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Abstract. The present paper investigates four relatively independent
issues, each in one section, which complete our knowledge regarding the
computational aspects of popular Hopfield nets [9]. In Section 2, the
computational equivalence of convergent asymmetric and Hopfield nets
is shown with respect to the network size. In Section 3, the convergence
time of Hopfield nets is analyzed in terms of bit representations. In Sec-
tion 4, a polynomial time approximate algorithm for the minimum energy
problem is shown. In Section 5, the Turing universality of analog Hopfield
nets is studied.

1 Introduction

In his 1982 paper [12], John Hopfield introduced a very influential associative
memory model which has since come to be known as the discrete-time Hop-
field (or symmetric) network. Particularly, Hopfield nets compared with general
asymmetric networks have favorable convergence properties. Part of the appeal of
Hopfield nets also stems from their natural hardware implementation, e.g., Ising
spin glasses [3], optical computers [7], etc. Hopfield nets are well suited for appli-
cations that require the capability to remove noise from large binary patterns.
Besides associative memory, the proposed uses of Hopfield networks include,
e.g., fast approximate solution of combinatorial optimization problems [13, 31].
Although the practical applicability of Hopfield nets seems to be limited because
of their low storage capacity, this fundamental model inspired other important
neural network architectures such as BAM, Boltzmann machines, etc. [23]. Thus
the theoretical analysis of Hopfield nets is also worthy for understanding the
computational capabilities of the corresponding models.

We will first briefly specify the model of a finite discrete recurrent neural
network. The network consists of n simple computational units or neurons, in-
dexed as 1,...,n, which are connected into a generally cyclic oriented graph
or architecture in which each edge (i,7) leading from neuron i to j is labelled
with an integer weight w(i,j) = wj;. The absence of a connection within the ar-
chitecture corresponds to a zero weight between the respective neurons. Special
attention will be paid to Hopfield (symmetric) networks, whose architecture is
an undirected graph with symmetric weights w(i, j) = w(j, 1) for every 4, j.
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We will mostly consider the synchronous computational dynamics of the
network, working in fully parallel mode, which determines the evolution of the
network state y(*) = (ygt),. Ly ) € {0,1}" for all discrete time instants ¢t =
0,1,... as follows. At the beginning of the computation, the network is placed
in an initial state y(©) which may include an external input. At discrete time
t > 0, each neuron j = 1,...,n collects its binary inputs from the states (outputs)

(t) € {0,1} of incident neurons ¢. Then its integer ezcitation 5]( ) = =>", wjz-yzgt)
( j =1,...,n) is computed as the respective weighted sum of inputs including

an integer bias wjo which can be viewed as the weight of the formal constant

(6) _

unit input y;’ = 1. At the next instant t+ 1, an activation function o is applied

to §J(- ) for all neurons j=1,...,n in order to determine the new network state

=0 (g?) i=1..m M)

where a binary-state neural network employs the hard limiter (or threshold) ac-
tivation function

vt as follows:

1 for £€>0
= = 2
o(8) {0 for £ <0. )
Alternative computational dynamics are also possible in Hopfield nets. For
example, under sequential mode only one neuron updates its state according to
(1) at each time instant while the remaining neurons do not change their outputs.
Or in Section 5 we will deal with the finite analog-state discrete-time recurrent

neural networks which, instead of the threshold activation function (2), employ
e.g. the saturated-linear sigmoid activation function

1 for £€>1
o()=<¢ & for 0<¢<L1 (3)
0 for £ <0.

Hence the states of analog neurons are real numbers within the interval [0, 1],
and similarly the weights (including biases) are allowed to be reals.

The fundamental property of the symmetric net is that a bounded Liapunov,
or ‘energy’ function can be defined on the state space which is properly decreasing
along any nonconstant computation path (productive computation). Namely, for
a sequential computation of a Hopfield net (for the simplicity, with zero feedbacks

w;; = 0 and biases wjo = 0, and non-zero excitations §](-t) #0,j=1,...,n) an
energy associated with state y(*) at time ¢ > 0 can be defined as follows:

n n
B (1) = B) = 5 3 3wl (@)
j=1l1i=1

for which Hopfield showed that E(t) < E(t—1)—1 for every t > 1 of a productive
computation [12]. Moreover, the energy function (4) is bounded, i.e. |E(t)| < W

where .
1
=530 fuw (5)

j=11i=0



is called the weight of the network. Hence, the computation must converge to a
stable state within time O(W). An analogous result can be shown for parallel
update where a cycle of length at most two different states may appear [22].
The present paper discusses four relatively independent issues regarding the
computational properties of Hopfield networks and presents the corresponding
new results and observations concerning the computational equivalence of asym-
metric and Hopfield networks, convergence time analysis, polynomial time ap-
proximate solution of the minimum energy problem, and the Turing universality
of analog Hopfield nets. Unfortunately, the proofs here are sketched or omitted
due to the lack of space and can be found in the respective draft version [29].

2 A Size-Optimal Simulation of Asymmetric Networks

The computational power of Hopfield nets is properly less than that of asym-
metric networks because of their different asymptotic behavior. Hopfield nets
cannot enter the limit cycle of a given length as the asymmetric networks can.
However, it is known [20] that this is the only feature that cannot be reproduced,
in the sense that any converging fully parallel computation by a network of n
discrete-time binary neurons, with in general asymmetric interconnections, can
be simulated by a Hopfield net of quadratic size O(n?). More precisely, there
exists a subset of neurons in the respective Hopfield net whose states correspond
to the original convergent asymmetric computation in the course of simulation
possibly with some constant time overhead per each original update. The idea
behind this simulation is that each directed edge is implemented by a small
symmetric subnetwork which receives energy support from a symmetric clock
subnetwork (a binary counter) [11] in order to propagate a signal in the right di-
rection. This result may also be interpreted within the context of infinite families
of neural networks which, each for one input length, can be exploited for uni-
versal computations (similarly as circuit families). Thus the infinite sequences of
discrete symmetric networks with polynomial number of neurons in terms of the
input length are computationally equivalent to (nonuniform) polynomially space-
bounded Turing machines, i.e. they compute the complexity class PSPACE /poly
or P/poly when polynomial weights are considered [20].

In the following theorem the construction from [20] is improved by reduc-
ing the number of neurons in the simulating symmetric network to the linear
size 6n + 2 which is asymptotically optimal. This is achieved by simulating the
neurons (instead of edges) whose states are updated by means of the clock tech-
nique. A similar idea was used for an analogous continuous-time simulation [28].
This result can be interpreted in the sense that convergent asymmetric networks
are computationally equivalent with symmetric ones to a greater degree when
considering also the network size.

Theorem 1. Any fully parallel computation by a recurrent neural network of
n binary neurons, with generally asymmetric weights, which converges within t*
discrete updates can be simulated by a Hopfield net with 6n + 2 neurons within
4t* discrete-time steps.



Proof. (Sketch) Observe, first, that any converging computation by an asymmet-
ric network of n binary neurons must terminate within ¢* < 2" steps. A basic
technique used in our proof is the exploitation of an (n + 1)-bit symmetric clock
subnetwork (a binary counter) which, using 3n + 1 units, produces a sequence
of 2" well-controlled oscillations (0111)2" before it converges. This sequence of
clock pulses generated by the least significant counter unit ¢ is used to drive the
rest of the network. The construction of the (n+1)-bit binary counter is omitted.
We only assume that the corresponding weights are accommodated so that the
clock is not influenced by the simulating subnetwork. In addition, neuron ¢ is
added which computes the negation of ¢y output.

Then for each neuron j from the asymmetric network, 3 units p;,q;,r; are
introduced in the Hopfield net so that p; represents the new (current) state y](-t)

of j at time ¢ > 1 while g; stores the old state yﬁ-t_l) of 7 from the preceding time

instant £ — 1, and r; is an auxiliary neuron realizing the update of the old state.
The corresponding symmetric subnetwork simulating one neuron j is depicted in
Figure 1 where the parameter W is the network weight (5). Here the symmetric
connections between neurons are labelled with corresponding weights, and the
biases are indicated by the edges drawn without an originating unit. In the
sequel the symmetric weights in the Hopfield net will be denoted by w’ whereas
w denotes the original asymmetric weights. The total number of units simulating
the asymmetric network is 3n + 1 (including &) which, together with the clock
size 3n + 1, gives the desired 6m + 2 neurons of the Hopfield net.
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Fig. 1. Symmetric simulation of neuron j

At the beginning of the simulation all the neurons in the Hopfield net are
initially passive (their states are zero) except for those units g; corresponding to



the original initially active neurons j, i.e. y;O) = 1. Then an asymmetric network

update at time t > 1 is simulated by a cycle of four steps in the Hopfield net as
follows. In the first step, unit ¢g fires and remains active until its state is changed
by the clock since its large positive bias makes it independent on all the n neurons
pj. Also the unit ¢ fires because it computes the negation of ¢¢ that was initially

(®)

passive. At the same time each neuron p; computes the new state y,” from the

J
old ones ygt_l) which are stored in corresponding units g;. Thus each neuron p;

is connected with units g; via the original weights w’(g;,p;) = w(i,j) and also

its bias w'(0, p;) = w(0, j) is preserved. So far, unit ¢; keeps the old state y(tfl)

J
due to its feedback. In the second step, the new state y§~t) is copied from p; to
rj, and the active neuron co makes each neuron p; passive by means of a large
negative weight which exceeds the positive influence from units ¢; (: =1, ...,n)

including its bias w(0, p;) according to (5). Similarly, the active neuron ¢, erases

the old state yg-t_l) from each neuron g; by making it passive with the help of
a large negative weight which exceeds its feedback and the positive influence
from units p; (i = 1,...,n). Finally, also neuron ¢y becomes passive since ¢y was
active. In the third step, the current state y](-t) is copied from r; to g; since all
the remaining incident neurons p; and ¢y are and remain passive due to ¢y being

active. Therefore also unit r; becomes passive. In the fourth step, cy becomes

passive and the state yy), being called old from now on, is stored in g;. Thus
the Hopfield net finds itself at the starting point of the next asymmetric network
update simulation at time ¢+ 1 which proceeds in the same way. Hence the whole
simulation is achieved within 4t* discrete-time steps. O

3 Convergence Time Analysis

In this section the convergence time in Hopfield networks, which is the number
of discrete updates until the network converges, will be analyzed. We will con-
sider only the worst case bounds while the average-case analysis can be found
in [17]. Obviously, there are exactly 2™ different states in a network with n binary
neurons which yields trivial 2™ upper bound on the convergence time in sym-
metric networks of size n. On the other hand, the symmetric clock network [11]
which is used in the proof of Theorem 1 represents an explicit example of a
Hopfield net whose convergence time is exponential with respect to n. Namely,
this gives 2(2"/3) lower bound on the convergence time of Hopfield nets since
the respective (k 4 1)-bit binary counter requires n = 3k + 1 neurons.

However, the above-mentioned bounds do not take the weight size into ac-
count. The corresponding upper bound O(W) is derived from the energy func-
tion (see Section 1) which can even be made more accurate by using a slightly
different energy function [8]. This yields the polynomial upper bound on the
convergence time of Hopfield nets with polynomial weights. Similar arguments
can be used for fully parallel updates.

In the following theorem these results will be translated into the conver-
gence time bounds with respect to the length of bit representations of Hopfield



nets. Namely, for a symmetric network which is described within M bits, the
convergence-time lower and upper bounds, 22(M"/*) and 20(M*"*) respectively
will be observed. It is an open problem whether these upper or lower bounds can
be improved. This is an important issue since the convergence-time results for
binary-state networks could be compared with those for analog-state (or even
continuous-time) networks in which the precision of real weight parameters (i.e.
the representation length) plays an important role. For example, there exists an
analog-state symmetric network with an encoding size of M bits that converges
after 229(M) continuous-time units, where g(M) is an arbitrary continuous
function such that g(M) = o(M), g(M) = 2(M?/3), and M/g(M) is increas-
ing [28]. jFrom the result presented here it follows that the computation of this
analog symmetric network terminates later than that of any other discrete Hop-
field net of the same representation size. This approach also appears to be more
rigorous since we express the convergence time with respect to the full descrip-
tional complexity of the Hopfield net instead of to the number of neurons which
captures its computational sources only partially.

Theorem 2. There exists a Hopfield network with an encoding size of M bits
that converges after 292 ) updates and any computation of a symmetric net-
work with a binary representation of M bits terminates within 20(M '
computational steps.

") discrete

Proof. (Sketch) For the underlying lower bound the clock network from the proof
of Theorem 1 can again be exploited. For the upper bound, consider a Hopfield
network with an M-bit representation that converges after T'(M) updates. A
major part of this M-bit representation consists of m binary encodings of weights
W1, ..., Wy, of the corresponding lengths Mj, ..., M,, where - | M, = O(M).
Clearly, there must be at least T'(M) different energy levels corresponding to
the states visited during the computation. Thus the underlying weights must
produce at least S > T'(M) different sums ) _, w, for A C {1,...,m} where
w, for r € A agrees with wj; for y; = y; = 1 in (4). So, it is sufficient to upper
bound the number of different sums over m weights whose binary representations
form a @(M)-bit string altogether. This yields 7'(M) < 20(M v, O

4 Approximating the Minimum Energy Problem

Another important issue in Hopfield nets is the MIN ENERGY or GROUND
STATE problem of finding a network state with minimal energy (4) for a given
symmetric neural network. Remember that in (4) it is assumed, for reasons of
simplicity, that w;; = 0 and wjo = 0 for j = 1,...,n. In addition, without
loss of generality [21], we will work throughout this section with frequently used
bipolar states —1, 1 of neurons instead of binary ones 0, 1 introduced in (2) where
0 is now replaced by —1. This problem appears to be of a special interest since
many hard combinatorial optimization problems have been heuristically solved
by minimizing the energy in Hopfield nets [1,13]. This issue is also important in



statistical physics which originally inspired the Hopfield net models, e.g. Ising
spin glasses [3].

Unfortunately, the decision version of the MIN ENERGY problem, i.e. whet-
her there exits a network state having an energy less than the prescribed value,
is NP-complete. This can be observed from the above-mentioned reductions of
hard optimization problems to MIN ENERGY. For an explicit NP-completeness
proof see e.g. [32] where a reduction from SAT is exploited. On the other hand
there is a MIN ENERGY polynomial algorithm for special cases of Hopfield nets
whose architectures are planar lattices [6] or planar graphs [3].

Perhaps, the most direct and frequently used reduction to MIN ENERGY
is from the MAX CUT problem (see e.g. [4]) which, given an undirected graph
G = (V, E) with an integer edge evaluation ¢ : E — Z, is the issue of finding a
cut Vi C V which maximizes the cut size

(V1) = > c({i,i}) - > c({i,j})- (6)

{i,j}€E,ieV1,j¢V1 {i.j}€E,c({4,j})<0

In fact, this is a generalized version of MAX CUT that allows negative edge eval-
uations necessary for the opposite reduction from MIN ENERGY to MAX CUT.
Recently, a new randomized approximation algorithm with a high performance
guarantee o = 0.87856 for this MAX CUT formulation has been proposed [10]
and later derandomized [19] which we will exploit for approximating the MIN
ENERGY problem. Namely, we will observe that MIN ENERGY can be approx-
imated in a polynomial time within the absolute error less than 0.243W where
W is the network weight (5). For W = O(n?) which is satisfied by e.g. Hopfield
nets with n neurons and constant weights, this result matches the lower bound
2(n?~¢) which cannot be guaranteed by any approximate polynomial time MIN
ENERGY algorithm for every & > 0 [4], unless P = N P. In addition, an approxi-
mate polynomial time MIN ENERGY algorithm with absolute error O(n/logn)
is also known in a special case of Hopfield nets whose architectures are two-level
grids [5].

Theorem 3. The MIN ENERGY problem for Hopfield nets can be approximated
in a polynomial time within the absolute error less than 0.243W where W is the
network weight (5).

Proof. (Sketch) We will first recall the well-known simple reduction between MIN
ENERGY and MAX CUT problems. For a Hopfield network with architecture G
and weights w(i, j) we can easily define the corresponding instance G = (V, E); ¢
of MAX CUT with the edge evaluation ¢({%,j}) = —w(3, j) for {3, j} € E. It can
easily be shown that any cut V3 C V of G corresponds to a Hopfield net state
y € {-1,1}" where y; = 1if i € V; and y; = —1 for j € V' \ V3, so that the
respective cut size ¢(V}) is related to the underlying energy E(y) = W — 2¢(V7).
This implies that the minimum energy state corresponds to the maximum cut.

Now, the approximate polynomial time algorithm from [10] can be employed
to solve instance G = (V, E); ¢ of the MAX CUT problem which provides a cut
V1 whose size ¢(V1) > ac* is guaranteed to be at least o = 0.87856 times the



maximum cut size c¢*. Let cut V; correspond to the Hopfield network state y
which implies ¢(V1) = 1/2(W — E(y)). Hence, we get a guarantee W — E(y) >
a(W — E*) where E* is the minimum energy corresponding to the maximum cut
¢* which leads to E(y) — E* < (1 — a)(W — E*). Since |E*| < W, we obtain the
desired guarantee for the absolute error E(y) — E* < (1 —a)2W < 0.243W. O

5 Turing Universality of Finite Analog Hopfield Nets

In this section we will deal with the computational power of finite analog-state
discrete-time recurrent neural networks. For the asymmetric analog networks,
the computational power is known to increase with the Kolmogorov complexity
of real weights [2]. With integer weights such networks are equivalent to finite
automata [14, 15, 30], while with rational weights arbitrary Turing machines can
be simulated [15,25]. With arbitrary real weights the network can even have
‘super-Turing’ computational capabilities, e.g. polynomial time computations
correspond to the complexity class P/poly and all languages can be recognized
within exponential time [24]. On the other hand, any amount of analog noise
reduces the computational power of this model to that of finite automata [18].

For finite symmetric networks, only the computational power of binary-state
Hopfield nets is fully characterized. Namely, they recognize the so-called Hop-
field languages [26] which establish a proper subclass of regular languages and
hence, they are less powerful than finite automata. Hopfield languages can also be
faithfully recognized by analog symmetric neural networks [18,27] and this pro-
vides the lower bound on their computational power. A natural question arises
whether the finite analog Hopfield nets are Turing universal, i.e. whether a Tur-
ing machine simulation can be achieved with rational weights similarly as in the
asymmetric case [15,25]. The main problem is that under fully parallel update
any analog Hopfield net with rational weights converges to a limit cycle of length
at most two [16]. Thus the only possibility of simulating Turing machines is to
exploit a sequence of rational network states converging to this limit cycle which
seems to be tricky if possible at all. A more reasonable approach is to supply an
external clock that produces an infinite sequence of binary pulses providing the
symmetric network with an energy support, e.g. for simulating an asymmetric
analog network similarly as in Theorem 1. In this way the computational power
of the analog Hopfield nets with an external clock is proved to be the same as
that of the asymmetric analog networks. Especially for rational weights, this
implies that they are Turing universal. The following theorem also completely
characterizes the infinite binary sequences by the external clock, which prevent
the Hopfield network from converging.

Theorem 4. Let N be an analog-state recurrent neural network with real asym-
metric weights and n neurons working in a fully parallel mode. Then there exists
an analog Hopfield net N' with the same mazimum Kolmogorov complezity of a
real weight as that in N and with 3n+8 units such that N’ simulates any compu-
tation of N for any binary sequence which is generated by an additional external



wmput of N' satisfying the following property. Namely, this sequence must con-
tain the infinite number of substrings of the form bxb € {0,1}> where b # b. In
addition, this property is necessary to prevent N’ from converging.
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