Computing with Truly Asynchronous Threshold
Logic Networks

Pekka Orponen
Institute for Theoretical Computer Science
Technical University of Graz

A-8010 Graz, Austria*

December 22, 1995

Abstract

We present simulation mechanisms by which any network of thresh-
old logic units with either symmetric or asymmetric interunit connec-
tions (i.e., a symmetric or asymmetric “Hopfield net”) can be simulated
on a network of the same type, but without any a priori constraints on
the order of updates of the units. Together with earlier constructions,
the results show that the truly asynchronous network model is com-
putationally equivalent to the seemingly more powerful models with
either ordered sequential or fully parallel updates.

1 Introduction

A somewhat unsatifying feature of many otherwise interesting constructions
of recurrent threshold logic networks (or, more generally, automata net-
works) is their use of a global synchronizing mechanism. It is commonly
assumed that either the computational units in the network update their
states fully synchronously in parallel (e.g. [8, 10, 11, 16, 24]), or there is
some a priori imposed sequential update order (e.g. [2, 25]), or some inter-
mediate form of the two applies (e.g. [7]). Such global timing constraints are
clearly not consonant with the otherwise distributed nature of the model,
where the behavior of each unit in other respects depends only on locally

*On leave from the Department of Computer Science, University of Helsinki, Finland.
E-mail: orponen@igi.tu-graz.ac.at



available information. On the other hand, experience has shown that pro-
gramming such networks without any assumptions on synchronization is
rather awkward.

For instance, Goles et al. constructed in [8, 11] symmetric threshold
logic networks whose transient times under parallel updates are exponential
in the number of units in the network. Tchuente [25] and, independently,
Bruck and Goodman [2] then came up with a simple method to simulate
parallel updates by updates that are performed in a cyclic sequential order,
yielding as an immediate corollary the existence of symmetric networks with
exponentially long transients under ordered sequential updates. Proving the
existence of long transients under unordered sequential updates is quite a bit
more complicated, however, and seems to have been worked out first by A.
Haken in a manuscript [12] which, unfortunately, remains unpublished. (On
the other hand, the result is now known to follow, albeit via a somewhat
indirect route, also from the general theory of local search for optimization
problems [23], and the explicit construction of [12] is reviewed in [3], and
also below.)

As another example, in [16] general scheme was presented for simulat-
ing polynomial space (resp. polynomial time) bounded Turing machines by
symmetric polynomial size nets (resp. polynomial size nets with polynomi-
ally bounded connection weights). The construction in [16] appears to rely
quite heavily on the use of parallel updates, and has not so far been directly
generalized to unordered sequential updates®.

In this paper, we outline a general scheme whereby the computation of
any network using cyclic sequential updates can be simulated on a slightly
larger network where the update order is totally unconstrained. More pre-
cisely, we shall discuss two schemes, a simple one for asymmetric networks,
and a more complicated one for symmetric networks. Applying the Tchuente/
Bruck—Goodman construction [25, 2], these results imply that also parallel
updates can always be simulated in a fully asynchronous manner. And via
the construction of [16], we obtain as a corollary an efficient simulation of

!'Two comments on related work are in place here. First, simulations of space-bounded
machines by small asymmetric networks were designed already by Lepley and Miller in [15],
both for parallel and, remarkably, for random sequential updates — although the latter
scheme is correct only in a probabilistic sense. The interest in showing that the simulation
can be done also on symmetric nets is their generally very lsimited convergence behavior,
as discussed by many authors [4, 6, 10, 13, 21]. A second somewhat related result is the
recent simulation by Siegelmann and Sontag [24] of arbitrary Turing machines, and even
more general computations by fized-size parallel asymmetric networks with continuous-
state units.



space- or time-bounded Turing machines on symmetric asynchronous net-
works.

The essential component of our simulation schemes is building an inter-
nal sequencing mechanism into network. In the case of asymmetric networks,
sequencing is achieved fairly easily with the addition of some intermediate
units; in the case of symmetric networks the arrangement is more compli-
cated, and is based on using Haken’s [12] exponential-transient network as
a “clock”.

For general surveys of automata networks, see the books [5, 9]. Threshold
logic networks have recently become (again) popular as discrete models of
neural networks. Computational aspects of these models are discussed in,
e.g., the survey papers [17, 18, 26], and in the books [14, 19, 20, 22].

2 Preliminaries

A threshold logic network (or a “binary recurrent neural network”) consists
of n threshold logic units (or “binary neurons”), each of which is at a given
moment in either one of two states z; = 1 or z; = 0, also called the on and
off states. A unit 7 receives at each moment of time as input information
the sum of the states z; of all units, weighted by some local coefficients, or
connection weights w;;. When a unit ¢ is allowed to update, it changes its
state according to the rule

n
T; — sgn(z w;iiz; — 6;),

j=1
where sgn is the discrete step, or “Heaviside” function

0 ift <0,
Sgn(t):{ 1 ift>0

and 6; is a local threshold value.

A network is symmetric, if w;; = wj; for all 7, 7, and asymmetric if
this assumption cannot be made. (Thus, symimetric nets are a special case
of asymmetric ones). Symmetric threshold logic networks are often called
“Hopfield nets” in reference to the paper [13], which was successful in draw-
ing widespread attention to them.

The updates in a network may be arranged to occur either simultaneously
in parallel for all the units, or sequentially one unit at a time. We shall



say that a network is asynchronous if the update order of the units is not
predetermined, and synchronous otherwise?. To simplify the presentation,
we shall discuss the constructions below as if also in an asynchronous network
only one unit would update at each time step. However, it is easy to check
that the constructions do work also when arbitrary subsets of the units
are updated in parallel. We shall also usually only consider the sequential
update steps that actually change the state of the updated unit. Thus, e.g.
“next update step” means the next step at which some updated unit rerally
changes its value.

A global state, or configuration x = (z1,...,,) of the network is stable if
none of the units would change its state in an update. It is known that if all
the diagonal weights w;; are nonnegative, then a symmetric net will under
any sequential update sequence eventually converge to a stable state [6,
13]. Under parallel updates a symmetric network, even one with negative
diagonal elements, will always converge to either a stable state or to a cycle
of two alternating states [11, 21]. In the article [4] upper bounds are derived
on the number of update steps required for convergence, and all these results
are reviewed, complete with proofs, in each of the surveys [3, 9, 14].

An elegant general device for simulating parallel updates by cyclically
ordered sequential updates is the following technique of “doubling” the net-
work [2, 25]. Given a network of n units with weights w;; and thresholds
6;, construct a new, bipartite network of 2n units with weights ng where
o= wi o= wy for i,j = 1,...,n, and w}; = 0 otherwise. The
thresholds in the new network are defined as 6] = 6, ,, = 0; fori = 1,...,n.
The idea of the construction is to have the nodes ¢ = 1,...,n of the new
network represent the original network at odd points of time, and the units
t=n+1,...,2n at even points of time. Note that the only nonzero edges
in the new network go from one side to the other. Parallel updates of the
original network can now be simulated by updating the units in the dou-
bled network sequentially in numerical order, since the updating of the units
1,...,n does not interfere with their inputs from units n+1, ..., 2n, and vice
versa. Each round of sequential updates in the doubled network corresponds
to two parallel update steps in the original network.

As a special case, if the original network is symmetric, then so is the
doubled network, and hence the sequential updates on the doubled network

2This use of the terms deviates from the custom in the automata networks literature,
where the model of “truly” asynchronous networks is usually not considered, and so the
term “synchronous” is used for our “parallel”, and “asynchronous” for our “(ordered)
sequential”. However, for the purposes of this paper we need the more precise terminology.



Figure 1: An asymmetric sequencing mechanism.

are guaranteed to converge to a stable state. It follows immediately that the
original network converges under parallel updates to either a stable state or
to a cycle of length two, depending on whether the two sides of the doubled
network in its stable state are equal or not equal.

3 Asymmetric Nets

Let us consider first the simulation construction for asymmetric nets, as it is
rather simpler than the one for symmetric nets. Thus, assume we are given
an asymmetric network N of n units, whose fixed sequential update order
we assume to be z1,x9,...,2,,%1,2Z3,.... For simplicity, we also assume
that he units in N should also have no self-connections, i.e. all the diagonal
weights are zero®. We shall construct another asymmetric net N’ of 4n units
whose computations mimic those of N, but that is “self-sequencing”, in the
sense that at each moment of time there is at most one unit in N’ whose
state would change in an update.

The construction of N’ from N is outlined in Figure 1. Each unit ¢ in
N is represented in N’/ by two units i and :°, whose activities complement
each other so that z} = 1 and z¥ = 0 whenever z; = 1, and 2! = 0 and
20 =
is that always exactly one of the twins will be on and the other off — except

1 whenever 2; = 0. The advantage of such a twin-unit representation

3 . . . . . . . . . .

As N is asymmetric, this requirement is easy to satisfy by inserting an extra unit into
any such connection. For symmetric nets the issue is somewhat more complicated; see
below.



momentarily during update when they will both be off. The weight vectors
and threshold values in N’ are defined accordingly, so that if the update rule
for unit 7 in network N is

n
T; — sgn(z wijz; — 0;),

j=1

then the update rules for the two corresponding units in N’ are

n n n

1 Pt .0 . ..

T; — sgn E w”xj—g wmxj—(QGZ—E wij) |,
7=1 7=1 7=1

z? — sgn |- Zw”m} + Z’wi]ﬂ?? + (26; — Zw”)

To these rules must be added the effects of the control mechanism in N'.
(Cf. Figure 1, which shows the twin pairs in N’ corresponding to two conse-
quently updated units ¢ and 2 + 1 in NV, and their associated control units.
The figure in fact shows only the control inputs to the units; regular inter-
connections have been left out to avoid cluttering the picture.)

Let M be an integer such that M > max{>7_, 2|w;;| + 2|6;| : i =
1,...,n}. As can be seen in Figure 1, there is a self-connection of weight M
at each %1 unit, plus connections of weight —M in both directions between
any pair of twin units, plus connections of weight —2M to each %! unit
from a preceding reset control unit. The purpose of these heavy connections
is to maintain the states of any twin pair of units until the associated reset
unit becomes active and sets them both to state 0. Feeding into the reset
units is another set of support control units.

Let us now see how computation proceeds in N’. The network is ini-
tialized according to the initial state of N, i.e. one unit in each twin pair is
set to state 1 and the other to state 0, and all the reset and support units
are initialized to state 0. It can be seen that this is a stable global state of
the network. Assuming the update sequence of network N begins with unit
i, the computation of N’ is started by turning the unit support;, on. The
only possible (cf. Figure 1) consequent event in the network is for the unit
reset; to turn on, which will in turn lead to both of the units in the 7 twin
pair being turned off. Because now the i twins are no longer inhibiting the
unit support;, , the latter is activated. (This, however, does not yet lead to



the activation of reset;y;, as that would require also positive support from
either one of the ¢ twins.)

Continuing, one can see that again the only possible consequent events
are for first support;, and then also reset; to turn off. At this point, finally,
neither one of the ¢ twins receives any input via any of the control connec-
tions, and so they are ready to accept input from the other twin pair units in
the network. After one of the twins has been activated, the state of the pair
freezes again (because of the M connections), but now the active member of
the pair provides enough support for the unit reset;11 to be activated, and
the cycle repeats at site ¢ + 1.

Without any further devices, this computation would obviously continue
forever (we are naturally assuming that the sites are cyclically linked, so that
site n activates site 1); thus, network N’ it is not a faithful simulation of
network N in the sense of preserving convergence. However, if N is perform-
ing some actual computation (as in, e.g. [16]), then one can usually have the
activation of some specific unit h indicate the end of the computation. By
leaving out the connection in N’ from the positive member of the h twin
pair to resel 1 one can make also N’ converge immediately upon activation
of hl.

The following theorem summarizes the discussion:

Theorem 1 Let N be an asymmetric network of n units with no self-
connections, and with a cyclic sequential update order. Then there is another
asymmetric network N' of 4n units, with no constraints on the update order,
such that any computation performed by N in t changing update steps can
also performed by N' in at most 6nt changing update steps.

4 Symmetric Nets

Haken’s asynchronous counter network

Let us then turn to the more complicated case of symmetric nets. We
shall begin by reviewing Haken’s [12] asynchronous exponential-transient
network, as it is a central component of our construction.

The basic idea of Haken’s network is to build a binary m-bit counter,
with a convergence time of Q(2™), out of O(m) units. The counter network
is composed of smaller zor subnetworks, presented in Figure 2. It can be
seen that the z unit of this device is eventually set to state 1 if the z and y
units are maintained in opposite states, and to state 0 otherwise.



O——0@

Figure 2: A symmetric device for computing the zor of states x and y.

Figure 3: A symmetric three-bit counter network.



The counter is constructed by connecting m such zor devices in a se-
quence as illustrated in Figure 3. FEach bit b;, ¢ = 0,...,m — 1, of the
counter is represented by a pair of units z;, y;, with the interpretation that
b; has value 1if z; = y; (or equivalently z; = 0, for ¢ > 1). In the figure, the
high-order units are to the left.

The counter is is initialized so that all the units in the top row (including
all the z; and z; units) are in state 1, and all the other units are in state
0; this corresponds to all the bits b; being initially 0. The first update step
will then turn unit yo from state 0 to state 1, representing a flip of bit by
from 0 to 1.

The behavior of the network obeys the following rules: the state of each
unit y; gets incremented from 0 to 1 (i.e. bit b; gets value 1), when z;,_4 =
yi—1 = land z; = y; = 0 for all j < ¢— 1. This change at y; causes, via the
zorline, z;_1 being reset back to 0, and each z;, j < i—1, being set to 1 (i.e.
all the lower order bits b;, j < i—1, are reset from 1 to 0). Eventually, again,
also yo gets value 1, and the counting resumes at the low order bits. Then
when counting reaches back to bit b,_1, this time with z;_y = 0, y;,_1 = 1,
and z; = y; = 0 for each 7 < ¢ — 1, unit y;—; gets decremented from 1 back
to 0 (thus setting b;_q to 1), and again each of the lower order z;’s gets set
to 1 (corresponding to each b; getting reset to 0).

To achieve this relatively complicated sequencing, each pair of counter
units x;, y;, ¢+ > 1, has two associated control units ¢;, d;, all initially 0.
These units are first activated when the first condition above, for turning
unit g; from 0 to 1, is achieved, and help y; to make the state change. Node
y; will then maintain its new state supported by its right neighbor in the
local zor structure until the control units are activated again, this time by
the condition for resetting y; to 0, which they again help y; to do. (The
difference to the first time is that now y; gets no support from z;, which has
meanwhile been reset.)

The functioning of this control structure is perhaps most easily under-
stood by simply simulating the behavior of the sample network in Figure 3.
The weights o > 3 > § > € need to be chosen so that control information
can only flow from right to left, i.e., that no combination of states to the
left of some control unit can have an effect on the updates at that unit. De-
noting @ = ay, 6 = ay, B = By, € = By etc., Haken [12] suggests the values
ar = 1/(40m)*, B = m/(40m)*+1D) for an m-bit counter. The number of
units in an m-bit counter can be seen to be 8m — 6.



The symmetric simulation

Let then N be a symmetric network of n units that are updated sequen-
tially in the order z1,z2,...,2p,%1,%2,.... Again, we shall momentarily
assumethat the units in NV have no self-connections, and return to the prob-
lem of implementing these later?. Since each of the units in the networks can
be in two alternative states, the network can compute for at most 2™ update
cycles, i.e. t = n2"™ update rounds, before it either converges or repeats a
configuration and goes into a cycle. (Actually, cycles are possible only in
networks with negative weight self-connections, as otherwise the theorems
in [6, 13] guarantee convergence to a stable state.) We shall use a counter
network of m = [log, n2™] 42 bits to construct an asynchronous network N’
that simulates N for ¢ steps. The counter network acts as an asynchronous
“clock” used to sequence the updates in N'.

As in the asymmetric case, the network N’ always runs its full course
even if N converges fast. However, the simulation can again be made more
faithful if N contains some specific unit A to indicate the termination of the
computation. One can then force also N’ to converge immediately upon the
activation of h by leaving out the appropriate positive connection from N'.
(To be precise, this would be the connection from unit i to unit doney, as
described below.) Also, if one knows that N is going to converge in ¢ update
steps, one can use a counter network of only [log, nt] + 2 bits for N'.

The details of the construction of N’ are illustrated in Figure 4. As in
the asymmetric simulation, each unit 7 of N is duplicated in N’, and to each
pair of twin units ¢!, 19 is attached a system of four control units, labeled
equal;, reset;, primed;, and done;. The weights and the thresholds of the §9/1
units are set exactly as in the asymmetric simulation, except for the obvious
modifications required by the differences in the control structure.

Let again M be an integer such that M > max{} "_, 2|w;;| + 2[6;] : i =
1,...,n}. Similarly to the asymmetric simulation, there is for the purpose
of controlling the update times of the i®/! units a self-connection of weight
M at each %! unit, plus a connection of weight —M between any pair of
twin units, plus a connection of weight —2M between any 91 unit and a
preceding resel; unit. As can be seen in the figure, there are also other
control connections, whose purpose will become clear momentarily.

The clock subnetwork controls the sequencing mechanism via the equal;

*As an important special case, note that networks that are obtained via the doubling
construction never have self-connections. Thus, for asynchronous sequential simulation of
parallel updates one does not need to consider this complication.

10



CLOCK SUBNETWORK

N\

65

oM + 2

1
- ( 3
done; reseti+1\i

equalH_l

Figure 4: A symmetric sequencing mechanism.

23 22 21

reset;

Figure 5: A network testing for b3by = 10 and z; = 1.

11



primed; _ primed; przmedi_}_l

Figure 6: A latch mechanism for controlling the clock.

control units as follows. Each equal; unit is connected to the [log, n|+1 low-
order z; units in the clock, from j = 1 to j = [logy n] + 1, in such a manner
that equal; can be activated only when the binary number encoded by the
clock bits bfiog, n]41 - - -b2 equals ¢, and in addition z; = 1. A subnetwork for
implementing the equality test for 2+1 bits and ¢ = 2 = 104 is illustrated in
Figure 5. (In interpreting the figure, keep in mind that the states of the z;
units in the clock correspond to complements of the bits b;.)

Note how the weights and thresholds in the equality testing network are
chosen sufficiently large so that the connection from the reset; unit does not
affect the test. In fact, also the weights and thresholds in the clock network
itself must be made so large that the test networks do not have an effect
on its behavior. Multiplying all the “large” weights in the clock network by
M' = 3nM suffices for this; the small control weights a;, 3; and the units
Zg, Yo are not affected, as can be affirmed by a brief look at Figure 3.

The lowest-order bits in the clock are used as a latch that connects
advancing the clock to progress in the computation, in the following manner
(cf. Figure 6). When both of the units 2y and yy are off, counting on the
clock cannot proceed until both unit z; and one of the units primed; are on.
(We are assuming at the moment that only one of the primed; unit can be
on at each time. This will be seen to be true in the following.) After this
activation condition has been reached, counting can proceed unhampered —
and both zg and yo will be maintained in state 1, assuming primed; stays on
— until eventually unit z; gets turned off. Then further progress requires
that also primed; is turned off. Assuming that subsequently this happens,
and assuming the condition primed; = 0 is then maintained, eventually both
zg and yo will be turned off, and counting continues from the zg = yo = 0
configuration until it is again halted in the configuration 29 = yo = 0, 21 = 1,
and primed; = 0 for all 7.

12



Let us then see how this coroutine-like controlling of the update sequence
by the clock, and the clock by the update sequence, helps make the asyn-
chronous simulation work. If the update sequence for the simulated network
N begins with unit 7, the asynchronous network N' is initialized so that the
unit pairs 5!, 50 correspond to the initial state of N, all the equal;, reset;,
and primed; units are off, the done; units are on, and the clock encodes the
value ¢ (i.e., the clock network looks as if it had been started from the all-0’s
initial state, and let run freely for 47 cycles). In particular, we are assuming
that unit z; is on, and the z¢ and yo units are off.

It can be seen that the only possible changing update in this configura-
tion is to change the state of unit equal; from 0 to 1. This will then lead
first to the turning on of unit reset;, and then to the turning off of whichever
member of the twin pair i', :° initially was on. (Note that all the time there
is always just one possibility for the next changing update step. In partic-
ular, the configuration of the clock subnetwork stays stable.) Now there is
no longer enough support to maintain the done; unit in state 1, and so it
will be turned off. This, on the other hand, then gives the primed; unit the
opportunity to turn on, after which the update events move inside the clock
subnetwork.

The activation of the primed; unit releases the latch mechanism, and the
clock moves until it is again caught by the latch, this time in the configura-
tion z; = 0, o = yo = 1, primed; = 1. When unit z; was set to 0, however,
unit equal; lost its support, and will thus subsequently be turned off. (Note,
on the other hand, that unit equal,, is not yet supported: this requires
another revolution of the clock.)

After equal; turns off, unit reset; loses its support and will also be turned
off. Now the twin units i, ¢° are no longer receiving any control input, and
are free to update their states based on the states of the other twin pairs
in the network — and in fact must do so in order for the computation to
continue. After one of the twins has been activated again, the state of the
pair freezes, but the active member of the pair provides enough support for
the unit done; to turn on. This, on the other hand, leads to the turning
off of unit primed;, and to the consequent release of the latch mechanism in
the clock. The clock then revolves to its next blocked position, with z; = 1,
29 = yo = 0, and support for unit equal;;,, alter which the update cycle
repeats at site 1 + 1.

We summarize the above discussion in a theorem:

Theorem 2 Let N be a symmetric network of n units with no self-connections,

13



and with a cyclic sequential update order. Then for any time bound 1 there
is another symmetric network N' of 8log,t + 6n + 8logy n + 10 units, with
no constraints on the update order, such that any computation performed by
N int changing update steps can also performed by N' in at most 38(n—1)t
changing update steps.

Proof. The construction of N’ from N has been presented above. To obtain
the size bound on N', note that the clock requires 8([log, nt] +2) — 6 units,
and the rest of the sequencing/simulation network another 6n units, for a
total of 8log, ¢t 4+ 6n + 8logy n + 9 units.

For the time bound, it easy to see that each simulation step requires 10
updates outside of the clock network. Analyzing the time used by the clock
requires a little more care, but one can see that each flip of an zor structure
from 0 to 1 or 1 to 0 requires 6 updates, and there will be at most 47 such
flips altogether in a simulation of length 7. (Of these, 27 flips come from
the lowest-order zor alone, which makes 2 flips per each simulated step;
the remaining 27T accounts for all the higher-order zor’s, amortized over the
length of the computation.) To this must be added the activity of the zg and
yo units, which both change state twice per each simulated step. Summing
up, this makes for 387 update steps per T simulated steps. In the worst
case where the actual changing update order of N is @, @p_1,..., %1, Zpy-. .
the length of the simulation can be T'= (n — 1)t. ]

Networks with self-connections

Let us then discuss briefly the problem of simulating units with nonzero
self-connections. A positive self-connection of weight w at a unit ¢ presents
no difficulty, as this can be replaced by a unit 7’ , to be updated immediately
after unit ¢ in the sequential order, with connection of weight w to unit 7 (and
no other connections), and with threshold w/2. Negative self-connections
are rather more difficult to handle, and we have to resort to the sequencing
mechanism of the asynchronous simulation to deal with them. (Note that
no local transform of the synchronous network can remove negative self-
connections, because this would entail changing the convergence behavior of
the network.)

Let then ¢ be a unit in the synchronous network with a negative self-
connection of weight —w. The basic idea is to replace unit ¢ with the sub-
network presented in Figure 7, where the units ¢ and ' are scheduled to
be cleared and updated during the same simulated update step, and unit

14



Figure 7: Device outline for simulating a negative self-connection.

CLOCK SUBNETWORK

(o

W

Figure 8: Full device for simulating a negative self-connection.



i’ during the immediately following simulated step. The full asynchronous
construction is presented in Figure 8. It can be seen that in this modification
of the sequencing mechanism from Figure 4, the unit done; can only turn
off when both of the twin pairs corresponding to units ¢ and ¢’ have been
reset, and conversely it can only turn back on when it again gets input from
each of the pairs. Also, it can be seen that after the 7 and ¢’ pairs have been
reset, the i/ pair will stay in the off state until one of the 7 units has been
set to state 1. In particular, this means that the i’ units have no effect on
the setting of the ¢ units.

5 Conclusion

We have presented constructions whereby computations performed by ei-
ther asymmetric or symmetric threshold logic networks with either parallel
or ordered sequential updates can be simulated on totally asynchronous net-
works of the same type. The simulations are not faithful to the convergence
behavior of the original networks: terminating in time proportional to that
required by the original network requires an explicit termination signal. In
most cases, however, such a signal can be readily obtained. The existence of
asynchronous simulations that reproduce also this aspect of the simulated
networks’ behavior remains an open problem.

References

[1] Anderson, J. A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of
Research. The MIT Press, Cambridge, MA, 1988.

[2] Bruck, J., Goodman, J. W. A generalized convergence theorem for neu-
ral networks. IEEFE Trans. Information Theory 34 (1988), 1089-1092.

[3] Floréen, P., Orponen, P. Complexity Issues in Discrete Hopfield Net-
works. Report A-1994-4, Dept. of Computer Science, University of
Helsinki, September 1994. To appear in [20].

[4] Fogelman, F., Goles, E., Weisbuch, G. Transient length in sequential
iterations of threshold functions. Discr. Appl. Math. 6 (1983), 95-98.

[5] Fogelman Soulié, F., Robert, Y., Tchuente, M. Automata Networks in
Computer Science: Theory and Applications. Manchester University
Press, 1987.

16



[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Goles, E. Fixed point behavior of threshold functions on a finite set.

SIAM J. Alg. Discr. Methods 3 (1982), 529-531.

Goles Chacc, E., Fogelman Soulié, F., Pellegrin, D. Decreasing energy
functions as a tool for studying threshold networks. Discr. Appl. Math.
12 (1985), 261-277.

Goles, E., Martinez, S. Exponential transient classes of symmetric neu-
ral networks for synchronous and sequential updating. Complex Systems
3 (1989), 589-597.

Goles, E., Martinez, 5. Neural and Automata Nelworks. Kluwer Aca-
demic, Dordrecht, 1990.

Goles, E., Olivos, J. Comportement périodique des fonctions a seuil
binaires et applications. Discr. Appl. Math. 3 (1981), 93-105.

Goles, E., Olivos, J. The convergence of symmetric threshold automata.
Info. and Control 51 (1981), 98-104.

Haken, A. Connectionist networks that need exponential time to con-
verge. Unpublished manuscript, Dept. of Computer Science, University
of Toronto, January 1989. 10 pp.

Hopfield, J. J. Neural networks and physical systems with emergent
collective computational abilities. Proc. Nat. Acad. Sci. USA 79 (1982),
2554-2558. Reprinted in [1], pp. 460-464.

Kamp, Y., Hasler, M. Recursive Neural Nelworks for Associative Mem-
ory. John Wiley & Sons, Chichester, 1990.

Lepley, M., Miller, G. Computational power for networks of thresh-
old devices in an asynchronous environment. Unpublished manuscript,
Dept. of Mathematics, Massachusetts Inst. of Technology, 1983.

Orponen, P. On the computational power of discrete Hopfield nets.
In: Proc. 20th International Colloguium on Automata, Languages, and
Programming (Lund, Sweden, July 1993). Lecture Notes in Computer
Science 700. Springer-Verlag, Berlin, 1993. Pp. 215-226.

Orponen, P. Computational complexity of neural networks: A survey.
Nordic Journal of Computing 1 (1994), 94-110.

17



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Parberry, I. A primer on the complexity theory of neural networks. In
Formal Techniques in Artificial Intelligence: A Sourcebook (ed. R. B.
Banerji). Elsevier, Amsterdam, 1990. Pp. 217-268.

Parberry, I. Circuit Complexity and Neural Networks. The MIT Press,
Cambridge, MA, 1994.

Parberry, L. (ed.) The Computational and Learning Complexity of Neu-
ral Networks: Advanced Topics. The MIT Press, to appear.

Poljak, S., M. Sura, M. On periodical behaviour in societes with sym-
metric influences. Combinatorica 3 (1983), 119-121.

Roychowdhury, V., Siu, K.-Y., Orlitsky, A. (eds.) Theoretical Advances
in Neural Computation and Learning. Kluwer Academic, Boston, MA,
1994.

Schiffer, A. A., Yannakakis, M. Simple local search problems that are
hard to solve. SIAM J. Computing 20 (1991), 56-87.

Siegelmann, H. T., Sontag, E. D. Analog computation via neural net-
works. Theoretical Computer Science 131 (1994), 331-360.

Tchuente, M. Sequential simulation of parallel iterations and applica-
tions. Theoretical Computer Science 48 (1986), 135-144.

Wiedermann, J. Complexity issues in discrete neurocomputing. In As-
pects and Prospects of Theoretical Computer Science. Lecture Notes in
Computer Science 464. Springer-Verlag, Berlin, 1990. Pp. 480-491.

18



