscope, which

is our concern. The segmentation results of two colon tissue images obtained by

applying k-means over hyperspectral data and over the color intensities of one of

the images in our dataset are given in Figure 2.2 (a and b), respectively. As it

can be seen in Figure 2.2 (b), none of the four clusters provide any hint about

the gland borders in our case.

(a) (b)

Figure 2.2: (a) The cyan cluster provides direct information about gland borders
when k-means is applied to hyperspectral data [63]. (b) None of the clusters pro-
vide information about gland borders when k-means is applied to color intensities
of optical microscopic images.



Chapter 3

Segmentation of Colon Glands by

Object Graphs

In this thesis, we propose an object-based method for the segmentation of colon

glands. To this end, we define objects to represent the tissue components and

use the spatial relations between these objects for the segmentation of gland

structures.

The proposed object-based method comprises a series of analysis steps. In

the first step, the pixels of the input image are clustered into three groups (each

of which correspond to a biologically meaningful color) based on their color in-

formation. Then the primitive objects (white objects and nuclear objects) are

defined from the clustered pixels using the Circle-Fit Transform algorithm. In

the next step, a graph is constructed from the primitive objects by making use

of the white and nucleus objects and gland seeds are detected with respect to

a set of features extracted from this graph. Then, another graph is constructed

by connecting the nuclear objects and the inner gland regions (gland candidates)

are determined by region growing starting from the gland seeds and ending at

the edges of this nuclear graph. Subsequently, in the false gland elimination step,

gland candidates are classified as false glands and true glands with respect to a

set of features. Finally, in the last step, the exact borders of the true glands are

14
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detected by merging the corresponding epithelial cells to the inner gland regions.

The summary of the object-based algorithm is given in Figure 3.1. The details

of each step will be explained in the following subsections.

Pixel Classification

Convert RGB to LAB

Seed Detection

Region Growing

False Gland Elimination

Detection of Gland Borders

Output Image

Input Image

Object definition

Boundary detection

Circle−Fit For White ClusterCircle−Fit For Black Cluster

Inner gland region detection
False Nuclei Elimination

Figure 3.1: The block diagram of the proposed system.
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3.1 Pixel Classification

There are three main color groups in the image of a tissue stained with

hematoxylin-and-eosin (pink, blue-purple, and white). The chemical structure

of hematoxylin-and-eosin staining technique provides us some information for

matching these color groups to histological structures [20]. Since the cell nuclei

are commonly chromatin-rich, it is most likely that a purple pixel belongs to

a nuclear region. On the other hand, the cytoplasmic regions of stromal cells

and connective tissues are known to be eosinophilic. Thus, a pink pixel most

likely belongs to a stromal cell cytoplasm or connective tissue. The epithelial

cell cytoplasms and luminal area occur in very light pink or white, as opposed

to dark pink stromal cell cytoplasms, since they include secretion material which

is affected from neither hematoxylin nor eosin. The remaining arbitrary empty

regions that do not include any histological structures also remain colorless, and

produce white pixels.

We have exploited the a-priori semantic information that comes from the

staining technique for pixel classification. We assume that the pixels form three

disjoint clusters in the color space. Hence, we apply the k-means clustering algo-

rithm [26] with k=3 over raw pixel data represented in the Lab color space. The

color vectors are attached to the clusters by considering the Euclidean distances

of their centroids to those of absolute white, pink, and dark purple. In the text,

these clusters are referred to as the white cluster, the pink cluster, and the black

cluster, respectively. The classification result of a sample image is given in Figure

3.2.

3.2 The Circle-Fit Transform

Although classification of pixels provides semantics at the lowest level, this in-

formation is not specific enough for our purposes. As an example, although we

know the nuclear regions, we are not able to identify individual nuclei. Applying

connected component analysis over the pixels that are labeled as nucleus does not
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(a) (b)

Figure 3.2: (a) The original colon tissue image and (b) the quantized tissue image
obtained using k-means with k=3 over the color intensities of the pixels.

provide sufficiently reliable results since epithelial nuclei appear side by side and

form a single connected component consisting of multiple nuclei. Thus, higher

level analysis is necessary to represent the nuclei in the scene. Moreover, a purple

pixel could belong to an epithelial cell nucleus or a stromal cell nucleus. Simi-

larly, a white pixel may correspond to an epithelial cytoplasm, a luminal area,

or an artifactual empty region. These ambiguities can not be resolved when the

pixel-based information is used alone. Thus, we propose to define objects for each

of the histopathological structures and use the information extracted from these

objects instead of using the pixel-based information alone.

The most ideal way for object definition is to segment the primitive histo-

logical entities directly and to define the connected components in the resultant

segmentation as objects. In other words, such an approach suggests dividing

the gland segmentation problem into smaller subproblems by treating nucleus

segmentation, lumen area segmentation, and epithelial cytoplasm segmentation

as separate problems, and then combining the results in order to determine the

gland borders. However it gives rise to more difficult segmentation problems than

the original one. In literature, there are a considerable amount of studies on cell

segmentation; however, most of them require high-magnification images and/or

high-dimensional hyperspectral data [63, 62, 64]. There do not exist any previous

studies that focus on cytoplasm and lumen segmentation.
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An alternative way for object definition is to identify each connected compo-

nent in the image as a separate object. In the common practice, this scheme is

applied after a series of morphological operations to eliminate noise. However,

our experiments on histopathological images have shown that this scheme is not

applicable for our problem since the objects in the scene are not well separated.

For instance, it is quite likely that there are white empty regions surrounding the

glands. When the nucleus pixels do not form a closed dam, the white regions

inside the glands may appear connected to the empty regions outside. Such a

primitive object would be meaningless and inappropriate for higher level analysis.

The problem is illustrated on an exemplary image shown in Figure 3.3 (b). In

this image, the connected components of the white pixels are shown in arbitrary

colors, and three artifactual components are marked with black arrows.

(a) (b)

Figure 3.3: Inappropriate primitive object definition when connected component
analysis is used. (a) The clustered image and (b) the connected components of
the white pixels.

To circumvent the aforementioned difficulties, we propose to approximately

represent the histological structures in a tissue. For this purpose, we implement

a new method, the Circle-Fit Transform, that transforms the raw pixel data into

a set of circular objects. Then, we use these objects to represent the histological

structures.

The Circle-Fit Transform algorithm is given in Algorithm 1. This algorithm

inputs a clustered image (Ii) and a label of interest (loi). It first converts the

clustered image into a binary image I (line 4) by marking the pixels that are equal
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Algorithm 1 Circle Fit Transform Algorithm

1: function CircleFitTransform(Ii, loi)
2: //Ii: Clustered image
3: //loi: Label of interest
4: I ←(Ii = loi)
5: Icc ←ConnectedComponentAnalysis(I)
6: //Initialize the image that holds radius of the largest circle for each pixel
7: Icf ←EmptyImageOfSize( sizeof(Ii) )
8: InitializeImage(Icf , 0)
9: //Initialize the image that holds circular objects labeled by ids

10: Icid ←EmptyImageOfSize( sizeof(Ii) )
11: InitializeImage(Icid, 0)
12: //Id number that will be given to the next circle
13: cid ←1
14: for all (p, k) ∈ Icc do
15: //For each nonzero pixel in Icc

16: if Icc(p, k) > 0 then
17: //Find the radius r of the largest circle

18: r ← argmaxr{∀ i,j Icc(i,j)=1 &
√

(i− p)2 + (j − k)2 < r }
19: end if
20: //If a larger circle is found, override the previous ones
21: for all (i, j) ∈ Icc do

22: if
√

(i− p)2 + (j − k)2 <= r & r > Icf (p, k) then

23: Icf (i, j) ←r
24: Icid(i, j) ←cid
25: end if
26: end for
27: //Increment the id number
28: cid++
29: end for
30: return Icid

31: end function
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to loi as true, and marking else as false. It then finds the connected components

of this binary image (line 5). Next, for each particular pixel it finds the radius

of the largest circle that contains this particular pixel in Icf and the id of this

largest circle in Icid (lines 8-26). Finally, it returns Icid.

The output of circle-fit transform contains a number of objects, but not all

of them are circular. There may exist crescent-like objects next to circles. Such

objects occur when a circle with a larger radius partially overrides a previously

generated circle. These regions may be sometimes small enough to be ignored,

or they may be as large as to be represented by a set of circles. In order to

handle such cases, we define an algorithm, Iterative Double Circle-Fit Transform,

that utilizes the circle-fit transform iteratively and only outputs a set of circular

objects. The algorithm consists of two loops in which the circle-fit transform is

applied to the binary image Iin iteratively until it converges to a state in which

no further change occurs between subsequent iterations. During each iteration,

after the circle-fit transform is called, some postprocessing is applied to Iin to

eliminate non-circular and small regions. EliminateSmallComponents function

eliminates the regions in Iin that correspond to objects in Icid with areas less

than the area threshold τ . EliminateNonCircularRegions function computes

circularity of each object in Icid using a roundness measure and eliminates the

regions in Iin that correspond to non-circular objects. The pseudocode of iterative

double circle-fit transform is given in Algorithm 2.

The motivation to define circular primitives is that the borders of all of the

histological entities of our interest are circular. Since the cell nuclei are in round

shape, they are generally represented by a single circle. In the cases when they

are not perfectly round, the remaining region out of the circle produces very tiny

circles in the succeeding iterations, hence they are all eliminated. Lumen area

is represented by one or few large circles in the middle of the gland area, and

the epithelial cytoplasms are often represented by uniformly distributed singu-

lar middle-scale circles around the lumen circles. The iterative double circle-fit

transform of an example image is given in Figure 3.4. In the image, the circles fit

into the black cluster are in red, and the ones that fit into the white cluster are

in green. The transform is not applied to pixels in the pink cluster since they do
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Algorithm 2 Iterative Double Circle Fit Transform Algorithm

1: function IterativeDoubleCircleFitTransform(Ii, loi, τ)
2: //Ii: Clustered image
3: //loi: Label of interest
4: //τ : Area threshold
5: Ifirst ←EmptyImageOfSize( sizeof(Ii) )
6: InitializeImage(Ifirst, 0)
7: Iin ← Ii

8: while true do
9: Icid ←CircleFitTransform(Iin, loi)

10: Ics ←EliminateSmallComponents(Icid, τ)
11: Icr ←EliminateNonCircularRegions(Ics)
12: Iin ←(Icr > 0)
13: if ‖Iin − Iprev‖ = 0 then
14: Ifirst ← Icr

15: break
16: else if
17: then Iprev ← Iin

18: end if
19: end while
20: while true do
21: Icid ←CircleFitTransform(Iin, loi)
22: Ics ←EliminateSmallComponents(Icid, τ)
23: Isecond ←EliminateNonCircularRegions(Ics)
24: Iin ←(Isecond > 0)
25: if ‖Iin − Iprev‖ = 0 then
26: break
27: else if
28: then Iprev ← Iin

29: end if
30: end while
31: Ires ←Merge(Ifirst, Isecond)
32: return Icr

33: end function
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not provide any valuable information.

(a) (b)

Figure 3.4: (a) The clustered image and (b) the iterative double circle-fit trans-
forms of black and white clusters. The circles of black cluster are given in red
and the circles of white cluster are given in green.

There have been studies on detecting the circular shapes in an image [65].

There also exist methods that utilize circle fitting for region segmentation in

arbitrary scenes, as in [66]. Yet, there exist no previous studies which treat circle

fitting as a means of transformation that produces a set of primitive objects which

can then be employed by higher-level analysis.

The circle-fit transform provides an acceptable means for primitive object

definition. It facilitates the definition of discriminative features for ambiguity

resolution. It also enables representation of higher level objects (such as nucleus

dams and glands). The circle-fit transform also prevents flooding of connected

components. The utilization of these benefits in gland segmentation problem will

be clearer in the following steps.

3.3 Detection of Gland Candidates

In this step, we apply seed detection and region growing approaches to detect the

regions that are likely to correspond to gland bodies. In the seed detection phase,

the aim is to find a set of seed pixels each of which is most likely to be inside a

gland body. Then in the region growing step, we find the initial inner borders of
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the gland candidates by starting the region growing iterations from the detected

seeds.

In this approach, first, the circles in the iterative double circle-fit transform

of the white (lumen) cluster are classified as gland and non-gland circles. Then,

close gland circles are combined into a single seed component and the centroid of

each combined circle group is considered as the seed of a gland candidate. Region

growing starts from these centroids and forms the gland candidates, since these

regions may correspond to a gland or a false gland. The actual true glands are

determined after False Gland Elimination step, which is described in the next

section.

3.3.1 False Nucleus Elimination

After k-means clustering, the white and black connected components in the clus-

tered image are input to circle-fit transform. Two output images (one for the

black cluster and one for the white cluster) that consist of circles are obtained.

Herein the circles in the output of the black cluster are referred to as black circles

and those of the white cluster to as white circles.

In the original image, the white circles may correspond to a luminal area, an

epithelial cell cytoplasm, or an arbitrary empty region. Among these histological

structures, the first two reside in the gland body. Hence, we will not deal with

discriminating the first from the second. Instead, we will discriminate the third

one from the first two in Seed Detection and False Gland Elimination steps as

described in the following sections.

The black circles may correspond to cell nuclei or noisy dark regions. In the

context of false nucleus elimination, we discriminate the first from the second and

then eliminate the circles that correspond to noisy dark regions. Elimination of

noise affects the gland border detection; existence of false nucleus circles in gland

bodies results in partial detection of their borders.

To detect the false nuclei, we use the following heuristic: if a black circle



CHAPTER 3. SEGMENTATION OF COLON GLANDS BY OBJECT GRAPHS24

is isolated from the other black circles, it most likely corresponds to noise. The

epithelial cell nuclei around a gland body locate close to each other, hence it is not

likely that an isolated black circle corresponds to an epithelial cell nucleus. On the

other hand, stromal cell nuclei appear at arbitrary non-glandular regions in the

scene. There may occur isolated stromal cells in a scene since the heuristic defined

above does not hold in this case. Although this may cause misclassification of

the isolated stromal cells as noise, it does not affect the performance since we are

only interested in epithelial cell nuclei in this context.

The false nucleus elimination algorithm is given in Algorithm 3. In this al-

gorithm, the mean and the standard deviation of the distances of circles to their

closest neighbors and the sum of their distances to first two closest neighbors are

calculated separately (lines 1-16). The circles whose distances to their closest

neighbors are greater than the image average plus K1 times the standard devia-

tion and whose sum of distances to first two closest neighbors are greater than

the image average plus K12 times the standard deviation are considered as False

Nucleus and they are eliminated from the image (lines 17-24). We define K1 and

K12 as isolation factors since these coefficients adjust the degree of isolation that

discriminates the false nuclei.

The iterative double circle-fit transform of the black cluster of a sample image

is shown in Figure 3.5. The eliminated circles are given in red. Note that the

isolated circles in the image are the eliminated ones.

3.3.2 Seed Detection

In this step, we detect a set of seed pixels from which region growing will start.

We define a seed as a pixel that is most likely to locate at a coordinate close to

the centroid of the actual gland body.

Having an object-based representation of the image, we proposed a novel seed

detection scheme that exploits this representation. White circles in a given image



CHAPTER 3. SEGMENTATION OF COLON GLANDS BY OBJECT GRAPHS25

Algorithm 3 False Nucleus Elimination Algorithm

1: procedure EliminateFalseNuclei(I,K1, K12)
2: //I: Iterative double circle-fit transform of black cluster
3: //K1 and K12: Isolation factors
4: for all c ∈ I do
5: //For each circle in the image
6: for all ci ∈ I & ci 6= c do
7: dlist ← ‖ci − c‖
8: end for
9: neighOrder ← Sort(dlist)

10: //Distances from the nearest circle and 2-nearest circles
11: dist1[c] ← neighOrder[0]
12: dist12[c] ← neighOrder[0] + neighOrder[1]
13: end for
14: mean1 ← Mean(dist1)
15: mean12 ← Mean(dist12)
16: std1 ← StdDeviation(dist1,mean1)
17: std12 ← StdDeviation(dist12,mean12)
18: for all c ∈ I do
19: //For each circle in I
20: if dist1[c] > mean1 + K1 × std1&

dist12[c] > mean12 + K12 × std12 then
21: //Remove circle c from I
22: Remove(c,I)
23: end if
24: end for
25: end procedure
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Figure 3.5: False nucleus elimination for a sample image; eliminated circles are
shown in red.

are clustered into two with respect to a set of features using the k-means algo-

rithm. One cluster corresponds to a luminal area or an epithelial cell cytoplasm

and the other corresponds to arbitrary empty regions. For a particular white

circle c, these features are listed below:

1. Distances between the centroid of the white circle c and the centroids of its

K-nearest black (nucleus) circles.

2. Distances between the centroid of the white circle c and the centroids of its

K-nearest white circles.

3. Polar angles between the line segments that start from the centroid of the

white circle c and ends at each of the centroids of its K-nearest black circles.

4. Polar angles between the line segments that start from the centroid of the

white circle c and ends at each of the centroids of its K-nearest white circles.

5. Areas of its K-nearest black circles.

6. Areas of its K-nearest white circles.
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7. Area of the white circle c.

These features are visually illustrated in Figure 3.6. The intuition behind

the definition of these features is that the relative spatial ordering of the closest

circles to a white circle differs inside and outside the glandular region. Near-

est black (nuclear) circles to a white circle in the glandular region are expected

to correspond to the epithelial cell nuclei, which have a characteristic ordering

around the gland body. In particular, while the nearest black circles generally

locate on one side of a gland circle, they are more homogeneously spread around

a non-gland circle. This ordering affects the polar angles they make with the

white circles inside the glandular region. Moreover, the epithelial cell nuclei are

generally larger than the stromal cell nuclei. In order to utilize this information,

area of the closest black circles are also considered. The same information is also

employed for the closest white circles. Similarly, the white circles inside the gland

body also have an ordering and size pattern, as opposed to the ones outside.

After clustering the white circles into two with respect to these features, we

automatically determine the gland circles and non-gland circles using the follow-

ing heuristic. For each of the clusters, we compute the average radius of the white

circles assigned to this cluster. Then, we label the cluster with greater average

radius as gland circles and the remaining as non-gland circles.

The results obtained by our seed detection step are illustrated on three sample

images in Figure 3.7. As shown in these images, the appearance of a gland

significantly changes when the sectioning angle changes; note that in all these

images the magnifications and the lighting conditions remain the same. In the

image in Figure 3.7 (a), the glands are circular and the epithelial cell nuclei,

the epithelial cell cytoplasms, and the luminal area are conspicious. Unlike, in

Figure 3.7 (c), glands appear relatively small. The epithelial cell cytoplasms and

the luminal area inside the glandular regions are less apparent. In Figure 3.7 (e)

due to the sectioning angle, taller and larger luminal areas appear.

In Figures 3.7(b), 3.7(d), and 3.7(f), the circles classified as gland are given in

red and the remaining non-glandular circles are given in green. These results show
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Figure 3.6: 5-nearest neighbors of a white circle and the features extracted from
these neighbors. Here, white and black circles are shown in green and in red,
respectively.

that the proposed seed detection algorithm is considerably adaptive to changes

in sectioning procedure. Note that here, there are some gland circles in some-

nonglandular regions. Such regions (and the circles) are to be eliminated in the

false gland elimination step.

After determining the white gland circles, we put these circles into the same

seed group if the distance between their boundary pixels is smaller than a thresh-

old (i.e., if their boundary pixels are close enough). Then we consider the cen-

troids of each group as a seed pixel.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Three sample colon tissue images (a, c, e) and the classification results
of the corresponding white circles (b, d, f). The red circles are classified as gland
and the green ones are classified as non-gland.

3.3.3 Region Growing

Once we have found a seed pixel for each gland candidate, the next step is to find

their initial inner borders. Our approach depends on the following characteristics

of gland regions:

• A gland region is surrounded by a chain of epithelial cells. In the iterative

double circle-fit transform of black cluster, there should be a chain of circles

at the border of the gland body. These circles should be close to their
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nearest neighbors.

• There is not any cell nucleus inside the gland body.After false nucleus elim-

ination, this region is expected to be empty.

We exploit these properties to find the correct places to set the dams where the

region growing is supposed to stop. We generate a graph of black circles where

the nodes are circle centroids and edges are one-pixel wide straight lines that

start from a circle centroid and end at another one. For each black circle c, the

edges are assigned as follows: First the image is separated into four quadrants

(see Figure 3.8). The circle c is connected to its K-nearest neighbor circles at

each quadrant if these circles are in its N-nearest neighborhood. We define K

as quadrant neighborhood cardinality and N as total neighborhood cardinality. In

Algorithm 4, the algorithm that generates the nucleus network on a binary image

(Io) is given. The output image Io is used in accordance with the seed pixels

that are found in the previous step for finding the initial inner borders of gland

candidates.

Figure 3.8: A circle centroid and its four quadrants.

The result of this algorithm on a sample image is shown in Figure 3.9. As

shown in this image, typically, there are not any edges passing through these

regions. These regions can be obtained as connected components by starting



CHAPTER 3. SEGMENTATION OF COLON GLANDS BY OBJECT GRAPHS31

Algorithm 4 Nucleus Network Generation Algorithm

1: function GenerateNucleusNetwork(I, K, N)
2: //I: False nucleus elimination output
3: //K: Quadrant neighborhood cardinality
4: //N : Total neighborhood cardinality
5: ImgSize ← SizeOf(I)
6: //Create an empty image of the same size as I and initialize to 0
7: Io ← CreateEmptyImage(ImgSize)
8: Io ← 0
9: for all c ∈ I do . For each circle in the image

10: for all ci ∈ I & ci 6= c do
11: dlist ← ‖ci − c‖
12: end for
13: neighOrder ← Sort(dlist)
14: numOfCirclesInQuad1 ← 0
15: numOfCirclesInQuad2 ← 0
16: numOfCirclesInQuad3 ← 0
17: numOfCirclesInQuad4 ← 0
18: for i ← 1, N do
19: ci ← neighOrder[i]
20: //Create a line segment from the centroid of c to that of ci

21: l ← CreateLineSegment(CentroidOf(c), CentroidOf(ci))
22: //Calculate the slope angle of line l w.r. to positive x-axis
23: A ← CalculateSlopeAngleOfLine(l)
24: if A <= 90 & numOfCirclesInQuad1 < K then
25: // Put one pixel wide line between the centroids of c and ci

26: DrawLine(Io, CentroidOf(c), CentroidOf(ci))
27: numOfCirclesInQuad1 + +
28: else if A > 90 & A <= 180 &

numOfCirclesInQuad2 < K then
29: DrawLine(Io, CentroidOf(c), CentroidOf(ci))
30: numOfCirclesInQuad2 + +
31: else if A > 180 & A <= 270 &

numOfCirclesInQuad3 < K then
32: DrawLine(Io, CentroidOf(c), CentroidOf(ci))
33: numOfCirclesInQuad3 + +
34: else if A < 270 & A < 360 &

numOfCirclesInQuad4 < K then
35: DrawLine(Io, CentroidOf(c), CentroidOf(ci))
36: numOfCirclesInQuad4 + +
37: end if
38: end for
39: end for
40: return Io

41: end function
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region growing from the seed pixels that are detected in the previous step and

stopping at the edges embedded into the image Io. The resultant initial inner

borders obtained after region growing are shown as overlaid on the tissue image

in Figure 3.9 (b). Note that here there are also some empty regions (e.g., the one

shown with red arrow in Figure 3.9 (a)) for which no gland region is found since

the white circles corresponding to these regions are labeled as non-gland.

(a) (b)

Figure 3.9: An example image, its nucleus network, and its gland candidates.

Among these gland candidate regions, some of them correspond to arbitrary

empty regions. These non-glandular regions will be detected as false glands by

means of a rule set that is generated in a supervised manner. The details are

described in the next section.

3.4 False Gland Elimination

Among the gland candidates obtained in the previous step, some of them do not

correspond to true glands (e.g., the ones shown in green arrows in Figure 3.9

(b)). These false glands can be considered as false alarms, hence they should be

eliminated.

We approach false gland elimination as a supervised learning problem. After

the region growing step, we have a number of initial gland regions. Let:

1. Ri be a gland region and r be the radius of Ri
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2. Ci be the convex hull of the pixels inside the gland region Ri

3. Ki be the K pixels-wide dilation belt around the convex hull Ci

4. Bi be the set of pixels at the boundary of the gland region Ri.

We extract the following features from these regions:

1. Number of white pixels inside the gland region Ri

2. Number of pink pixels inside the gland region Ri

3. Number of black pixels inside the gland region Ri

4. Percentage of white pixels inside the gland region Ri

5. Percentage of pink pixels inside the gland region Ri

6. Percentage of black pixels inside the gland region Ri

7. Area of Ri

8. Number of white pixels inside the convex hull Ci

9. Number of pink pixels inside the convex hull Ci

10. Number of black pixels inside the convex hull Ci

11. Percentage of white pixels inside the convex hull Ci

12. Percentage of pink pixels inside the convex hull Ci

13. Percentage of black pixels inside the convex hull Ci

14. Area of Ci

15. Number of white pixels inside the K-pixels wide dilation belt Ki

16. Number of pink pixels inside the K-pixels wide dilation belt Ki

17. Number of black pixels inside the K-pixels wide dilation belt Ki
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18. Percentage of white pixels inside the K-pixels wide dilation belt Ki

19. Percentage of pink pixels inside the K-pixels wide dilation belt Ki

20. Percentage of black pixels inside the K-pixels wide dilation belt Ki

21. Area of Ki

22. The standard deviation of the set:

S = {∀p ∈ Bi ‖p− r‖} (3.1)

A training set is generated from the feature vectors of the gland candidates

in a set of training images. Each gland candidate in the training set is manually

labeled as gland and non-gland. Then this labeled set is used to train a decision-

tree using c4.5 algorithm to obtain the corresponding rule set. This rule set is

used to eliminate the false glands. The rule set that we use in our work consists

of the following rules:

1. Rule 1: If number of pink pixels inside Ri ≤ 559 and percentage of pink

pixels inside Ki ≤ 34.098, then the candidate is a false gland.

2. Rule 2: If percentage of white pixels inside Ri > 6.872 and number of

black pixels inside Ci ≤ 1862 and number of white pixels inside Ki > 630

and percentage of pink pixels inside Ki ≤ 35.189, then the candidate is a

false gland.

3. Rule 3: If number of pink pixels inside Ri ≤ 559 and percentage of white

pixels inside Ki > 28.24, and percentage of pink pixels inside Ki ≤ 42.789,

then the candidate is a false gland.

4. Rule 4: If number of pink pixels inside Ri ≤ 1509 and percentage of pink

pixels inside Ki ≤ 26.489, then the candidate is a false gland.

5. Rule 5: If number of pink pixels inside Ri ≤ 2016, and number of black

pixels inside Ri > 674, and percentage of white pixels inside Ri > 2.746,

and percentage of pink pixels inside Ki > 26.469, and percentage of black

pixels inside Ki > 26.761, then the candidate is a false gland.
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Note that in this rule set only eight features are used although we extract 22

features. These features are shown in italic fonts in the list. The decision tree

selects the most discriminant features at the time of decision tree construction.

3.5 Detection of Gland Borders

Once the false glands are eliminated, the final step is to determine exact gland

borders. For that, we define an algorithm (see Algorithm 5) that inputs 1) the

regions of initial inner gland borders, 2) the iterative double circle-fit transform

of the black cluster, 3) radius R of the dilation belt in which epithelial cell nuclei

belonging to an inner gland region will be searched, and 4) a curve simplification

factor N.

First, each region is dilated by a circular structural element. Then the black

circles inside the dilated regions are found. These circles are sorted with respect

to polar angles between the line segment from the region centroid to their centroid

and the positive x-axis. This gives an ordered set of points (circle centroids), hence

a simple polygon. This polygon is then simplified by connecting its vertices in

their N-neighborhood in the vertex order (Sio) (lines 30-35) and filling the inner

region (line 36). The value of N adjusts the level of simplification. When N is set

to 1, the output will be the image of the particular simple polygon. When N is

set to the number of nuclei found in the region, the output will be the convex hull

of the polygon. In the algorithm, Ires is the image that contains the glandular

regions.

The result of this algorithm is visually illustrated in Figure 3.10. In this image,

the segmented glands are embedded in the tissue image and each segmented gland

is shown with a different color.
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Algorithm 5 Exact Gland Border Detection Algorithm

1: function DetectExactGlandBorders(Ifgo, Inc, R, N)
2: //Ifgo: False gland elimination output
3: //Inc: The circle-fit transform of black cluster
4: //R: Radius of the dilation belt
5: //N : Simplification factor
6: //For each connected component label r in the image
7: for all r ∈ Ifgo do
8: Ir ←(Ifgo = r)
9: se ←CreateCircularStructuralElementOfRadius(R)

10: Id ←Dilate(Ir, se)
11: //Set of black circles inside the region
12: Si ← ∅
13: //Set of black circles ordered with respect to polar angles
14: Sio ← ∅
15: ImgSize ← SizeOf(Ifgo)
16: Ires ← CreateEmptyImage(ImgSize)
17: for all c ∈ Inc do
18: //For each circle c
19: if c ∩ r 6= ∅ then Si ← Si ∪ c
20: end if
21: end for
22: for all ci ∈ Si do
23: //For each circle ci

24: //Find polar angle of ci about the centroid of c
25: dlist[ci] ←CalculatePolarAngleAboutPoint(ci, c)
26: end for
27: //Sort the circles in Si with respect to polar angles
28: Sio ←Sort(dlist)
29: Inh ← CreateEmptyImage(ImgSize)
30: for all ci ∈ Sio do
31: //For each circle ci

32: for k = 1 : N do
33: DrawLine(Inh, ci, c(i+k mod N))
34: end for
35: end for
36: FillRegion(Inh)
37: Ires ← Ires ∪ Inh

38: end for
39: return Ires

40: end function
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Figure 3.10: An example image and the exact borders of detected glands.



Chapter 4

Experiments

In this chapter, we explain our experiments on the histopathological images of

colon biopsies and discuss their results.

4.1 Experimental Setup

The dataset that we use in the experiments consists of 72 colon tissue images

taken from the biopsy samples of 36 patients. The images are acquired using a

20× microscope objective lens. The hematoxylin-and-eosin staining technique is

used. As stated in Section 3.4, false glands are eliminated with respect to a rule

set generated by training a decision tree classifier. From the images in the dataset,

24 images of 12 patients are used as the training set to train the decision tree

classifier. In order to represent the largest possible input space, sample images

with different visual characteristics are selected. The 48 images of the remaining

patients are used as the test set.

The experimental system is developed in ANSI C programming language, then

deployed on a UNIX-based server with two quad-core CPUs and 4 GB of main

memory. The processing of an image of resolution 480 × 640 lasts about 180

seconds on the server.

38
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4.2 Results

4.2.1 Parameter Selection

Our proposed method involves a set of input parameters. Those parameters need

to be set to optimum values in order to achieve the best performance. In this

work, the actual parameter values are selected by experimentation and visual

examination on the training samples. The descriptions of the input parameters,

their chosen values, and their effects to the segmentation accuracy are explained

below:

1. Circle area threshold : Minimum area of a circle that is produced by the iter-

ative double circle-fit transform. The circles with areas under this threshold

are eliminated. In the experiments, this threshold is set to 10 pixels for both

black and white clusters. As circle area threshold increases, iterative dou-

ble circle-fit transform produces less and greater circles. When applied to

black cluster, a greater threshold filters a large number of black circles.

This reduces the performance since some epithelial nuclei are eliminated.

A smaller threshold produces additional tiny circles, which behave as noise

and reduce the performance. On the other hand, when applied to white

cluster, increasing the threshold does not affect the performance until a

significantly large value is reached. A smaller threshold again produces ad-

ditional tiny circles, which distorts the pattern of white circles in a glandular

region, thus reduces performance.

2. Neighbor count : In the seed detection step, a white circle is classified as

gland or non-gland based on the features extracted from the spatial rela-

tionships between this white circle and its N-nearest white and N-nearest

black circles. Neighbor count N gives the number of the nearest neighbors.

In our experiments, 5-nearest neighbors of both black and white circles are

considered for each white circle. Extracting the features of a larger number

of nearest white and black circles does not increase the overall performance.



CHAPTER 4. EXPERIMENTS 40

When the number of features becomes significantly large, curse of dimen-

sionality occurs, hence the performance decreases.

3. Gland circle grouping proximity threshold : After white circles are classified

as gland and non-gland circles, they are grouped into components with

respect to an Euclidean proximity measure. If the smallest distance between

the boundary pixels of a pair of gland circles is smaller than this threshold,

these circles are assigned to the same component. In the experimental

configuration, a threshold of 2 pixels is chosen. A larger threshold would

connect farther white circles, hence produces larger groups. This reduces

the overall pixel-wise segmentation performance, since the connectivities of

white circles would flood out of actual border of small glands. A smaller

threshold, such as 1 pixel, may produce more than one connected component

inside a gland, hence lead to detection of two glands instead of one.

4. Isolation factors : During false nucleus elimination, the black circles that

are isolated from other black circles are considered as noise and eliminated.

Degree of isolation of a circle is determined by the distance to its nearest

neighbor and the total distance to its two-nearest neighbors. These dis-

tances are compared to a linear combination of the average and standard

deviation of distances of circles to their one-nearest and two-nearest neigh-

bors and if these distances are larger than the corresponding values for a

black circle c, the circle is eliminated. The coefficients of this combination

(K1 and K12) are defined as isolation factors. As these factors increase, the

black circles that are more significantly isolated from their neighbors will

be considered as false nuclei and will not be eliminated. In the opposite

case, more black circles will be eliminated, since a looser isolation criterion

is configured. In the experiments, K1 is set to 2.3 and K12 is set to 2.5.

5. Dilation belt radius : The dilation belt around an initial inner gland region

is used during both false gland elimination and detection of gland borders.

During the false gland elimination step, a set of features is extracted from

the dilation belts around the glands. These features identify the structure

of the dams surrounding the glands. As the radius of the structural element
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increases, the dilation belt will include the stromal region, hence the cor-

responding features will no longer be helpful for identification of the dam

structure. The same will be true when a significantly small radius is se-

lected, since in this case the features will represent only a portion of the

dam.

In detection of gland borders, the epithelial cell nuclei belonging to an in-

ner gland region are searched in the dilation belt with radius R around the

region. When a large radius is selected, some stromal cell nuclei may be

considered as the epithelial cell nuclei in the dam. This causes flooding of

the detected borders into stromal region, hence reduces pixel-wise segmen-

tation performance. A small radius entails misdetection of the cell nuclei in

the dam, which reduces performance. In our experiments, considering the

resolution of images that we work on, we select this radius as 7 pixels.

6. Quadrant and total neighborhood cardinalities : During nucleus graph prepa-

ration in the region-growing step, a black circle c is connected to its K-

nearest neighbor circles at each quadrant if these circles are in its N -nearest

neighborhood. The integers K and N are defined as quadrand neighborhood

cardinality and total neighborhood cardinality, respectively. As K and N

increase, connectivity in the nucleus graph increases, thus smaller initial

inner gland regions occur at the end of region growing. Smaller K and N

values cause the occurrence of a less connected nucleus graph, hence region

growing produces larger initial inner gland regions. In our experiments, we

set K to 2 circles and N to 15 circles.

7. Simplification factor : At the gland border detection step, the black circles

around a gland are identified and ordered with respect to their polar angles

from the centroid of the gland. Such an ordering gives a simple polygon,

which does not correspond to exact gland borders. A simplified form of this

polygon gives the gland borders more accurately. The polygon is simplified

by connecting its each vertex to its K-nearest neighbors by straight lines and

filling the resultant region. The factor K gives the degree of simplification,

hence referred to as simplification factor. If K is selected to be the number

of black circles around the gland, it will give the convex hull of the simple
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polygon, which may not provide the correct gland borders since a glandular

region is not necessarily convex. A small K will lead to a small degree of

simplification, which is also insufficient for detection of exact borders. In

our experiments, we select K to be 6.

8. Border threshold : The edges of the nucleus graph are expected to form

closed dams around the gland borders. Region growing iterations stop at

these edges, thus the inner regions of the glands are detected. An excep-

tional case occurs for the glands at the image boundaries. Polar ordering of

the epithelial cell nuclei around the gland centroid does not give the inner

region since only a subset of the nuclei at the dam are included in the image.

In order to handle this exception, the black circles with vertical or horizontal

pixel distance to the image border closer than this threshold are connected

to the borders by vertical or horizontal edges, respectively. This threshold

is set to 30 pixels in the experiments, considering the image resolution. A

larger threshold connects larger number of inner circles to image borders.

This causes separation of glands close to image borders. This would reduce

both pixel-based segmentation and detection performance, since two small

glands will be detected instead of a single gland. A smaller threshold will

connect less circles to borders. This time, the exception may remain for

some glands at the borders.

4.2.2 Segmentation Results

In Figures 4.1 to 4.8, segmentation results of 8 sample images are given. First

two of these samples (Figures 4.1 and 4.2) are taken from the training set and

the remaining 6 samples (Figures 4.3 to 4.8) are taken from the test set. In each

sample, the manually segmented glands (gold standard) are given in (a), the result

of our proposed method is given in (b), the result of the region-growing based

method proposed by Wu et al. [16] is given in (c) and the result of the directional

filtering based method proposed by Wu et al. [17] is given in (d). Both of these

methods use pixel-based information in the segmentation of glands. In contrast,

our method uses object-based information in gland segmentation. For both the
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region-growing based method and the directional filtering based method, some

parameters should be manually selected. For these methods, we conduct the

experiments over a large range of these parameters and for each image, we use

the parameters that yield the best segmentation performance and report these

best performance values. Note that although we optimize the parameters for each

image for these two methods, we use the same set of parameters for all images in

our proposed object-based method.

In the image shown in Figure 4.1, the glands appear in relatively oval shape.

However, the connective tissue between the glands is not apparent due to staining

artifacts. Our method detects all the glands but the ones at the very boundary of

the image (marked with red arrows in Figure 4.1 (b)). The region-growing based

method detects most of the glands (marked with green arrows in Figure 4.1 (c)).

Nevertheless, it is unable to eliminate the false glands on the connective tissue

(red arrows), all of which are eliminated in our method. Moreover, although the

nuclei boundaries are found for some of the glands (blue arrows), the entire gland

could not be detected as these boundaries do not form a closed dam (e.g., for

the ones shown in Figure 4.1 (c), the existence of gaps on the gland boundaries

cause not to find the entire glands). The directional filtering based method does

not produce such false glands, but in some cases one gland is detected instead of

two (e.g., for the ones shown with yellow arrows in Figure 4.1 (d), the algorithm

detects two individual glands as one). The borders of none of the glands are

detected as accurately as our method.

In Figure 4.2, another example with staining artifacts is demonstrated. Be-

sides, in this image, there are also glands with different sizes. As in the previous

sample, the connective tissue is not apparent. Our method detects the gland lo-

cated at the top left corner (marked with the yellow arrow) as two separate glands

and misses another gland (marked with the red arrow in Figure 4.2 (b)). The

region-growing based method detects three glands successfully (green arrows), in-

cluding the one at the top left corner, however there remains many false glandular

regions (red arrows) as in the previous sample. Similarly, although the borders of

some glands are partially detected, they could not be entirely segmented as there

are gaps in the detected borders (marked with blue arrow in Figure 4.2 (c)). One
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gland is detected with a flooded part (marked with the yellow arrow in Figure 4.2

(c)) which leaks out to the border of the neighboring misdetected gland. In the

directional filtering based method, two glands are detected successfully. However

there exists a very large region containing six glands (marked with the yellow

arrow in Figure 4.2 (d)). Considering these samples, it can be observed that our

method is less sensitive to staining artifacts than its pixel-based counterparts.

As opposed to the previous images, in the next image (Figure 4.3) the con-

nective tissue is apparent and glands have proper shapes and sizes. Our method

detects all the glands but the one located at the top right corner and the one

located at the very bottom of the image (marked with red arrows in Figure 4.3

(b)). However, the region-growing based method detects two of the glands with

entirety (marked with green arrows in Figure 4.3 (c)). It also detects one gland

with a part flooded to the neighboring gland as in the previous sample (marked

with the red arrow in Figure 4.3 (c)). The directional filtering based method

does not detect any glands with proper borders (Figure 4.3 (d)). Similar to the

image given in Figure 4.2 (d), there exists a very large region spreading around

the image, which corresponds to segmentation of none of the glands. Here, this

large spread is attributed to the difficulty of determining a threshold value that

can be applied to all of the glands. Note that although the directional filtering

based method finds partial glands, this gland segmentation could not be used

for further analysis as it is not able to separate the different glands. For further

analysis (for example the diagnosis and grading based on the features extracted

for a gland), the correct separation of individual glands is very important.

The image given in Figure 4.4 is taken in similar sectioning angle and lighting

conditions as the previous one. Our method is able to detect most of the glands

with almost exact borders, except two misdetected glands (marked with red ar-

rows Figure 4.4(b)) at the bottom and top right corners; again these glands are

located on boundaries and most of them are outside of the image. Additionally,

there is one gland at the bottom left of the image. Although this gland is suc-

cessfully detected, there are small problems at its boundaries. For this image,

the region-growing based method can only detect one gland with exact borders

(marked with green arrow in Figure 4.4 (c)) and detects another gland for which
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there are some problems in the detection of its surrounding nuclei; here the grow-

ing process of the nuclei does not stop properly. The directional filtering based

method is not able to detect any true glands; it detects one of the glands entirely,

but the boundaries are not identified successfully (marked with yellow arrow in

Figure 4.4 (d)). As shown in the last two examples, our method exhibits a sig-

nificantly superior performance regardless of the difference in gland sizes and the

staining conditions.

For the images in Figures 4.5 and Figure 4.6, our method detects most of

the glands with correct borders. While the region-growing based method misses

most of the glands, the directional filtering based method produces many partial

illegitimate segmentations and some other segmentations that include the regions

of more than one gland.

In the image shown in Figure 4.7, the glands appear smaller and the epithelial

cytoplasms are less apparent compared to the previous ones. As shown in Figure

4.7 (b), our method detects almost all of the glands in such an image. However,

the region-growing based method detects only one gland with correct borders

(marked with green arrow in Figure 4.7 (c)). Here the incorrect segmentation of

the region-growing based method is attributed to the small gland sizes. In the

region-growing based method, the growing process starts with the large circular

white region. For this image, such white regions are not found in many of the

glands. The directional filtering based method detects only a small subset of

glands producing many additional regions that do not correspond to a gland.

In the image given in Figure 4.8, the connective tissue and the nuclei are

apparent, but there exist empty white regions surrounding the glands due to

the sectioning procedure. Our method detects all the glands except the one on

the top left corner only a very small portion of which is in the image scene.

The region-growing based method also detects most of the glands for this image

since the region-growing process could stop properly as the surrounding nuclei

are relatively more apparent; however the directional filtering based method does

not detect any glands with correct borders.

To obtain a quantitative evaluation of the performance of our proposed
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(a) (b)

(c) (d)

Figure 4.1: On an exemplary tissue image: (a) gold standard which is obtained
by manual segmentation, (b) the segmentation result of our proposed method, (c)
the segmentation result of the region growing based method proposed in [16], and
(d) the segmentation result of the directional filtering based method proposed in
[17].

method, we calculate several measures. We also calculate the same measures

for two pixel-based methods, which are proposed by Wu et al. [16, 17], and

compare the success of our proposed method with those of these methods.

In our experiments, for each pixel, the segmentation result of the method is

compared with the gold standard. A pixel that corresponds to a glandular region

in both the segmentation result and the gold standard is defined as true positive

(TP ). A pixel that corresponds to a glandular region in the gold standard but

not in the segmentation result is defined as false negative (FN). A pixel that

corresponds to a glandular region in the segmentation result but not in the gold

standard is defined as false positive (FP ). A pixel that does not correspond

to a glandular region in both the segmentation result and the gold standard is
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(a) (b)

(c) (d)

Figure 4.2: On an exemplary tissue image: (a) gold standard which is obtained
by manual segmentation, (b) the segmentation result of our proposed method, (c)
the segmentation result of the region growing based method proposed in [16], and
(d) the segmentation result of the directional filtering based method proposed in
[17].

defined as true negative (TN). When evaluating the performance, we refer to the

following three metrics:

• Sensitivity : The probability that a test will produce a true positive result

on the pixels that belong to a glandular region determined by the gold

standard ( TP
TP+FN

).

• Specificity : The probability that a test will produce a true negative result

on the pixels that belong to a non-glandular region determined by the gold

standard ( TN
TN+FP

).

• Accuracy : The probability that the system will produce a correct classifi-

cation as compared to the gold standard ( TP+TN
TP+FN+FP+TN

).
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(a) (b)

(c) (d)

Figure 4.3: On an exemplary tissue image: (a) gold standard which is obtained
by manual segmentation, (b) the segmentation result of our proposed method, (c)
the segmentation result of the region growing based method proposed in [16], and
(d) the segmentation result of the directional filtering based method proposed in
[17].

The average performances of our object-based method and the previous pixel-

based methods and their standard deviations are reported for training and test

sets in Tables 4.1 and 4.2, respectively. As shown in these tables, our method

provides performances above 80 percent with reasonable standard deviation in all

metrics. The sensitivity of the region-growing based method is as low as 22 per-

cent where its specificity is 95.3 percent, which means that the method eliminates

most of the regions as false glands and rarely detects a true gland. The accuracy is

still 52.5 percent thanks to the highest true negative rate. The directional filtering

based method exhibits performances about 50 percent for sensitivity, specificity,

and accuracy. This implies that it detects more true glands but also more false

glands compared with the region-growing based method. The statistics given
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(a) (b)

(c) (d)

Figure 4.4: On an exemplary tissue image: (a) gold standard which is obtained
by manual segmentation, (b) the segmentation result of our proposed method, (c)
the segmentation result of the region growing based method proposed in [16], and
(d) the segmentation result of the directional filtering based method proposed in
[17].

in the tables reveal that our method greatly improves the performances of the

pixel-based methods. In order to understand whether or not this improvement is

significant, we use a statistical test. Using the Wilcoxon test with a significance

level of 0.1, the results show that the segmentation accuracy of our method are

significantly better than those of the other two methods. The performance result

of each image in the training set and the test set is given in Table A.1 and Table

A.2 in the appendix, respectively.

The fact that the sensitivity of the directional filtering based method is higher

than 50 percent (see Tables 4.1 and 4.2) is inconsistent with visual observation,

considering the visual examples given in Figures 4.1 (d)-4.8 (d) where only a few
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(a) (b)

(c) (d)

Figure 4.5: On an exemplary tissue image: (a) gold standard which is obtained
by manual segmentation, (b) the segmentation result of our proposed method, (c)
the segmentation result of the region growing based method proposed in [16], and
(d) the segmentation result of the directional filtering based method proposed in
[17].

glands are successfully detected. This is due to the nature of pixel-based perfor-

mance evaluation scheme, in which gland-level identification is not considered.

This causes problems in performance evaluation of results as given in Figure 4.2

(d) where a very large component (the one shown with yellow arrow in the fig-

ure) spans multiple number of glands. Since all of the pixels corresponding to

a gland in the gold standard are considered as true positive, such large com-

ponents severely increase performance although none of the glands are properly

segmented. In order to obtain a more reliable evaluation of performance at pixel

level, we make two modifications to the pixel-based evaluation method:

1. Each connected component in the resulting image corresponds to only one
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(a) (b)

(c) (d)

Figure 4.6: On an exemplary tissue image: (a) gold standard which is obtained
by manual segmentation, (b) the segmentation result of our proposed method, (c)
the segmentation result of the region growing based method proposed in [16], and
(d) the segmentation result of the directional filtering based method proposed in
[17].

gland, and thus, the remaining pixels belonging to other glands contained

by the connected component will be considered as false positive.

2. A gland is considered to be detected if its centroid is contained by a con-

nected component. The components that intersect with the gland region

but does not contain its centroid are considered as false positive. For exam-

ple, for the component shown with blue arrow in Figure 4.8 (d), the pixels

are not considered to be correctly segmented.

The average performances of the methods and their standard deviations calcu-

lated with this modified pixel-based scheme are reported for training and test sets

in Tables 4.3 and 4.4, respectively. The tables show that the performance of our
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(a) (b)

(c) (d)

Figure 4.7: On an exemplary tissue image: (a) gold standard which is obtained
by manual segmentation, (b) the segmentation result of our proposed method, (c)
the segmentation result of the region growing based method proposed in [16], and
(d) the segmentation result of the directional filtering based method proposed in
[17].

method almost remains the same, while the performances of alternative methods,

especially the filtering based method, severely decrease. When the Wilcoxon test

with a significance level of 0.1 is applied, the superiority of the segmentation ac-

curacy of our method to both alternatives remains statistically significant for this

performance evaluation scheme. The performance of each image in the training

and the test sets is given in Table A.3 and A.4, respectively.

The gland segmentation performance of a method can be calculated consider-

ing the percentages of glands that the method identifies with legitimate borders,

those that it misses, and those it identifies with unreasonable borders. This

provides a higher level means for performance evaluation than the pixel-based

approach. The gland-based segmentation results for the training and test sets
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(a) (b)

(c) (d)

Figure 4.8: On an exemplary tissue image: (a) gold standard which is obtained
by manual segmentation, (b) the segmentation result of our proposed method, (c)
the segmentation result of the region growing based method proposed in [16], and
(d) the segmentation result of the directional filtering based method proposed in
[17].

are reported in Tables 4.5 and 4.6, respectively. In these tables, the average of

the sensitivity, specificity, and accuracy values and their standard deviations are

given. The corresponding performances for each image are also reported in Ap-

pendix; in Table A.5, for the images in the training set, and in Table A.6, for

the images in the test set. In Tables 4.5 and 4.6, glands that are detected with

legitimate borders are considered as truly identified glands and the correspond-

ing percentages for our method and the other two methods are reported in the

columns with header True Gland Percentage. The glands for which illegitimate

borders, such as ones that flood out to other glands (e.g., the ones shown with

yellow arrows in Figure 4.2 (c)) or multiple tiny glands inside one gland (e.g.,

the ones shown with blue arrows in Figure 4.1 (c)), are defined to be glands with
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Sensitivity Specificity Accuracy
Our Method 0.839 ± 0.126 0.880 ± 0.067 0.871 ± 0.048
Region-Growing 0.244 ± 0.221 0.953 ± 0.051 0.544 ± 0.138
Directional Filtering 0.517 ± 0.328 0.646 ± 0.351 0.557 ± 0.188

Table 4.1: The pixel-based performance of our method and the methods proposed
by Wu et al. [16, 17]. Here, we report the average sensitivity, specificity, and
accuracy values obtained on the training set and their standard deviation.

Sensitivity Specificity Accuracy
Our Method 0.863 ± 0.083 0.805 ± 0.105 0.844 ± 0.069
Region-Growing 0.220 ± 0.184 0.953 ± 0.060 0.525 ± 0.124
Directional Filtering 0.552 ± 0.335 0.522 ± 0.387 0.554 ± 0.118

Table 4.2: The pixel-based performance of our method and the methods proposed
by Wu et al. [16, 17]. Here, we report the average sensitivity, specificity, and
accuracy values obtained on the test set and their standard deviation.

misdetected borders. Their percentage of occurrence for the three methods are

reported in the columns with header Illegitimate Border Detection Percentage.

The glands with no regions are detected or the glands only a small portion of

which are detected are considered as misdetected glands (e.g., the ones shown

with red arrows in Figure 4.4 (d)). The corresponding percentages are reported

in the columns with header Misdetected Gland Percentage. The ratio of false

alarms to all alarms are defined as false positive percentage and reported in the

columns with header False Alarm Percentage.

The results in Tables 4.5 and 4.6 demonstrate that the average true gland

detection performance of our method is significantly higher than the previous

pixel-based methods; 81.0 percent for the training set and 73.1 percent for the

test set, while the other two methods perform lower than 16 percent for both

training and the test sets. The percentage of gland detections with illegitimate

borders is as low as 3.6 percent in our method, whereas in the directional-filtering

method this percentage is larger than 78 percent. Our method misses 23.3 percent

of the glands, while this value is 71.3 percent in the region-growing based method.

This implies that the region-growing based method misses a very large percent of

the glands. The filtering-based method detects a very large percent of the glands

with wrong borders. In contrast, our method truly detects most of the glands.
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Sensitivity Specificity Accuracy
Our Method 0.833 ± 0.132 0.864 ± 0.071 0.862 ± 0.058
Region-Growing 0.172 ± 0.181 0.894 ± 0.115 0.493 ± 0.132
Directional Filtering 0.168 ± 0.246 0.537 ± 0.295 0.351 ± 0.247

Table 4.3: The modified pixel-based performance of our method and the methods
proposed by Wu et al. [16, 17]. Here, we report the average sensitivity, specificity,
and accuracy values obtained on the training set and their standard deviation.

Sensitivity Specificity Accuracy
Our Method 0.844 ± 0.097 0.800 ± 0.101 0.829 ± 0.084
Region-Growing 0.179 ± 0.166 0.918 ± 0.091 0.494 ± 0.126
Directional Filtering 0.094 ± 0.102 0.433 ± 0.330 0.274 ± 0.177

Table 4.4: The modified pixel-based performance of our method and the methods
proposed by Wu et al. [16, 17]. Here, we report the average sensitivity, specificity,
and accuracy values obtained on the test set and their standard deviation.

According to the Wilcoxon test with significance level of 0.1, our method yields

significantly more accurate results than its pixel-based counterparts.

Illegitimate
True Border Misdetected False
Gland Detection Gland Alarm
Percentage Percentage Percentage Percentage

Our Method 0.810 ± 0.171 0.011 ± 0.056 0.179 ± 0.147 0.046 ± 0.101
Reg. Grow. 0.158 ± 0.266 0.177 ± 0.200 0.665 ± 0.347 0.495 ± 0.416
Dir. Filt. 0.143 ± 0.219 0.754 ± 0.229 0.104 ± 0.121 0.593 ± 0.378

Table 4.5: The gland-based performance of our method and the methods proposed
by Wu et al. [16, 17]. The average true gland detection percentage, the percentage
of glands detected with illegitimate borders, the percentage of misdetected glands,
and the percentage of false alarms and their standard deviation are reported for
the training set.

In the visual examples given in Figures 4.1 to 4.8, it can be visually observed

that some of the glands that are close to the image borders and that are partially

in the scene are misdetected. This is as expected since the assumptions are

made for the glands completely inside the scene, and these assumptions may

not be valid for partially apparent ones. As an example, the luminal area in

the middle of the gland may be out of the scene (e.g., the glands shown in red

arrows in Figure 4.1 (b)). Furthermore, for only such glands, only some of the



CHAPTER 4. EXPERIMENTS 56

Illegitimate
True Border Misdetected False
Gland Detection Gland Alarm
Percentage Percentage Percentage Percentage

Our Method 0.731 ± 0.196 0.036 ± 0.106 0.233 ± 0.125 0.086 ± 0.109
Reg. Grow. 0.100 ± 0.150 0.187 ± 0.248 0.713 ± 0.253 0.455 ± 0.405
Dir. Filt. 0.061 ± 0.095 0.782 ± 0.218 0.157 ± 0.201 0.522 ± 0.393

Table 4.6: The gland-based performance of our method and the methods proposed
by Wu et al. [16, 17]. The average true gland detection percentage, the percentage
of glands detected with illegitimate borders, the percentage of misdetected glands,
and the percentage of false alarms and their standard deviation are reported for
the test set.

epithelial cell nuclei are apparent in the scene. In order to evaluate the effect

of misdetection of such glands to overall performance, we re-evaluate the pixel-

based performances by excluding the glands with centroids closer to the image

borders than 40 pixels and reported the average performances and the standard

deviations in Tables 4.7 and 4.8 for the training and test sets, respectively. The

corresponding performances for each image are also given in Tables A.7 and A.8,

respectively. The tables show that when the glands close to borders are excluded,

the performances of all methods increase. However, the difference in the results

of our method and those of the others still remain significant with respect to the

Wilcoxon test with significance level of 0.1.

Sensitivity Specificity Accuracy
Our Method 0.847 ± 0.137 0.871 ± 0.070 0.873 ± 0.058
Region-Growing 0.176 ± 0.184 0.900 ± 0.111 0.509 ± 0.136
Directional Filtering 0.156 ± 0.246 0.702 ± 0.251 0.420 ± 0.211

Table 4.7: The modified pixel-based performance of our method and the methods
proposed by Wu et al. [16, 17]; the glands with centroids closer to the image
boundaries than 40 pixels are excluded. Here, we report the average sensitivity,
specificity, and accuracy values obtained on the training set and their standard
deviation.
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Sensitivity Specificity Accuracy
Our Method 0.865 ± 0.102 0.814 ± 0.095 0.844 ± 0.083
Region-Growing 0.184 ± 0.171 0.926 ± 0.084 0.511 ± 0.129
Directional Filtering 0.059 ± 0.095 0.737 ± 0.283 0.375 ± 0.133

Table 4.8: The modified pixel-based performance of our method and the meth-
ods proposed by Wu et al. [16, 17]; the glands with centroids closer to the image
boundaries than 40 pixels are excluded. Here, we report the average sensitiv-
ity, specificity, and accuracy values obtained on the test set and their standard
deviation

4.2.3 Discussion

The proposed method can be used as an infrastructure for further biopsy analysis.

For example, such an infrastructure could be used for detecting cancerous glan-

dular structures. In colon tissues with low-grade cancer, the structures of glands

are distorted. Their shapes turn into arbitrary convex curves. The amount of

epithelial cell cytoplasms decreases, while the number of epithelial cells increases.

Hence, the nuclear dams around glands get thicker. These facts can be used

to determine if such a malignant gland exists in the image, and in case of the

existence of such glands, the tissue can be classified as cancerous. A promising

solution could be obtained for detection of such malignant glands by extracting

a set of features for a larger dilation belt (as the nuclei dam around glands get

thicker) and using this feature set for classification. To illustrate the use of such

a system, we obtain the gland borders by our proposed algorithm and extract

the same set of seven features for a larger dilation belt Li with a radius of 41

pixels. Subsequently, training a decision tree classifier on these seven features,

we classify the glands as cancerous and other. The rule set R2 generated by the

decision tree classifier is given below:

1. Rule 1: If number of black pixels inside Ri > 1975 and percentage of black

pixels inside Ri ≤ 4.688, then the gland is not cancerous.

2. Rule 2: If percentage of black pixels inside Ri > 53.893 and percentage of

pink pixels inside Ki > 43.966 and percentage of pink pixels inside Li ≤
51.551, then the gland is not cancerous.
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3. Rule 3: If number of black pixels inside Ki ≤ 996 and percentage of white

pixels inside Li ≤ 29.615 and percentage of pink pixels inside Li ≤ 41.044,

then the gland is not cancerous.

4. Rule 4: If percentage of white pixels inside Li > 37.598, then the gland is

not cancerous.

5. Rule 5: If percentage of pink pixels inside Ki ≤ 43.966, then the gland is

not cancerous.

6. Otherwise: The gland is cancerous.

We apply this rule set to four cancerous and four non-cancerous tissues. The

results for the images of these tissues are given in Figures 4.9 and 4.10. In the

images given in Figures 4.9 (a,c,e,g), the blue components correspond to the

output of our proposed method. In the images shown in Figure 4.9 (b,d,f,h), the

red components are identified as cancerous by the rule set R2. When the same

method is applied to healthy images, all healthy glands are eliminated by the

rule set R2, hence no cancerous glands are identified (see Figure 4.10). For a

future study, the proposed method can further be developed so that more glands

with low-grade cancer are detected with more accurate borders. For colon tissues

with high-grade cancer, an object-based texture analysis approach can be used

to capture the global structure of primitive objects, rather than detecting the

borders of these glands, since the gland structure disappears in such higher grades.

Such an infrastructure could also be used for detecting other types of anomalies

rather than cancer. For such anomalies, the morphological or structural features

could be extracted for each identified gland and decisions could be made based

on these features.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: (a,c,e,g): Glands segmented by our proposed system are shown in
blue, and (b,d,f,h): cancerous glands detected by the second-level decision tree
classifier R2 are shown in red.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.10: (a,c,e,g): Glands segmented by our proposed system are shown in
blue, and (b,d,f,h): cancerous glands detected by the second-level decision tree
classifier R2 are shown in red. Note that the decision tree classifier R2 does not
detect any cancerous glands for these images.



Chapter 5

Conclusion

In this thesis, we presented an object-based method for segmentation of colon

glands in microscopic biopsy images. This method greatly improves the per-

formance of its pixel-based counterparts in terms of sensitivity, specificity, and

accuracy as it utilizes the spatial distributions of pixel groups corresponding to

different histological structures. The object-based nature of the method also

provides tolerance to noise and artifacts that arise from sectioning procedures,

considering its high success rate on a dataset comprising images with a consider-

able amount of noise and artifacts.

Our proposed method involves decomposing the image into a set of circular

objects. Such a representation of an image defines a transformation, which we

refer to as the circle-fit transform. This transform provides a circular representa-

tion of histological structures in the tissue. Such a representation of luminal and

nuclear objects enables extraction of discriminative features for location of the

glands. The circles corresponding to nuclear objects are used to locate the dam

of the epithelial cells surrounding a gland, and hence, they lead to detection of

exact gland borders.

This object-based method provides an infrastructure for further biopsy anal-

ysis. It could be extended for detection of cancerous glands for tissues with

low-grade cancer. The morphological or structural features of the segmented

61
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glands could be used for automated detection, identification, and grading of other

anomalies as well. One of the future research directions is to implement such auto-

mated systems. Another future work is to apply texture analysis techniques that

use the proposed object-based representation for detection of anomalies (such as

high-grade cancer) in which the gland structure disappears.



Appendix A

Performance Results of Images

The performance results obtained on each individual image are calculated using

various performance evaluation schemes, which are explained in Subsection 4.2.2.

These results are reported in Tables A.1, A.2, A.3, A.4, A.5, A.6, A.7, and A.8.

The average and standard deviation of performances for training and test sets

with respect to these schemes are given in Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,

and 4.8, respectively.

63
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