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Abstract. In this paper, we study a Tikhonov-type regularization for restricted

Boltzmann machines (RBM). We present two alternative formulations of the

Tikhonov-type regularization which encourage an RBM to learn a smoother prob-

ability distribution. Both formulations turn out to be combinations of the widely

used weight-decay and sparsity regularization. We empirically evaluate the effect

of the proposed regularization schemes and show that the use of them could help

extracting better discriminative features with sparser hidden activation probabili-

ties.
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1 Introduction

Restricted Boltzmann machines (RBM) play an important role in deep learning. In

many deep neural networks each layer of the network is pre-trained as if it were an

RBM, and it has been empirically shown to facilitate training the whole network (see,

e.g., [10, 8]).

It is common to use a stochastic gradient method for training RBMs. Both con-

trastive divergence learning [12] and approximate maximum-likelihood learning (see,

e.g., [21]), two of the most popular learning methods, are based on the stochastic gradi-

ent method.

One important research direction in using the stochastic gradient method for RBMs

is to design a regularization term. For instance, one of the most naive, but widely-

used, regularization methods called weight-decay regularizes the growth of parameters

in order to avoid overfitting and to stabilize learning. Another completely different reg-

ularization technique introduced in [14] forces learning to result in an RBM that gives

sparser hidden activations given visible data.

Along this line of research, we investigate a Tikhonov-type regularization (see, e.g.,

[1, 9]) by which we refer to regularizing the derivative of either an approximating func-

tion or a function related to it. In this paper, two different formulations of the Tikhonov-

type regularization for RBMs are derived. We found that both formulations appear as

a combination of weight-decay and sparsity regularization, and present an empirical

evaluation on their effect in training RBMs.

Recently, a form of Tikhonov-type regularization was successfully applied to auto-

encoders, which are closely related to RBMs [22], in [18, 17] to explicitly encourage
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hidden variables to be invariant to (small) deformation of input representations. It was

done by regularizing the squared derivative of a latent variable with respect to an input

variable, which makes it a modified form of Tikhonov-type regularization.

2 Restricted Boltzmann Machines

The restricted Boltzmann machine is a stochastic neural network with a bipartite struc-

ture such that each visible neuron is connected to all the hidden neurons and each hidden

neuron is connected to all the visible ones [20].

We define a log-probability assigned to a given visible vector v by an RBM as:

log p(v | θ) = f(v | θ) +

Nh
∑

j=1

log

(

1 + exp

(

cj +

Nv
∑

i=1

wij

vi

σ2

))

− logZ(θ), (1)

where v and h are a column vector and a binary column vector representing the state

of the visible and hidden neurons, and parameters θ = (W,b, c,σ) include weights

W = [wij ]Nv×Nh

, biases b = [bi]Nv×1, c = [cj ]Nh×1 and standard-deviations σ =
[σi]Nv×1.Nv andNh are the numbers of visible and hidden neurons, respectively. Z(θ)
denotes the normalizing constant which is intractable and it can be calculated by sum-

ming exponentially many terms.

Function f(v | θ) in (1) indicates a contribution of visible neurons’ biases to an

energy of an RBM. f(v | θ) together with σi decides whether a visible neuron may

have a binary value or a continuous real value.

When f(v | θ) = b
⊤
v, it requires a visible neuron to have either 0 or 1, making

a standard binary RBM [20]. In this case each σi is set to 1. On the other hand, each

visible neuron can have a continuous real value when f(v | θ) = −
∑Nv

i=1
(vi−bi)

2

2σ2

i

, and

each σi can either be set to a pre-defined value or learned [2, 10]. We call this model a

Gaussian-Bernoulli RBM (GRBM).

Given a training set {v(n)}Nn=1 an RBM can be trained bymaximizing log-likelihood.

The maximization is usually done by the stochastic gradient method, and in this paper,

we use the recently introduced method of the enhanced gradient [4] together with par-

allel tempering [3, 7].

2.1 Regularization for Restricted Boltzmann Machines

There are a number of regularization techniques that are widely used.

One most widely used technique is weight-decay regularization. Training an RBM

with the weight-decay regularization maximizes the following objective function:

L(θ)−
βw

2

∑

ij

w2
ij , (2)

where L(θ) and βw are the log-likelihood function and the regularization constant,

respectively 1.

1 The weight-decay may be applied to visible and hidden biases, as we have done in this paper.
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Another widely used technique, called sparsity regularization, regularizes the av-

erage activation probability of each hidden neuron. An RBM trained using the sparsity

regularization is commonly referred to as sparse RBM (sRBM) [14]. Sparse RBMs have

been popular due to the fact that an RBM with low average hidden activation probabili-

ties can extract better discriminative features than non-regularized RBMs (see, e.g., [16,

5]). In [14], the sRBM was introduced by modifying the objective function to

L(θ)−
βs

2

Nh
∑

j=1

(

ρ−
1

N

N
∑

n=1

p(hj | v
(n),θ)

)2

, (3)

where ρ and βs are a target average activation of each hidden neuron and the regular-

ization constant, respectively.

3 Tikhonov Regularization for Restricted Boltzmann Machines

In this section, we present two possible formulations of the Tikhonov-type regulariza-

tion for RBMs. We refer to them as TYPE-1 and TYPE-2 formulations, respectively.

3.1 TYPE-1 and TYPE-2 Regularizations

One basic approach of the Tikhonov-type regularization is to minimize

β

2
Ep(v)

[

‖∇vy(v)‖
2
]

, (4)

when the task is to approximate some function y(v) (see, e.g., [1, 9]) of inputs v. Here,
β is a regularization parameter. p(v) can be defined by a set of training samples or be

approximated by a probabilistic model.

Intuitively, by minimizing the derivative of the approximating function, Eq. (4)

keeps the function smooth around training samples or around regions of high proba-

bility. In other words, it makes function y(v) more invariant to (small) deformations of

v.

Under this intuition, it is natural to use as the approximating function y(v) the prob-
ability density function p(v) learned by an RBMs. Thus, the RBM model distribution

is regularized to be smoother.

After replacing y(v)with Eq. (1), we get the following TYPE-1 regularization term:

J1 =
β

2
Ep(v)

[

Nv
∑

i=1

(

∂

∂vi
log p(v | θ)

)2
]

≈
β

2N

N
∑

n=1

Nv
∑

i=1





∂f(v(n) | θ)

∂vi
+

Nh
∑

j=1

wij

σ2
i

h
(n)
j





2

,

where v(n) is either an empirical sample or a sample drawn from the model distribution2

and h
(n)
j is a short-hand notation for p(hj = 1 | v(n),θ).

2 In the experiments, we used the samples from the model distribution which are readily avail-

able when computing the gradients.
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Instead, we may formulate the Tikhonov-type regularization by regularizing the

derivative of another function. From Eq. (1) it is apparent that an RBM is a special-

case of product-of-experts models [12], which implies that a probability given to v by

an RBM consists of contributions from experts which, in the case of RBMs, are hidden

neurons. Hence, it is reasonable to regularize each contribution of a hidden neuron by

minimizing the derivative of the logarithmic conditional probability distribution of each

hidden neuron log p(hj | v,θ)
3.

The TYPE-2 Tikhonov regularization is then formulated to minimize the following

term:

J2 =
β

2
Ep(v)





Nv
∑

i=1

Nh
∑

j=1

(

∂

∂vi
log h

(n)
j

)2


 ≈
β

2N

N
∑

n=1

Nv
∑

i=1

Nh
∑

j=1

(

wij

σ2
i

h
(n)
j

)2

. (5)

In the case of a standard binary RBM, it is easy to see that the derivatives in both for-

mulations are not well-defined as v is a binary vector. However, we can simply assume

that p(v | θ) has a domain of RNv instead, which is obviously followed by p(hj | v,θ)
having the same domain4.

The idea behind this choice is that a probability distribution defined by a binary

RBM is constructed by taking values of all v such that each component of v is restricted

to be either 0 or 1. Hence, we make the distribution defined by the RBM smoother by

smoothing another continuous distribution with the same probability density function.

It is easy to see that both TYPE-1 and TYPE-2 can be seen as a combination of

the weight-decay and sparsity regularizations. Both terms decrease when the absolute

l2-norm of each weight and the average activation probability of each hidden neuron

decrease.

3.2 Optimization

A straightforward way to train an RBM with one of the two types of the Tikhonov-type

regularization is to optimize the regularization term together with the log-likelihood.

However, this approach makes it difficult to utilize the enhanced gradient which has

been shown to perform better than the traditional gradient [4]. Hence, we follow the

approach introduced in [14]. At each iteration, following the normal stochastic update

of the parameters using the enhanced gradient we update the parameters wij , bi and cj
again according to one of the regularization terms computed with the current minibatch.

4 Experiments

In this section we try to see the effect of the proposed regularization. From here on

we refer to an RBM trained using the proposed Tikhonov regularization as a regular-

ized RBM (rRBM). Note that in this paper we only focus on a standard RBM which

constraints each visible neuron to be binary. rRBMt1 and rRBMt2 indicate the TYPE-1

3 As noted earlier, a similar idea has been applied to auto-encoders in [18, 17].
4 This assumption does not need to be made in case of RBMs with continuous visible neurons.
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and TYPE-2 regularization, respectively. Additionally, we tested the weight-decay and

sparsity regularization techniques in order to see how they perform differently com-

pared to the proposed Tikhonov-type regularization. They are denoted by wRBM and

sRBM, respectively.

We take a look at three metrics that can explain the effect of the proposed regulariza-

tion term. We trained RBMs with 500 hidden neurons on two different data sets which

are the handwritten digits (MNIST) [13] and the Caltech-101 Silhouettes [15]. As they

have been quite well studied previously, we can easily compare to results obtained by

other researchers.

Firstly, log-probabilities of test samples are checked. It may happen that the log-

probabilities become larger for the rRBMs, as smoothing could potentially decrease

the peaks around training samples systematically resulting in higher probability being

assigned to nearby test samples.

Secondly, we consider classification accuracies using the learned features from an

RBM, which indirectly suggests how discriminative extracted features are. In order to

see how discriminative features were, we did not fine-tune the already trained weights

of RBMs.

Additionally, in order to see how the proposed scheme biases a resulting model we

check the average hidden activation probabilities given test samples. It can be expected

that rRBMs will achieve higher sparsity.

For each data set we chose a regularization constant β through validation. We grid-

searched from 2−8 to 2−20 and estimated log-probabilities of validation samples. For

each grid point five RBMs were trained for a small number of epochs with different ran-

dom initializations, we considered their medians. Starting from a large β we logarithmi-

cally decreased it until the log-probabilities of validation samples stopped increasing or

decreasing significantly. Then, we chose the largest β with the converged performance

and sparsity.

We followed the same validation strategy to choose βw for RBMs trained using the

weight-decay regularization. For sparse RBMs, we chose the target sparsity ρ through

validation. ρ was grid-searched from 2−1 to 2−8, and ρ with the best log-probabilities

was chosen. The regularization constant βs was fixed to the inverse of the target sparsity,

as recommended by [14].

Finally, we chose 2−16 and 2−17 for MNIST with the TYPE-1 and TYPE-2, re-

spectively. For Caltech-101 Silhouettes, 2−17 was chosen for both formulations of the

Tikhonov-type regularization. βw for the weight-decay was chosen to be 2−14 and 2−11

for MNIST and Caltech-101 Silhouettes. 2−2 and 2−5 were chosen to be the target spar-

sity ρ for MNIST and Caltech-101 Silhouettes, respectively.

For initializing parameters, we followed the strategy recommended in [11]. Each

weightwij was drawn from a zero-mean normal distribution with its variance 1√
Nv+Nh

.

Visible biases b were set according to the training samples, and hidden biases c were

initialized to negative values (−4) in order to encourage sparse hidden activation prob-

abilities.

We independently trained RBMs five times with different parameters initializations.

Each RBM was trained for 200 epochs and 3000 epochs for MNIST and Caltech-101

Silhouettes, which amount to about 93,800 and 99,000 updates, respectively.
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Fig. 1. Log-probabilities, classification accuracies and average hidden activation probabilities of

test samples computed from the RBMs trained on MNIST and Caltech-101 Silhouettes with the

proposed Tikhonov regularization schemes (rRBMt1 and rRBMt2) and without it (RBM).

Log-probabilities were computed using a normalizing constant estimated using the

AIS [19]. A simple logistic classifier was trained on hidden activation probabilities to

compute classification accuracies. We used parallel tempering to sample from the model

distribution [7, 3], and used the enhanced gradient and the adaptive learning rate, with

both an initial learning rate and an upper-bound set to 0.1, proposed in [2]. For each

experiment we decreased the learning rate proportionally to the inverse of the number

of updates for the last half of training.

4.1 Result

In Fig. 1, we see the log-probabilities and the classification accuracies of the test sam-

ples and the average activation probabilities of the hidden neurons given the test sam-

ples.

The most obvious difference between the non-regularized RBM and the rRBMs is

the lower average hidden activation probabilities given test samples 5. As discussed

previously the proposed regularization schemes resulted in a model with sparser hidden

activation probabilities. It is also noticeable that TYPE-2 tends to bias a resulting model

to have sparser hidden activation probabilities even compared to the RBMs trained using

the TYPE-1 regularization or the RBMs trained with the weight-decay.

A general trend of extracting better discriminative features could be observed when

the RBMs were regularized with either the TYPE-1 or TYPE-2 schemes. It was espe-

cially obvious with the TYPE-2 regularization while the use of the TYPE-1 formulation

gave only marginal improvement over the non-regularized RBMs.

5 Inconsistently high or low average hidden activation probabilities achieved by the sparse

RBMs are due to the fact that the target sparsity ρ was chosen by the validation to be as

high as 2−2
= 0.25 for MNIST and as low as 2−5

= 0.0312 for Caltech-101 Silhouettes.



Tikhonov-Type Regularization for Restricted Boltzmann Machines 7

On the other hand, it could be observed that the proposed regularization schemes

were not able to improve the resulting models’ generative performance. In the case

of MNIST, it could be seen that the better discriminative performance was achieved

with slight degradation in the log-probabilities of test samples. However, in the case of

Caltech-101 Silhouettes, we could observe that better generative models were learned

using the TYPE-1 scheme. It indirectly suggests that smoothing the overall probability

distribution (1) could potentially improve the generalization of the model by removing

highly peaked probability mass on training samples, while smoothing a contribution

from each hidden neuron does not necessarily help.

5 Discussion

We have presented two possible types of the Tikhonov-type regularization for train-

ing RBMs in this paper. Both the TYPE-1 and TYPE-2 schemes prefer an RBM to

learn a smoother probability distribution by minimizing the derivatives of either log-

probability distribution or log-conditional distribution of hidden neurons. It was shown

that both types were formulated as a combination of the weight-decay and sparsity reg-

ularizations which are widely used when training RBMs.

The experiments showed that both types were able to extract better discriminative

features with sparser hidden activation probabilities while marginally sacrificing the

generative capability of the resulting RBMs. The trend was more visible with the TYPE-

2 scheme, while it was not so apparent with the TYPE-1 regularization. However, we

were not able to see any significant performance improvement over other conventional

regularization techniques with binary RBMs.

We noticed through the validation step of the experiments that the regularization

constant β needs to be carefully chosen. Too large β overly simplified the distribution

learned by an RBM and failed to give a good fit of a training distribution. More thor-

ough investigation in choosing an appropriate regularization constant will need to be

done. Regardlessly, the proposed formulations of the Tikhonov regularization reduce

the number of hyper-parameters from at least three (ρ, βs, and βw) to one (β) against

using both the weight-decay and the sparse regularization together.

We tested the proposed regularization schemes with a standard, binary RBM only.

Both schemes, however, are not restricted to an RBM, but applicable to any other vari-

ant that can explicitly sum out hidden variables. One such variant is a GRBM which

replaces a binary visible neuron with a continuous, real-valued visible neuron. Another

possibility is a recently introduced spike-and-slab RBM [6]. It is natural to test the

proposed method with this model as a next step in future work.
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