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Abstract

Artificial intelligence for the game of Go is approaching the level of top human
players due to the announcement of the new program AlphaGo by Google DeepMind.
This paper lists five development ideas to further improve it. The ideas are note
tested in practice, since AlphaGo is not available as open source, and reimplementing
and retraining it would require a significant amount of programming effort and
computational resources.

Introduction

AlphaGo [9] has for the first time won a professional Go player in an even match. There
is still some improvement to be made before the top human playing level is reached, and
even if it was reached, the Al could still be improved. In the following, we describe five
improvement ideas for AlphaGo. To keep the text short, we assume that the reader has
knowledge of the Nature paper [9] and the concepts of deep learning and Monte Carlo
tree search.

1 Multi-Task Learning

All the information in a trained neural network is based on the information in the outputs
of the training data. Once the network is able to produce the outputs in the training
data, the learning stops.

Considering the value network with just one bit of information as output per game
is very poor in information, so it required a huge amount of training data (30 milion
games) to train. One could help the situation by training the RL policy network and
value network together as one multi-task network.

Several other auxiliary tasks could be included to make the training gradient even
richer. You could predict the expected score (in points), and the variance of the score.
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Figure 1: Possible richer auxiliary outputs for training the value network. Left: Who
controls each point of the board at the end of the game (averaged over rollouts). Right:
The covariance between controlling a point and winning the game (over rollouts). This
indicates which parts of the board are important (marked as red). Image reprinted from

[6].

You could predict who controls each point of the board at the end of the game. Assum-
ing several rollouts from the same position, you could predict the covariance between
controlling a point and winning a game. Figure [Il shows visualizations of the previous
two ideas. The list could go on: Predict whether a point stays empty (becomes an eye),
whether two points will be connected in the end etc. An output with the size of the
board has 361 bits of information, which is much richer than the one bit. Some of the
auxiliary output could perhaps be connected already to a mid-level layer.

Auxiliary outputs have been shown to be very useful just to perform better on the
primary task [8], but below there are ideas of how to use them in the search tree.

2 Online Knowledge

The game in progress could have a difficult corner fight that the value network has
trouble with, while look-ahead or rollouts will solve it. The errors made by the value
network are repeated systematically all over the search tree, when moves are made in
other areas than the corner. There could be a way of generalizing what is learned while
growing the search tree, following ideas of [2]. One could include some online parameters
to the value network (for instance additional local bias terms) that would be adapted
from scratch during the growth of the search tree. Nodes can train their parents, and
rollouts can train the corresponding value functions. Using the auxiliary outputs from



Section [[l would speed up this adaptation. This of course comes with a cost of having to
run back-propagation during search, however, if the online parameters are only limited
to the last layers, one would not have to run the back-propagation all the way through.

3 More Patterns for Same Computational Cost

The first layer of the network could have much more features without increasing the
computational time. A unit on the first hidden layer would have a chance of activating
only if there is an exact match of a local 3x3 pattern, that is, there would be a separate
set of first-layer hidden units for each 3x3 pattern. There are 3% = 6561 patterns where
the middle point is empty, and one would only need to do computations for the features
of the matching pattern. It is well known that 3x3 patterns already contain a lot of
information about the move [4] [1J.

4 lterative Inference

Evaluating the strength of a group on a Go board involves evaluating its neighbouring
groups (and neighbours’ neighbours). It is clear that such an inference requires several
steps. Raiko [5] runs iterative inference over a Markov network formed by explicitly
describing the relations between the groups (See Figure [2)). Silver et al. [9] use a deep
network with 13 layers as the inference steps. Could it be that it is important to have
many processing steps rather than many layers with their own parameters?

NADE-k [7] is a model that might have 21 layers that actually repeat the same 3
layers 7 times, that is, it is running an iterative algorithm for 7 iterations. A similar idea
could be applied to AlphaGo. One could share parameters of layers 3&4 with layers 5&6
and 7&8 to run an iterative procedure for three iterations. If this looks promising, one
could further extend to other iterative structures, e.g. following multi-prediction deep
Boltzmann machines [3].

5 Better Prior

It is noted [9] that the RL policy network is stronger than the SL policy network, but
still SL policy network performs better as the prior bonus in search. If best play is not
the best goal for training the prior bonus, could you come up with the proper goal? Here
is one heuristic option: Use a combination of some of those auxiliary outputs in Section
[ For instance, a move that increases the variance of the score is something aggressive
that disrupts the flow of the game (such as a cut or an invasion). Such a move might
not always be a good idea for winning a game, but those moves are definitely the kind
to keep an eye on while searching.



Figure 2: Left: Go game in progress. Right: Groups with their expected owner as the
colour of the square (dead groups have the opponent colour, weak groups are grey).
Pairs of related groups are connected with a blue line if the blocks have same colours
and with a red line when the blocks have opposing colours. The lines also represent the
structure of the implied Markov network. Image reprinted from [6].
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