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Abstract

We investigate the well-known anomalous differences in the approximability properties
of NP-complete optimization problems. We define a notion of polynomial time reduction
between optimization problems, and introduce conditions guaranteeing that such reductions
preserve various types of approximate solutions. We then prove that a weighted version
of the satisfiability problem, the traveling salesperson problem, and the zero-one integer
programming problem are in a strong sense approximation complete for the class of NP
minimization problems. Finally, we discuss the reasons that cause the standard relative
error approximation quality measure to break down in computationally simple problem
transformations, and give a general construction for producing quality measures that are
more robust with respect to an arbitrary given class of invertible transformations.

1 Introduction

Since many optimization problems are NP-complete, and thus probably not solvable in poly-
nomial time, approximate solution methods for them are of great interest. An approximation
algorithm (cf. [9]) for an optimization problem is a polynomial time algorithm that always
produces feasible, but not necessarily optimal solutions. The quality of the approximate so-
lutions is commonly measured by their relative error; if s is an approximate solution, s∗ is a
corresponding optimal solution, and c is the cost function, the quality of s is taken to be

µr(s) =
c(s) − c∗(s)

c(s∗)

(for definiteness, we assume we are dealing with a minimization problem). An approximation
algorithm is said to have bounded error, if there is an ε > 0 such that for all solutions s

produced by the algorithm, µr(s) ≤ ε. A polynomial time approximation scheme (PTAS) is a
sequence of algorithms such that for every ε > 0, some algorithm in the sequence guarantees
µr(s) ≤ ε for all s.

∗Work supported by the Academy of Finland.
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While many practical and efficient approximation algorithms have been devised (cf. [9,
16]), a number of theoretical issues remain unsettled. Perhaps the most perplexing one con-
cerns the observed differences in the approximability properties of NP-complete problems:
some problems have a PTAS (e.g. the knapsack problem); some have bounded error approxi-
mations but a PTAS only if P = NP (e.g. the bin packing problem1); and others do not have
even bounded error approximations unless P = NP (e.g. the traveling salesperson problem,
when not constrained by the triangle inequality) [9, 19]. Such differences appear rather un-
expected, as the set recognition versions of these problems are so strongly interreducible (in
fact, polynomial time isomorphic [4]).

Several authors have suggested that these differences be investigated by considering reduc-
tions between problems that are more sensitive to optimization structure than the standard
polynomial time many-one (≤p

m) reductions between sets [3, 11, 13, 17]. (For a survey of
this work, see [6].) A natural optimization analogue of ≤p

m-reducibility (actually, ≤p
1−tt-

reducibility) was defined by Ko in his thesis [11], but this work has unfortunately remained
little known. Most of the other definitions suggested in the literature have failed to capture
some aspect of the situation: the reductions in [13] only require that optimal, not approxi-
mate, solutions are preserved, whereas the reductions in [3] are overly strict about preserving
the complete structure of the solution space. The “ratio preserving” reductions of [17] make
the stringent requirement that the optimal cost associated with any problem instance be
preserved up to a multiplicative constant, but in the “constructive” version of the reductions
attention is again only paid to the optimal, not approximate solutions.

In Section 2 of this paper we give our definitions of optimization reductions that preserve
different types of approximations. These are essentially the same as Ko’s, although indepen-
dently conceived. In addition to our work, these notions have been used by Crescenzi and
Panconesi in related studies [8], and very similar definitions have been put forth recently by
Berman and Schnitger in [5].

The main results of our paper are contained in Section 3, where we prove that a weighted
version of the satisfiability problem, the traveling salesperson problem, and the zero-one in-
teger programming problem are in a strong sense approximation-preserving complete for the
class of NP minimization problems. Results analogous to ours on the weighted satisfiability
problem have appeared in the literature before [3, 17], but the results concerning the approxi-
mation completeness of the TSP and zero-one programming are the first truly natural ones of
this kind. (The completeness of zero-one programming has been noted, independently, also by
Berman and Schnitger [5].) The significance of such completeness results is that they provide
an explanation for the unapproximability of certain problems. For instance, whereas the stan-
dard unapproximability proof for the TSP is based on an uninformative weight-assignment
trick we now know that the “reason” for the unapproximability of this problem lies in its
combinatorial richness: the problem of approximating any NP minimization problem can be
encoded into the problem of approximating the TSP. A notion of completeness is of course
also a potentially very useful tool: as an example, the fact that zero-one integer programming
is unapproximable unless P = NP, though hardly surprising, seems not to have been noted
in the literature before.

In Section 4 we investigate further into what causes the standard relative error quality
measure to break down even in very simple reductions. Intuitively, we locate the reason in

1To be precise, bin packing does have a PTAS in the asymptotic sense that for every ε, some algorithm
guarantees µr(s) ≤ ε for all sufficiently large s [10].
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the incongruence between the computational nature of the reductions and the arithmetical
nature of the measure. The question then arises whether it is in general possible, given some
class of simple reductions, to have an approximation quality measure that respects these
reductions, in the sense of being invariant under them. We give a general construction for
producing such a measure, when all the solution mappings associated with the reductions are
invertible. This part of our study was inspired by similar work done in the context of zero-one
programming problems by Zemel [20]. In some sense, our results are a generalization of his,
but the techniques used are completely different.

2 Optimization problems, approximations, and reductions

Following [9], we represent an optimization problem Π as a triple (D,S, c), where D is the
set of instances, S is the set of feasible solutions, and c is the solution cost function. To each
instance x ∈ D there is associated a finite subset S(x) of the solutions, and the cost function
maps pairs 〈x, s〉, where x ∈ D and s ∈ S(x), to nonnegative integers. Given an instance x,
the objective in solving the problem is to locate a solution s∗ ∈ S(x) with minimal cost. (For
simplicity, we consider here only minimization problems.) Thus, the optimal cost associated
with an instance x ∈ D is

c∗(x) = min{c(x, s) : s ∈ S(x)},

and the set of optimal solutions is

Opt(x) = {s∗ ∈ S(x) : c(x, s∗) = c∗(x)}.

For uniformity, we assume that all problems are coded over the binary alphabet Σ = {0, 1},
so that D and S are subsets of Σ∗. Further, we assume that for each s ∈ S there is only one
x ∈ D such that s ∈ S(x); we denote this x by I(s), and assume that the mapping I can
be computed in polynomial time. (This partitioning of the solution space may of course be
effected artificially by replacing the set S by the set S′ = {〈x, s〉 : x ∈ D, s ∈ S(x)}, where
〈, 〉 is some standard pairing function.) This assumption enables us to use the abbreviation
c(s) for the cost c(I(s), s), and to say that a solution s is optimal when s ∈ Opt(I(s)).

Problem Π = (D,S, c) is an NP optimization problem, if the sets D and S are in P, the
function c is polynomial time computable, and there is a polynomial p such that for all s and
x, the condition s ∈ S(x) implies that |s| ≤ p(|x|). (Here |w| denotes the length of a string
w ∈ Σ∗.) These conditions imply that the predicate “s ∈ S(x)” is computable in polynomial
time, and the set

LΠ = {〈x, k〉 : x ∈ D, c∗(x) ≤ k}

is in NP. (Integers are represented in binary notation, without leading zeros.) An NP
optimization problem Π is said to be NP-complete, if the associated set LΠ is NP-complete.

An additional assumption concerning NP optimization problems we make is that for each
x ∈ D, some element triv(x) ∈ S(x) can be computed in polynomial time. While some
natural problems do not have this property, it can usually be ensured by admitting, perhaps
artificially, some trivial feasible solutions.

An approximation algorithm for a problem Π is any polynomial time algorithm A : D → S,
such that for each x ∈ D we have A(x) ∈ S(x). Several measures have been introduced for
assessing the quality of solutions produced by such algorithms. The most commonly used is
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the relative error measure, defined as

µr(s) =
c(s) − c∗(I(s))

c∗(I(s))
,

if c(I(s)) > 0, and as µr(s) = c(s) if c(I(s)) = 0. Other examples are the absolute error
measure

µa(s) = c(s) − c∗(I(s)),

and the normalized relative error measure [1, 3]

µn(s) =
c(s) − c∗(I(s))

c0(I(s)) − c∗(I(s))
,

where c0(x) = max{c(s) : s ∈ S(x)}.
Still other quality measures, some of them of a very different type, have been considered

by Zemel [20] in the context of zero-one integer programming problems.
In general, we may define a measure of approximation quality (for a problem Π) to be a

function µ : S → R+ such that for optimal s∗ we have µ(s∗) = 0. The measure is unbounded
if it may assume arbitrarily large values, and cost-respecting if c(s1) ≤ c(s2) implies that
µ(s1) ≤ µ(s2). All the measures mentioned above are cost-respecting, and all except µn are
unbounded (for appropriate Π).

Given a function f : N → R+, an approximation algorithm A for a problem Π is said to
be an f(n)-approximation algorithm (with respect to a quality measure µ), if for all x ∈ D,
µ(A(x)) ≤ f(|x|). We say that a problem has a bounded approximation if it has an ε-
approximation algorithm for some constant ε > 0. A stronger requirement is that a problem
have a polynomial time approximation scheme (PTAS). This is a sequence A1, A2, . . . of
approximation algorithms such that for every constant ε > 0, some algorithm Ai in the
sequence provides an ε-approximation.

Let Π1 = (D1, S1, c1) and Π2 = (D2, S2, c2) be two optimization problems. A pair (f, g)
of polynomial time computable functions is an optimization reduction from Π1 to Π2 if f

maps D1 to D2 and g maps D1 × S2 to S1, so that for each x ∈ D1 and t ∈ S2(f(x)) we
have g(x, t) ∈ S1(x). In addition, we require that for each x ∈ D1 and t∗ ∈ Opt(f(x))
we have g(x, t∗) ∈ Opt(x). If there is an optimization reduction from Π1 to Π2, we denote
Π1 ≤p

o Π2. Clearly, if Π1 ≤p
o Π2 and Π2 can be solved in polynomial time, then so can Π1.

The ≤p
o-reducibility is the analogue for optimization problems of the polynomial time many-

one reducibility (more precisely, polynomial time one-query truth table reducibility) between
sets.

We now consider conditions on optimization reductions to guarantee that they preserve
various types of approximations. Let (f, g) be a reduction from problem Π1 = (D1, S1, c1)
to problem Π2 = (D2, S2, c2), and let µ be an approximation quality measure. (Actually we
should have a different measure for each problem, but context will always make clear which
one is meant.) The strongest requirement is that the reduction be strict, by which we mean
that µ(g(x, t)) ≤ µ(t) holds for all x ∈ D1 and t ∈ S2(f(x)). The reduction is bounded if for
every r > 0 there exists an R > 0 such that µ(t) ≤ r implies µ(g(x, t)) ≤ R, for all x ∈ D1,
t ∈ S2(f(x)). The reduction is continuous if for every R > 0 there exists an r > 0 such that
for almost all x ∈ D1 and t ∈ S2(f(x)), µ(t) ≤ r implies µ(g(x, t)) ≤ R.

Of course, every strict reduction is also bounded and continuous. The motivation for the
weaker notions is the following simple result, showing that bounded and continuous reductions
preserve bounded approximations and approximation schemes, respectively.
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Proposition 2.1 (i) If Π1 ≤p
o Π2 via a bounded reduction, and Π2 has a bounded approx-

imation, then so does Π1.

(ii) If Π1 ≤p
o Π2 via a continuous reduction, and Π2 has a PTAS, then so does Π1. 2

To build a reasonable theory, we need to verify that our reductions are transitive.

Proposition 2.2 If Π1 ≤p
o Π2 via a strict (bounded, continuous) reduction, and Π2 ≤p

o Π3

via a strict (bounded, continuous) reduction, then also Π1 ≤p
o Π3 via a strict (bounded,

continuous) reduction. 2

3 Approximation complete problems

Let C be a class of optimization problems and µ an approximation quality measure. A
problem Π is (strictly, bounded, continuous) complete for the class C w.r.t. measure µ if
Π ∈ C and every Π′ ∈ C is reducible to Π via a (strict, bounded, continuous w.r.t. µ)
optimization reduction. Clearly strictly complete problems are also bounded and continuous
complete.

Since there exist NP optimization problems that do not have bounded approximations
unless P = NP, no bounded complete NP optimization problem can have a bounded approxi-
mation unless P = NP. A similar situation holds w.r.t. PTAS for problems that are continuous
complete in the class APX, the class of NP optimization problems with bounded error ap-
proximations. The class APX and its complete problems have been studied by Crescenzi
and Panconesi in [8], and a very interesting subclass MAX NP of APX, together with an
appropriate completeness notion, was introduced by Papadimitriou and Yannakakis in [18]
(see also [15]). We concentrate here on the class of all NP minimization problems.

Theorem 3.1 The following problem is strictly complete for the class of NP minimization
problems w.r.t. any cost-respecting quality measure µ.

Weighted Satisfiability (WSAT)

Instance: Boolean formula F , with nonnegative integer weights w(p) on the
variables appearing in F .

Objective: Find a truth assignment t(p) to the variables that satisfies F and
minimizes

w(t) =
∑

t(p)=true

w(p).

We consider also the assignment triv(F,w) that sets all the variables true to be feasible, even
though it possibly does not satisfy F .

Proof. It is clear that WSAT is an NP minimization problem, so we have to show that
any other such problem strictly reduces to WSAT. The construction here is a modification
of Cook’s proof [7, 9], similar to the ones appearing in [2, 17]2. Let Π = (D,S, c) be an NP
minimization problem, and let p be a polynomial such that for each x ∈ D the condition
s ∈ S(x) implies that |s| ≤ p(|x|). Let M be an NP machine that on a given instance
generates all its feasible solutions and their costs, operating as follows.

2The priority for claiming this type of result apparently belongs to the preliminary version of [17], although
proofs did not appear until a few years later, concurrently in [17] and [2].
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On input x:
if x 6∈ D then reject;
generate any s, |s| ≤ p(|x|);
if s 6∈ S(x) then reject;
print s;
print c(s);
accept.

Consider the standard Cook reduction from the set accepted by M to the set of satisfiable
Boolean formulas. Denote by Fx the formula that describes the accepting computations of
machine M on input x. Let cn, . . . , c0 be the variables in Fx that correspond to the tape
squares on which M prints the value c(s) (in binary), so that in a satisfying assignment, ci is
true if and only if bit i from the right of c(s) is 1. A strict reduction (f, g) from Π to WSAT
may now be obtained by defining, for x ∈ D,

f(x) = 〈Fx, w〉, where

{

w(ci) = 2i, for i = 0, . . . , n,

w(p) = 0, for other variables p in Fx;

and for x ∈ D and t ∈ SWSAT(f(x)),

g(x, t) =

{

triv(x), if t = triv(f(x)),
the string s printed by M according to t, otherwise.

It is straightforward to check that f maps DΠ to DWSAT and g maps DΠ × SWSAT to
SΠ so that for each x ∈ DΠ and t ∈ SWSAT(f(x)), g(x, t) ∈ SΠ(x). Thus it remains to
verify that the reduction is strict.

There are two cases: if t = triv(f(x)), then

c(g(x, t)) = c(triv(x)) ≤ 2n+1 − 1 = w(t),

and because µ is cost-respecting, µ(g(x, t)) ≤ µ(t).
Otherwise, the truth assignment t satisfies Fx, and so represents an accepting computation

of M on x. Thus s = g(x, t) is a feasible solution for x, and

c(s) =
∑

t(ci)=true

2i = w(t).

Hence also µ(s) = µ(t). 2

Corollary 3.2 The problem W3SAT, i.e. WSAT restricted to 3-cnf formulas [9, p. 48], is
strictly complete for the class of NP minimization problems w.r.t. any cost-respecting measure
µ.

Proof. The standard proof for the NP-completeness of the unweighted 3SAT problem [9,
pp. 48–49] shows how to transform the formula Fx above into a 3-cnf formula that is satisfiable
if and only if Fx is. The auxiliary variables introduced in the process may be given zero weight,
and so they have no effect on the approximation structure. 2

Theorem 3.3 The traveling salesperson problem, defined below, is strictly complete for the
class of NP minimization problems w.r.t. any cost-respecting quality measure µ.
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Figure 1: Graph gadget representing a clause e1 ∨ e2 ∨ e3.

~pp

Figure 2: Graph gadget representing a variable p.

Traveling Salesperson (TSP)

Instance: Complete undirected graph G, with nonnegative integer weights
(“distances”) d(e) on the edges.

Objective: Find a tour, i.e. a Hamiltonian circuit C in G that minimizes

d(C) =
∑

e∈C

d(e).

Proof. We modify the construction given in [16, pp. 366–370] for reducing 3SAT to the
Hamiltonian Circuit problem. The reduction is based on a method for transforming a 3-cnf
Boolean formula F to an undirected graph G, so that G has a Hamiltonian circuit if and
only if F is satisfiable. The graph is built up by combining graph “gadgets” that correspond
to the parts of F . For each of the clauses in F there is a gadget represented as shown in
Figure 1. The inner workings of this component are not important; its essential property
is that in a Hamiltonian circuit through a graph, at least one of the edges e1, e2, e3 must
remain untraversed (this corresponds to the true literal in a satisfied clause). The gadget
corresponding to a variable p is simple; it is shown in Figure 2. The idea is that in a
Hamiltonian circuit, exactly one of the edges denoted p and ¬p will be taken. The clause
and variable components are combined by means of a gadget denoted as shown in Figure 3.
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e2e
1

Figure 3: Graph gadget forcing the traversal of either e1 or e2.

This has the property that in a Hamiltonian circuit, exactly one of the edges e1 and e2 is
traversed.

An example should make clear how the transformation works. Let F be the formula

(p1 ∨ ¬p2 ∨ ¬p3) ∧ (¬p1 ∨ p2 ∨ p3);

the corresponding graph G is shown in Figure 4. We have there outlined a Hamiltonian
circuit that corresponds to the satisfying assignment t(p1) = t(p2) = true, t(p3) = false.

A strict reduction (f, g) from W3SAT to TSP may now be obtained by defining

f(F,w) = 〈G, d〉,

where G is the graph obtained from formula F as above (say with edge set V ), plus a number
of added edges (say V +) to make the graph complete. The weights on the edges of G are set
as follows:

d(e) =











w(p), if e corresponds to a variable p in F ;
0, if e is some other edge in V ;
w(triv(F,w)), if e is an edge in V +.

The function g is defined as

g(〈F,w〉, C) =



















the truth assignment t determined by how C

traverses the variable components in G, if C

traverses only edges in V ;
triv(F,w), otherwise.

It can be seen that if we have a tour C in the complete graph that traverses only edges
in V , then the truth assignment g(〈F,w〉, C) satisfies F and we have d(C) = w(g(〈F,w〉, C)).
On the other hand, if the tour C traverses some edge in V +, then g(〈F,w〉, C) = triv(F,w),
and d(C) ≥ w(triv(F,w)) = w(g(〈F,w〉, C)). Since the measure µ is cost-respecting, this
shows that the reduction (f, g) is strict.

Actually, we have glossed over one small complication in the proof. The arcs in the gadget
of Figure 3 consist really of series of edges in the graph; in detail the component looks as
in Figure 5. This causes a problem if such a composite arc corresponds to a variable p with
nonzero weight. But in this case we can place the weight w(p) on either one of the edges
starting from the ends of the arc (e or e′ in Figure 5). 2
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Theorem 3.4 The zero-one integer programming problem, defined below, is strictly complete
for the class of NP minimization problems w.r.t. any cost-respecting quality measure µ.

Zero-One Programming (ZOP)

Instance: m × n integer matrix A, integer m-vector b, positive integer n-
vector c.

Objective: Find a zero-one n-vector x that satisfies the requirements Ax ≥ b

and minimizes the product cT x.

Here again it is in general difficult to find feasible solutions, so we just set artificially
triv(A, b, c) = (1, 1, . . . , 1)T .

Proof. Reducing W3SAT to ZOP is very easy; an example should suffice to explain the
transformation (the details may be found in [16, pp. 314–315]). Given a cnf Boolean formula
F with weights w, the corresponding ZOP instance will have a variable for each variable in
F , and a row in the requirements matrix A for each clause in F . The cost vector c is obtained
directly from the weights w. Variable value 1 represents “true” and 0 represents “false”. For
example, assume that F is the formula

(p1 ∨ ¬p2 ∨ ¬p3) ∧ (¬p1 ∨ p2 ∨ p3),

with w(p1) = 2, w(p2) = 3, w(p3) = 0. Then the corresponding ZOP instance is

minimize 2p1 + 3p2 + 0p3

subject to:
p1 + (1 − p2) + (1 − p3) ≥ 1
(1 − p1) + p2 + p3 ≥ 1
p1, p2, p3 = 0, 1.

Or, in matrix form:

A =

(

1 −1 −1
−1 1 1

)

b =

(

−1
0

)

c =







2
3
0






.

This transformation can easily be formulated as a strict reduction. 2

4 Robust quality measures

The preceding formulations provide some insight into why even the simplest reductions be-
tween optimization problems may sometimes behave so badly with respect to approximations.
The intuitive reason is that a computationally simple reduction need not be simple in the arith-
metic sense of being bounded w.r.t. the relative error measure µr. Such incongruence may
indicate that µr is not an appropriate quality measure for the context. There may be some
operations which intuitively do not change a problem instance very much, yet do have a large
effect on µr; or the whole notion of numerical cost may be inappropriate, and the quality
of a solution would better be measured by how far it is from optimal in some structural or
computational sense.
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Consider, e.g., the context of trying to solve the satisfiability problem by a backtrack
method. Part of the problem may there be viewed as that of trying to maximize the number
of variables that can be assigned a truth value without making the given formula false. In this
case it would be quite natural to consider as part of the quality of a partial truth assignment
(i.e., an approximate solution), whether or not it can be extended to a complete satisfying
assignment.

Similar objections to the µr measure have been considered before by Zemel, who in [20]
studied zero-one programming problems and a class of problem transformations natural in
that context. He proved that measures whose values are not much affected by these trans-
formations indeed exist, though they may not be very natural.

In this section we follow Zemel’s ideas in a general setting. Let us say that a quality
measure µ is R-robust, for a class of optimization reductions R, if all the reductions in R are
bounded with respect to µ. Our question is then: given a class R of optimization reductions,
can we always find a quality measure µ that is R-robust?

In addition to robustness, though, one would like to require that the measure µ be in
some sense “interesting”. For instance, if all the reductions (f, g) ∈ R are length-increasing
(i.e., |f(x)| ≥ |x| for all x), then the following trivial measure is unbounded and R-robust:

µ(s) =

{

0, if s is optimal,
|I(s)| + |s|, otherwise.

Obviously, this measure does not give us any information about the relative quality of the
suboptimal solutions.

At present, we cannot suggest any criterion for distinguishing between interesting and
uninteresting measures. What we can do is give a fairly natural construction of a nontrivial
R-robust measure in the special case that all the reductions in R are invertible. By this we
mean that for any reduction (f, g) ∈ R, there is an efficiently computable function h such
that for all x ∈ D1 and t ∈ S2(f(x)) we have h(g(x, t)) = t. Let us call such an h a left
inverse for g restricted by f . Admittedly, the requirement of invertibility is quite restrictive:
to rephrase, we are requiring that for any x ∈ D1, g maps the feasible solutions of f(x) one-
to-one invertibly into the feasible solutions of x. Clearly, only the most similar of problems
may be expected to be related by such reductions; on the other hand, we should expect
interesting robust measures to exist precisely when the problems considered are very similar.
Also Zemel considers only invertible reductions in [20].

Let F = {fi} be a recursively presented (r.p.) class of recursive functions with universal
function F (i.e. F is a computable function such that F (i, x) = fi(x) for all i and x). We say
that F is sufficiently rich if it contains the constant and pairing functions, all the I-functions
for the problems we are considering, and is closed under composition.

Let F be a sufficiently rich r.p. class of functions on Σ∗, with universal function F . For
strings x, y, we define the F -complexity of x relative to y as (cf. [12, 14]):

KF (x|y) = min{|i| : F (i, y) = x}.

This value is always defined, since F contains all the constant functions.
Given an optimization problem, we can define the following “information distance” quality

measure for its solutions:

µF
inf(s) =

{

0, if s is optimal,
min{KF (s∗|s) : s∗ ∈ Opt(I(s))}, otherwise.
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The idea here is that of measuring how far, computationally, a solution s is from optimal
— more precisely, how many extra bits of information does F need, given s, to compute an
optimal solution s∗. The measure is recursively computable if the optimality predicate is,
and unbounded if and only if no function in F can directly compute optimal solutions from
feasible ones3. Intuitively, it is to be expected that the quality of a solution with respect to
this measure cannot be much affected by the functions in F .

Theorem 4.1 Let R be a class of optimization reductions, and let F be a sufficiently rich
r.p. class of functions with universal function F . Assume that for any (f, g) ∈ R, F contains
g, and also a left inverse for g restricted by f . Then the measure µF

inf is R-robust.

Proof. Let (f, g) : Π1 ≤p
o Π2 be a reduction in R. We shall show that there is a function

c such that for any x ∈ D1 and t ∈ S2(f(x)),

µF
inf(g(x, t)) ≤ c(µF

inf(t));

the boundedness of the reductions follows directly from this.
Let i be an index (w.r.t. F ) for the I-function of Π1 (i.e., fi(s) = I(s) for all s ∈ D1). Let

h ∈ F be a left inverse for g restricted by f . For any index p, let p′ be the smallest index for
the function

fp′(s) = g(fi(s), fp(h(s)));

by the closure properties of F , such a p′ always exists. Define

c(n) =

{

0, if n = 0,
max{|p′| : |p| = n}, otherwise.

Consider then some x ∈ D1, t ∈ S2(f(x)). If t is optimal, then so is g(x, t), and
µF

inf(g(x, t)) = µF
inf(t) = 0 = c(µF

inf(t)). Thus, let us assume that t is not optimal. Let p

be the smallest index such that F (p, t) = t∗ for some t∗ ∈ Opt(f(x)) (hence µF
inf(t) = |p|).

Then
fp′(g(x, t)) = g(x, fp(h(g(x, t)))) = g(x, t∗) ∈ Opt(x),

and so
µF

inf(g(x, t)) ≤ |p′| ≤ c(|p|) = c(µF
inf(t)). 2

Corollary 4.2 Let F (i, x) be any universal function for the class P (e.g., the one given by
the standard presentation of P via “clocked” Turing machines.) Then the measure µF

inf is
robust with respect to the class of polynomial time computable, polynomial time invertible
optimization reductions. 2

3Actually, to prove the “if” direction here, we need to assume also that F contains for infinitely many
k ≥ 0 a function f∗

k such that for all s,

c(f∗

k (s)) = min{c(f0(s)), . . . , c(fk(s))}.

Any natural enumeration (in terms of Turing machines, e.g.) will have this “finite minimum” property.
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5 Concluding remarks

We have studied reductions between optimization problems that preserve the quality of ap-
proximations. We showed that a weighted version of the satisfiability problem, the traveling
salesperson problem, and the zero-one integer programming problem are complete in the
class of NP minimization problems with respect to such reductions. An important point in
the proofs was the ability to code the cost functions of arbitrary NP minimization problems
into the cost functions of these problems. Thus, an intriguing open question concerns the
completeness of apparently hard to approximate problems whose instances do not explicitly
contain numbers, such as graph coloring and the independent set problem. (Some progress on
these issues has recently been reported in [5, 15].) It is known, theoretically, that if P 6= NP,
then incomplete NP optimization problems do exist [8].

We have also studied the existence of measures appropriate for measuring the compu-
tational or structural quality of approximate solutions, the basic idea being that problem
transformations simple in some framework should not change the values of a quality measure
appropriate for that framework. Using the notion of program-size complexity, we have shown
how to obtain a quality measure whose values are fairly invariant with respect to any given
recursively presentable class of invertible problem transformations. It remains an open ques-
tion whether interesting invariant quality measures can be obtained without the invertibility
assumption. Another open area concerns the existence of natural computational or structural
measures: can we find examples of easy-to-compute problem-specific measures that would be
invariant with respect to some small, well-understood class of reductions (cf. [20])?
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