
Bayes Blocks: An Implementation of the Variational Bayesian
Building Blocks Framework

Markus Harva, Tapani Raiko, Antti Honkela, Harri Valpola, and Juha Karhunen

Neural Networks Research Centre
Helsinki University of Technology

P.O. Box 5400, FI-02015 TKK, Espoo, Finland
http://www.cis.hut.fi/projects/bayes/

Abstract

A software library for constructing and learn-
ing probabilistic models is presented. The
library offers a set of building blocks from
which a large variety of static and dynamic
models can be built. These include hierar-
chical models for variances of other variables
and many nonlinear models. The underly-
ing variational Bayesian machinery, provid-
ing for fast and robust estimation but be-
ing mathematically rather involved, is almost
completely hidden from the user thus making
it very easy to use the library. The build-
ing blocks include Gaussian, rectified Gaus-
sian and mixture-of-Gaussians variables and
computational nodes which can be combined
rather freely.

1 INTRODUCTION

Variational Bayesian learning has been successfully
used by many authors for solving a variety of learn-
ing problems (see e.g. Barber and Bishop, 1998; At-
tias, 1999; Ghahramani and Hinton, 2000; Valpola and
Karhunen, 2002). The benefit of the variational ap-
proach is that it does not suffer as seriously from the
problems that point estimation has, such as infinite
densities, and yet it is computationally less demanding
than sampling. In this sense the variational Bayesian
learning combines the best qualities from both point
estimation and sampling. However, deriving the neces-
sary cost function and the update equations is a rather
involved operation making variational Bayes less ap-
pealing.

The variational Bayesian building blocks framework,
introduced by Valpola et al. (2001), offers a set of
building blocks from which a large variety of differ-
ent models can be constructed simply by connecting
the blocks appropriately. This makes the construction

of a model fast and easy as the framework automat-
ically derives the cost function and the update rules,
hiding all the hairy details from the user of the system.

We have written an efficient C++ implementation of
the framework. The software package is called Bayes
Blocks (Valpola et al., 2003a). For the convenience
of use there is also a Python interface to the library
providing easy scriptability with elegant syntax, fast
development cycle as well as compact and easily read-
able code.

Works most closely related to ours are the Bayes Net
Toolbox by Murphy (2001) and the VIBES software
package by Bishop et al. (2003). The Bayes Net Tool-
box can be used for Bayesian learning and inference
of many types of directed graphical models using sev-
eral methods. Hence it is in this sense more general
than our library. But a serious limitation of the Bayes
Net Toolbox is that it only supports latent continuous
nodes with Gaussian or conditional Gaussian distribu-
tions. The reason is that more general models cannot
be solved exactly.

The VIBES package implements the variational mes-
sage passing (VMP) framework introduced by Winn
and Bishop (2005). The VMP framework resem-
bles the building block framework in that it uses
variational Bayesian learning and factorised approx-
imations. VIBES supports modelling some posterior
dependencies whereas at the moment Bayes Blocks
uses a fully factorial posterior approximation. The
VIBES/VMP method differs from ours in that it
mostly uses conjugate exponential family models (Gel-
man et al., 1995). Their Gaussian node uses a Gamma
distribution for the precision parameter, which does
not allow variance modelling in the same sense as the
building block framework. Additionally, our building
block framework supports nonlinearities.

A general drawback of the related methods by Mur-
phy (2001) as well as Winn and Bishop (2005) is that
they concentrate mainly on situations where there is

a handy conjugate prior (Gelman et al., 1995) for the
likelihood available. This makes life easier, but on the
other hand our blocks can be combined more freely, al-
lowing one to solve more difficult problems. The price
we have to pay for this is that the minimum of the
cost function for updating an individual node must
sometimes be found iteratively, while it can be solved
analytically when conjugate distributions are applied.
The cost function can always be evaluated analytically
in the building block framework as well. Our method
could also be easily extended to handle the standard
conjugate models.

We have applied the blocks mainly to different kinds
of factor models. In Valpola et al. (2003b) hierarchical
nonlinear factor analysis (HNFA) based on blocks was
considered. In HNFA, the ability to learn the struc-
ture of the model is essential. Hierarchical modelling
of variances was introduced by Valpola et al. (2004).
There the application was to find variance sources from
MEG data. The handling of missing and partially ob-
served values by the use of evidence nodes was dealt
with by Raiko (2004). The rectification nonlinearity
is considered by Harva and Kabán (2005) who used it
to perform non-negative factor analysis. Its applica-
tion to astronomical data analysis is reported by Nolan
et al. (2005).

The exposition of this paper proceeds as follows. In
Section 2 a brief review of the most important aspects
of the building blocks framework is given. A detailed
description appears in a forthcoming paper (Raiko
et al., 2005) the best references currently being the
M.Sc. theses of two of the authors (Raiko, 2001; Harva,
2004). Some issues related to learning procedures and
pruning are also discussed. Section 3 deals with the
software library describing the implementation tools
and the design philosophy. In Section 4 we report ex-
perimental results with a model structure that high-
lights some of the important points of the framework.
Finally we have discussion and conclusions.

2 BUILDING BLOCKS FOR

VARIATIONAL BAYESIAN

LEARNING

In this section we give a brief review of the theoretical
machinery underlying the library. The available build-
ing blocks are also introduced and combining them is
discussed.

2.1 VARIATIONAL BAYES

In Bayesian data analysis, the data is usually assumed
to have been produced by a generative model. The
model typically has lots of uncertain quantities whose

joint probability density function is to be estimated,
given the data sample. This posterior density function
contains all the relevant information on the unknown
variables and parameters, but unfortunately it is often
too complicated to handle without resorting to approx-
imations. The simplest approximation is to consider
only a single point of the distribution. This corre-
sponds to maximum a posteriori or maximum likeli-
hood approach. Unfortunately they suffer badly from
overfitting especially when estimating the mean and
variance of a parameter simultaneously. A second op-
tion is to draw samples from the posterior distribution,
but in case of unsupervised problems, the number of
unknown variables is so large that the computational
complexity is often prohibitive.

Ensemble learning is a type of variational Bayesian
learning, which employs the Kullback-Leibler diver-
gence (information) between the approximate q(θ) and
true posterior p(θ|X), defined as

D
(

q(θ)
∥

∥p(θ|X)
)

=

∫

q(θ) log
q(θ)

p(θ|X)
dθ.

The actual cost function is

C = D
(

q(θ)
∥

∥p(θ|X)
)

− log p(X)

so that the evaluation of the problematic marginal like-
lihood term p(X) is avoided. This cost function mea-
sures the misfit between the two distributions. Vari-
ational approximation is sensitive to probability mass
rather than density and thus avoids the worst prob-
lems with overfitting. On the other hand, given a sim-
ple enough approximation q(θ), it is computationally
efficient. Here, q(θ) is restricted to be fully factorial.
This is one of the requirements for achieving a compu-
tational complexity that is linear with respect to the
number of elements in the model. The method is also
known as the näıve mean field approximation.

2.2 PROPAGATION OF INFORMATION

The building blocks can be divided into variable nodes
and computational nodes. We shall refer to the con-
nections to the parents and descendants of the nodes in
the Bayesian network as their inputs and outputs, re-
spectively (Cowell, 1999). Since the network is proba-
bilistic, the values propagated between the nodes have
associated distributions. When variational Bayesian
learning together with a factorial posterior approxi-
mation is used, the cost function can be computed
by propagating sufficient statistics instead of full dis-
tributions or functions. In the forward direction, the
sufficient statistics are certain expectations (expected
value, variance, and the expected exponential), and in
the backward direction, similar statistics of the like-
lihood potential are propagated. These values carry

all the information to adjust each variable to minimise
the cost function (assuming other variables fixed). The
minimisation can be done with a single step in some
cases and iteratively in others.

2.3 VARIABLE NODES

Each variable node corresponds to a random variable,
and it can be either observed or hidden. The most im-
portant type of a variable node is the Gaussian node.
We also have the mixture-of-Gaussians node and the
rectified Gaussian node. For a variable node, its inputs
correspond to parameters of the conditional distribu-
tion of the variable represented by that node, and its
output is the value of the variable.

Gaussian variable s is conditioned by a mean m and a
variance e−v

p(s|m, v) = N (s|m, e−v)

=
1√

2πe−v
exp

{

− 1

2e−v
(s − m)2

}

.

The chosen parametrisation allows for the Gaussian
node to be used as an input to both the mean and vari-
ance of another Gaussian node, which makes it useful
in constructing hierarchical models.

Rectified Gaussian node takes the positive part of a
zero-mean Gaussian

p(s|v) = NR(s|0, e−v) = 2H(s)N (s|0, e−v),

where H(s) is the Heaviside (a.k.a. the unit) step func-
tion. The rectified Gaussian node is useful if some-
thing known to be non-negative, such as energies, is
modelled.

In the mixture-of-Gaussians node, a categorical vari-
able k ∈ {1, . . . ,K} selects one of the K Gaussian
components {N (s|mi, vi)}K

i=1

p(s|{mi}K

i=1
, {vi}K

i=1
, k) = N (s|mk, vk)

The discrete variable k has a Dirichlet prior. Mixture-
of-Gaussians is used in e.g. independent factor analysis
(Attias, 1999) as a source model.

2.4 COMPUTATIONAL NODES

For computational nodes, the output is a fixed deter-
ministic function of the inputs. The computational
nodes include the addition node, the multiplication
node, a nonlinearity following a Gaussian node, and
the delay node.

Addition node gives the sum of its inputs {si}K
i=1

as
the output so

so =

K
∑

i=1

si.

Multiplication node produces the product of its inputs

so = s1s2.

Together these two nodes can be used to form linear
mappings required in almost any interesting model.

The blocks include two different nonlinearities

so = f(s) = exp(−s2),

so = f(s) = max(s, 0).

The nonlinearities break the functional form of how
the parent s affects the cost function of its descendants.
Therefore it is required that the nonlinearity is directly
after a Gaussian variable. Nonlinearities are needed,
e.g., for multi-layer perceptron (MLP) and radial basis
function (RBF) network like structures.

The delay operation can be used to model dynam-
ics. The node operates on time-dependent signals. It
transforms the input s(1), s(2), . . . , s(T) into an out-
put s0, s(1), s(2), . . . , s(T − 1) where s0 is a scalar pa-
rameter that provides an initial distribution for the
dynamical process.

2.5 COMBINING THE BLOCKS

Although the blocks can be combined rather freely
there are some restrictions. Firstly, the network has
to be a directed acyclic graph, like all Bayesian net-
works (Cowell, 1999). The delay nodes are an excep-
tion: the past values of any node can be the parents of
any other nodes. Secondly, there should be only one
computational path from a latent variable to another
variable and different inputs of a node should be inde-
pendent under the assumed posterior approximation.
Thirdly, not all node types can be used as all types of
parents of a node. These restrictions are summarised
in Table 1. As an example, all nodes can serve as the
mean of a Gaussian variable but only another Gaus-
sian and summation can be used as the variance par-
ent. This means that one cannot use a product node
as the variance parent of a Gaussian variable, even if
there is summation node in between. These restric-
tions can be evaded by adding intermediate variable
nodes.

2.6 LEARNING PROCEDURE

The learning procedure aims at minimising the cost
function. Many models have local minima in the cost
function landscape so choosing a good initialisation
can make a big difference. The best initialisation de-
pends on the application and it is therefore left open.
The initialisation can most conveniently be done using
the so called evidence node which provides gradually
fading virtual likelihood for its parent.

Table 1: Allowed connectivity

Node Parent Type

N (m, e−v) m any
v N , +

NR(0, e−v) v N , +
∑

πiN (mi, e
−vi) mi any

vi N , +
∑

si si any
s1 s2 si any
f(s) s N

The basic element for updating the network is the up-
date of a single node assuming the rest of the network
fixed. One sweep of updating means updating each
node once. The order in which this is done is not crit-
ical for the system to work. We have used an ordering
where each variable node is updated only after all of
its descendants have been updated. The progress can
be measured by observing the monotonic decrease of
the cost function.

The minimisation process can be easily accelerated
by using pattern searches. The basic idea is that af-
ter some time, the parameters ξ describing q(θ) are
strongly coupled and a single parameter ξi can only
be changed very little without changing the others as
well. Now by collecting the individual updates ∆ξi

from one full sweep, a line search can be performed
to the direction of ∆ξ = [∆ξ1, . . . ,∆ξn]. As there
are both location and scale parameters among ξ, some
additional care needs to be taken in the line search
procedure (Honkela et al., 2003).

3 THE SOFTWARE

The core functionality of Bayes Blocks is implemented
in C++ with optional bindings to Python for scripting.
The Python bindings are generated automatically with
the help of SWIG (Beazley, 1996). Models are cre-
ated by writing a Python script that defines the model
structure. The system can then automatically derive
the cost function related to the variational approxima-
tion and update rules for all the variables. The esti-
mated models can be analysed using Python or saved
in Matlab format. The latter option allows preparing
visualisations of the results or analysing them further
in Matlab.

3.1 LEARNING THE STRUCTURE OF

THE MODEL

The Bayes Blocks software has been designed to deal
with models whose structure changes during the learn-

ing process. Addition and removal of latent variables,
weights and even larger hierarchical structures can be
handled easily.

The basic operation for structural learning is check-
ing whether the presence of an individual variable in-
creases or decreases the overall cost function value. If
the node in question affects its children through a lin-
ear mapping, the effect of the node’s removal is equiva-
lent to replacing it with a constant zero. Hence the ef-
fect on the children’s cost function is easy to compute.
The cost arising from the node itself is also readily
available and consequently the net effect of removing
the node is computable without changing the values of
other variables. If the cost function is found to increase
due to the variable, it will be pruned away. Informa-
tion on the removal is propagated in the network and
other nodes can act accordingly to adapt to the new
situation. This means that removal of the weight ai

in an inner product expression a1s1 + · · · + ansn cor-
rectly leads to removal of the product node for aisi

and the corresponding term in the summation. If the
present term is the only occurrence of si, it may be
removed as well. The behaviours of different nodes in
these situation can also be defined individually by the
user.

Addition of new variables and connections to the net-
work can be handled in the same manner as the initial
creation of the network. The pruning method is use-
ful here as it allows evaluation of the usefulness of the
added parts and removal of unnecessary additions.

Since the pruning and addition of nodes are done based
on the cost function which in its turn reflects the
marginal likelihood of the model, the structural learn-
ing automatically implements Occam’s razor. In other
words, a simpler structure is favoured to a complex
one even if the complex one would describe the data
slightly more accurately.

3.2 MULTIDIMENSIONAL MODELS

Because of the emphasis on learning of the structure of
the model, the handling of models for vectorial data in
Bayes Blocks is somewhat atypical. Each component
of a vector or a matrix is handled as a separate node
which makes the structural learning operations easier.
The only internally vectorised entities correspond to
having multiple samples from a single scalar random
variable. Because of their usage, all the vectors are
currently assumed to have the same length.

4 EXPERIMENT

In this section an experiment with a dynamical model
for variances applied to image sequence analysis is re-

ported. The purpose is to demonstrate a nontrivial
model implementable using Bayes Blocks.

The motivation behind modelling variances is that in
many natural signals, there exists higher order depen-
dencies which are well characterised by correlated vari-
ances of the signals (Parra et al., 2001). Hence we
postulate that we should be able to better catch the
dynamics of a video sequence by modelling the vari-
ances of the features instead of the features themselves.
This indeed is the case as will be shown.

4.1 THE MODEL

The model considered can be summarised by the fol-
lowing set of equations:

x(t) ∼ N (As(t),diag(exp[−vx]))

s(t) ∼ N (s(t − 1),diag(exp[−u(t)]))

u(t) ∼ N (Bu(t − 1),diag(exp[−vu]))

We will use the acronym DynVar to refer to this model.
The linear mapping A from sources s(t) to observa-
tions x(t) is constrained to be sparse by assigning each
source a circular region on the image patch outside of
which no connections are allowed. These regions are
still highly overlapping. The variances u(t) of the inno-
vation process of the sources have a linear dynamical
model. It should be noted that modelling the vari-
ances of the sources in this manner is impossible if one
is restricted to use conjugate priors.

The sparsity of A is crucial as the computational com-
plexity of the learning algorithm depends on the num-
ber of connections from s(t) to x(t). The same goal
could have been reached with a different kind of ap-
proach as well. Instead of constraining the mapping to
be sparse from the very beginning of learning it could
have been allowed to be full for a number of iterations
and only after that pruned based on the cost function
as explained in Section 3.1. But as the basis for im-
age sequences tend to get sparse anyway, it is a waste
of computational resources to wait while most of the
weights in the linear mapping tend to zero.

For comparison purposes, we postulate another model
where the dynamical relations are sought directly be-
tween the sources leading to the following model equa-
tions:

x(t) ∼ N (As(t),diag(exp[−vx]))

s(t) ∼ N (Bs(t − 1),diag(exp[−u(t)]))

u(t) ∼ N (µu,diag(exp[−vu]))

The variances u(t) are still estimated as part of the
model but there is no longer a dynamical relation be-
tween them. We shall refer to this model as DynSrc.

4.2 IMPLEMENTATION USING BAYES

BLOCKS

A possible Python implementation of the DynVar
model is shown in Listing 1. Mostly the mathematical
description of the model maps directly to correspond-
ing statements in the implementation, although mod-
els are most conveniently constructed in a top-down
fashion, as has been done here, too.

At line four a helper routine for constructing linear
mappings from sum and product nodes is defined. It
accepts an optional mask parameter to allow initially
sparse mappings. This option is used at line 51, where
the linear mapping from sources to observations is con-
structed. There the mask is as described in Section 4.1.

All nodes and variables are associated with a net, here
constructed at line 26. Nodes are created through a
node factory which conveniently allows for polymor-
phic constructors (Gamma et al., 1995). That is, we
can provide an alternative implementation of the de-
fault factory to obtain nodes with modified implemen-
tation. There are two flavours of each node, one scalar
and one vectorised, the length of the vectors being that
given in the constructor of the net. Scalar and vector
nodes can be combined in a natural manner—a vector
node can have both scalar and vector parents whereas
having a vector parent for a scalar node is not mean-
ingful.

Since we require that all nets are acyclic, special care
is needed with the use of delays since they create ap-
parent cycles. To advice the library of this, so called
proxy nodes are employed (at lines 35 and 46). They
are given the label of the parent as their argument.
At the end of the model construction, at line 59, the
proxies are connected with a call to the net.

4.3 RESULTS

As the data, x(t), a video image sequence of dimen-
sions 16 × 16 × 4000 was used. That is, the data con-
sisted of 4000 subsequent digital images of the size
16 × 16. A part of the dataset is shown in Figure 1.

We learnt both the models by iterating the learning al-
gorithm 2000 times at which stage a sufficient conver-
gence was attained. The first hint of the superiority of
the DynVar model was offered by the difference of the
cost between the models which was 28 bits/frame (for
the coding interpretation, see Honkela and Valpola,
2004). To further evaluate the performance of the
models, we considered a simple prediction task where
the next frame was predicted based on the previous
ones. The predictive distributions, p(x(t+1)|X1:t), for
the models can be approximately computed based on
the posterior approximation. The means of the predic-

Listing 1: Variance model. See Sec. 4.2 in the text for
details.

U t i l i t y f unc t i on f o r cons t ruc t i on
2 # of l i n e a r mappings

4 def l inmap (f , inputs , outdim , mask=None) :
sums = []

6 a = []
for i in range (outdim) :

8 sum = f .GetSumNV(”sum”)
a . append ([])

10 for j in range (l en (inputs)) :
i f (mask i s None) or mask [i , j] :

12 a [i] . append (
f . GetGaussian (

14 ”a” , c0 , c0))
p = f . GetProdV(

16 ”prod” , a [i] [j] ,
inputs [j])

18 sum . AddParent (p)
e l s e :

20 a [i] . append (None)
sums . append (sum)

22 re turn sums , a

24 # The core model

26 net = PyNet (tdim)
f = PyNodeFactory (net)

28

c0 = f . GetConstant (” const0 ” , 0 . 0)
30 cn5 = f . GetConstant (” constneg5 ” , −5.0)

32 pu = []
for j in range (sdim) :

34 pu . append (
f . GetProxy (”pu” , Label (”u” , j)))

36

Bout , B = linmap (f , pu , sdim)
38

s = []
40 for j in range (sdim) :

vu = f . GetGaussian (”vu” , c0 , cn5)
42 du = f . GetDelayV (”du” , c0 , Bout [j])

u = f . GetGaussianV (
44 Label (”u” , j) , du , vu)

46 ps = f . GetProxy (”ps” , Label (” s ” , j))
ds = f . GetDelayV (”ds” , c0 , ps)

48 s . append (f . GetGaussianV (
Label (” s ” , j) , ds , u))

50

Aout , A = linmap (f , s , xdim , mask)
52

x = []
54 for i in range (xdim) :

vx = f . GetGaussian (”vx” , c0 , cn5)
56 x . append (

f . GetGaussianV (”x” , Aout [i] , vx))
58

net . ConnectProxies ()

tive distributions are very similar for both of the mod-
els. Figure 2 shows the means of the DynVar model
for the same sequence as in Figure 1. The means by
themselves are not very interesting, since they mainly
reflect the situation in the previous frame. However,
the DynVar model also has a rich model for the vari-
ances. The standard deviations of its predictive dis-
tribution are shown in Figure 3. White stands for big
variance and black for small. Clearly, the model is
able to reduce the accuracy of the predictions in the
area of high motion activity and hence provide better
predictions. We can offer quantitative support for this
claim by computing the predictive perplexities for the
models. For each t this is defined as

exp

{

− 1

256

256
∑

i=1

log p(xi(t + 1)|X1:t)

}

.

The predictive perplexities for the same sequence as in
Figure 1 are shown in Figure 4. Naturally the predic-
tions get worse when there’s movement in the video.
However, DynVar model is able to handle it much bet-
ter than its competitor.

5 DISCUSSION

The aims of the Bayes Blocks system are similar to the
VIBES system by Bishop et al. (2003). The underlying
frameworks and hence also the software implementa-
tions are, however, very different in practice.

The variational message passing (VMP) frame-
work (Winn and Bishop, 2005) underlying the VIBES
system is based on exponential family conjugate mod-
els. This excludes the hierarchical variance models as
one cannot define a hierarchical model for the parame-
ters of the Gamma distributed precision parameter of
a Gaussian distribution. In the building block frame-
work the precision of a Gaussian is log-normal and
hence a hierarchical model can be easily defined recur-
sively.

From software point of view, VIBES concentrates on
building an easy-to-use graphical user interface with
limited possibilities for the user. The Bayes Blocks
software has no graphical user interface for defining
models. Instead, the user gets the full power of Python
scripting language. This allows very versatile connec-
tivity of the blocks e.g. for sparse linear mappings that
are often needed for handling very large data sets. The
system supports easy pruning of unused parts of the
model and addition of new parts allowing the model
to be constructed iteratively, one part at a time.

The current Bayes Blocks is based on fully facto-
rial posterior approximations. This design choice was
made due to computational efficiency, as the pri-

Figure 1: A sequence of 80 frames from the data used
in the experiment.

Figure 2: The means of the predictive distribution for
the DynVar model.

Figure 3: The standard deviations of the predictive
distribution for the DynVar model.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Frame

P
re

d.
 P

er
pl

ex
ity

DynSrc
DynVar

Figure 4: Predictive perplexities.

mary application for the library has been unsupervised
learning of possibly rather large models. The library
could of course be extended for modelling of posterior
dependencies and using conjugate models.

One of the advantages of Bayesian modelling is the
ease of handling missing values (Raiko et al., 2003),
or even partially missing values (Raiko, 2004). The
latter is also known as virtual evidence and it means
that a single value in data can be partially missing and
partially observed. One might for example know that
some value is probably greater than zero. Not only
does the Bayes Blocks framework operate straightfor-
wardly with these kind of inaccuracies in data, it also
reconstructs the values during learning.

6 CONCLUSIONS

In this paper we presented the Bayes Blocks software
library which is an implementation our variational
Bayesian building blocks framework. It can be used to
construct a rich class of probabilistic models by con-
necting simple variable and computational nodes ap-
propriately. Underlying the library, there is the varia-
tional Bayesian methodology, which has proven to be
a fast and reliable estimation scheme even for complex
models. We showed by example how easily a nontrivial
real-world model can be built using the library.

The library is free software and it is available for down-
load at http://www.cis.hut.fi/projects/bayes/

software/.

Acknowledgements

This work was supported in part by the IST Pro-
gramme of the European Community, under the PAS-

CAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views. We would
like to thank Hans van Hateren for supplying the video
data (van Hateren and Ruderman, 1998).

References

H. Attias. Independent factor analysis. Neural Com-
putation, 11(4):803–851, 1999.

D. Barber and C. Bishop. Ensemble learning for multi-
layer networks. In Advances in Neural Information
Processing Systems 10, pages 395–401, 1998.

D. M. Beazley. Using SWIG to control, prototype, and
debug C programs with Python. In Proc. 4th Int.
Python Conf., 1996.

C. M. Bishop, D. Spiegelhalter, and J. Winn. VIBES:
A variational inference engine for Bayesian net-
works. In Advances in Neural Information Process-
ing Systems 15, pages 793–800, 2003.

R. Cowell. Introduction to inference for Bayesian net-
works. In M. I. Jordan, editor, Learning in Graphi-
cal Models, pages 9–26. The MIT Press, Cambridge,
MA, USA, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, Reading, Mas-
sachusetts, 1995.

A. Gelman, J. Carlin, H. Stern, and D. Rubin.
Bayesian Data Analysis. Chapman & Hall/CRC
Press, Boca Raton, Florida, 1995.

Z. Ghahramani and G. E. Hinton. Variational learning
for switching state-space models. Neural Computa-
tion, 12(4):831–864, 2000.

M. Harva. Hierarchical variance models of image se-
quences. Master’s thesis, Helsinki University of
Technology, Espoo, 2004.

M. Harva and A. Kabán. A variational Bayesian
method for rectified factor analysis. In Proc. 2005
IEEE Int. Joint Conf. on Neural Networks (IJCNN
2005), Montreal, Canada, 2005. To appear.

A. Honkela and H. Valpola. Variational learning and
bits-back coding: an information-theoretic view to
Bayesian learning. IEEE Transactions on Neural
Networks, 15(4):800–810, 2004.

A. Honkela, H. Valpola, and J. Karhunen. Accelerat-
ing cyclic update algorithms for parameter estima-
tion by pattern searches. Neural Processing Letters,
17(2):191–203, 2003.

K. Murphy. The Bayes net toolbox for Matlab. Com-
puting Science and Statistics, 33, 2001.

L. Nolan, M. Harva, A. Kában, and S. Raychaudhury.
A data-driven Bayesian approach to finding young

stellar populations in early-type galaxies from their
UV-optical spectra. Monthly Notices of the Royal
Astronomical Society, 2005. Submitted.

L. Parra, C. Spence, and P. Sajda. Higher-order statis-
tical properties arising from the non-stationarity of
natural signals. In Advances in Neural Information
Processing Systems 13, pages 786–792, 2001.

T. Raiko. Hierarchical nonlinear factor analysis. Mas-
ter’s thesis, Helsinki University of Technology, Es-
poo, 2001.

T. Raiko. Partially observed values. In Proc. Int. Joint
Conf. on Neural Networks (IJCNN’04), pages 2825–
2830, Budapest, Hungary, 2004.

T. Raiko, H. Valpola, M. Harva, and J. Karhunen.
Building blocks for variational Bayesian learning of
latent variable models. 2005. Under preparation.

T. Raiko, H. Valpola, T. Östman, and J. Karhunen.
Missing values in hierarchical nonlinear factor anal-
ysis. In Proc. of the Int. Conf. on Artificial Neu-
ral Networks and Neural Information Processing
(ICANN/ICONIP 2003), pages 185–189, Istanbul,
Turkey, 2003.

H. Valpola, M. Harva, and J. Karhunen. Hierarchical
models of variance sources. Signal Processing, 84(2):
267–282, 2004.

H. Valpola, A. Honkela, M. Harva, A. Ilin,
T. Raiko, and T. Östman. Bayes blocks software
library. http: // www. cis. hut. fi/ projects/

bayes/ software/ , 2003a.

H. Valpola and J. Karhunen. An unsupervised ensem-
ble learning method for nonlinear dynamic state-
space models. Neural Computation, 14(11):2647–
2692, 2002.

H. Valpola, T. Östman, and J. Karhunen. Nonlinear
independent factor analysis by hierarchical models.
In Proc. 4th Int. Symp. on Independent Component
Analysis and Blind Signal Separation (ICA2003),
pages 257–262, Nara, Japan, 2003b.

H. Valpola, T. Raiko, and J. Karhunen. Building
blocks for hierarchical latent variable models. In
Proc. 3rd Int. Conf. on Independent Component
Analysis and Signal Separation (ICA2001), pages
710–715, San Diego, USA, 2001.

J. H. van Hateren and D. L. Ruderman. Indepen-
dent component analysis of natural image sequences
yields spatio-temporal filters similar to simple cells
in primary visual cortex. Proceedings of the Royal
Society of London B, 265(1412):2315–2320, 1998.

J. Winn and C. M. Bishop. Variational message pass-
ing. Journal of Machine Learning Research, 6:661–
694, April 2005.

