
Gated Boltzmann Machine in Texture Modeling

Tele Hao, Tapani Raiko, Alexander Ilin, and Juha Karhunen

Department of Information and Computer Science
Aalto University, Espoo, Finland
firstname.lastname@aalto.fi

Abstract. In this paper, we consider the problem of modeling com-
plex texture information using undirected probabilistic graphical models.
Texture is a special type of data that one can better understand by con-
sidering its local structure. For that purpose, we propose a convolutional
variant of the Gaussian gated Boltzmann machine (GGBM) [12], inspired
by the co-occurrence matrix in traditional texture analysis. We also link
the proposed model to a much simpler Gaussian restricted Boltzmann
machine where convolutional features are computed as a preprocessing
step. The usefulness of the model is illustrated in texture classification
and reconstruction experiments.
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1 Introduction

Deep learning [7] has resulted in a renaissance of neural networks research. It
has been applied to various machine learning problem successfully: for instance,
hand-written digit recognition [4], document classification [7], and non-linear
dimensionality reduction [8].

Texture information modeling has been studied for decades, see, e.g., [6]. It
can be understood by considering combinations of several repetitive local fea-
tures. In this manner, various authors proposed hand-tuned feature extractors.
Instead of understanding the generative models for textures, those extractors
try to consider the problem discriminatingly. An old model called co-occurrence
matrix was proposed in [6], where it was used to measure how often a pair of
pixels with a certain offset gets particular values, thus tackling the structure of
the textures. Despite the good performances of these extractors, they suffer from
the fact that they contain only little information about the generative model for
textures. Also, these extractors can only be applied to certain type of data, and
it is fairly hard to adopt them to other tasks if needed. Conversely, generative
models of textures can be applied to various texture modeling applications. In
this direction, some statistical approaches for modeling textures have been in-
troduced in [14] and [11]. A pioneering work of texture modeling using deep
network is proposed in [9].

Texture modeling is a very important task in real-world computer vision
applications. An object can have any shape, size, and illumination condition.



However, the texture pattern within the objects can be rather consistent. By
understanding that, one can improve the understanding of objects in complex
real-world recognition tasks.

In this paper, a new type of building block for deep network is explored
to understand texture modeling. The new model is used to model the local
relationship within the texture in a biologically plausible manner. Instead of
searching exhaustively over the whole image patch, we propose to search for
local structures in a smaller region of interest. Also, due to the complexity of
the model, a novel learning scheme for such model is proposed.

2 Background

2.1 Co-occurrence Matrices in Texture Classification

Co-occurrence matrix [6] measures the frequencies a pair of pixels with a certain
offset gets particular values. Modeling co-occurrence matrices instead of pixels
brings the analysis to a more abstract level immediately, and it has therefore
been used in texture modeling.

The co-occurrence matrix C is defined over {m × n} size image I, where
{1 . . . Ng} levels of gray scales are used to model pixel intensities. Under this
assumption, the size of C is {Ng ×Ng}. Each entry in C is defined by

cij =

M∑
m=1

N∑
n=1

{
1 if I(m,n) = i & I(m+ δx, n+ δy) = j

0 otherwise
(1)

Different offset schemes for {δx, δy} result in different co-occurrence matrices. For
instance, one can look for textural pattern over an image with offset {−1, 0} or
{0, 1}. These different co-occurrence matrices typically have information about
the texture from different orientations. Therefore, a set of invariant features can
be obtained by having several different co-occurrence matrices together.

2.2 Gaussian Restricted Boltzmann Machines

Gaussian restricted Boltzmann machine (GRBM) [7] is a basic building block
for deep networks. It tries to capture binary hidden features (hidden neurons)
from a continuous valued data vector (visible neurons), where hidden neurons
and visible neurons are fully connected by an undirected graph. Even though
an efficient learning algorithm was proposed for GRBM [7], training is still very
sensitive to initialization and choice of learning parameters. Cho et al. proposed
an enhanced gradient learning algorithm for GRBM in [2]. Throughout the pa-
per, a modified version of GRBM [3] is adopted, where the energy function is
defined as

E(x,h) = −
∑
ik

xi
σ2
i

hkwik −
∑
k

hkck +
∑
i

(xi − bi)2

2σ2
i

(2)



where xi, i = 1, . . . , N and hk, k = 1, . . . ,K refer to the visible neurons and hid-
den neurons, respectively. wik characterizes the weight of the connection between
xi and hk, and ck is the bias term for hidden neuron hk. The mean and variance
of xi are denoted by bi and σi. Accordingly, the joint distribution of different
Boltzmann machine can be computed as P (x,h) = Z−1 exp (−E(x,h)), where
Z is the normalization constant. A schematic illustration of GRBM is shown in
Figure 1a. The input neurons x connect to the hidden neurons h, where each
connection is characterized by wik, A weight matrix and two bias vectors are
used to characterize all the connections in the network.
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Fig. 1: The schematic Illustration of the structures of different Boltzmann ma-
chines.

2.3 Gaussian Gated Boltzmann Machine

Gaussian gated Boltzmann machine(GGBM) [12] is a higher order Boltzmann
machine where there are two sets of visible neurons and one set of hidden neu-
rons. It is developed to model the complex image transformation in paired im-
ages [12], and the internal structures of a single image [13]. The energy function
of GGBM is defined as

E(x,y,h) = −
∑
ijk

xi
σi

yj
σj
hkwijk+

∑
i

(xi − bxi )2

2σ2
i

+
∑
j

(yj − byj )2

2σ2
j

−
∑
k

ckhk (3)

A graphical illustration of GGBM is shown in Figure 1b. GGBM tries to model
the relationship between visible neurons x and y by a set of hidden variables h.
A dot on the crossing of two lines in the figure represents one weight scalar wijk.
The biases are omitted in the figure for simplicity.

The weight tensor wijk can be rather large if there are lots of visible neurons
and hidden neurons. For instance, two data vectors of size 100 and 200 and a
hidden vector of size 500 increase the number of parameter in the wijk up to 100×
200×500. In order to overcome this, a low rank factorization of the weight tensor
is done as wijk →

∑
f w

x
ifw

y
jfw

h
kf [12]. A new different simplification approach

based on convolutional operation on local structure of texture is considered in
this paper.



3 Proposed Method

Combining the nature of texture information and GGBM, a modified GGBM
especially suitable for texture modeling is proposed. To start with, we consider
a slightly modified general gated Boltzmann machine where there are pair-wise
connections between all sets of nodes. This model has the most comprehensive
information about the input vectors. Accordingly, the energy function of the
model is written as

E(x,y,h) =−
∑
ijk

xi
σi

yj
σj
hkwijk −

∑
ij

xi
σi

yj
σj
uij +

∑
i

(xi − bxi )2

4σ2
i

+
∑
j

(yj − byj )2

4σ2
j

−
∑
k

hkck −
∑
ik

xi
2σ2

i

hkv
(1)
ik −

∑
jk

yj
2σ2

j

hkv
(2)
jk

(4)

where uij ,v
(1)
ik and v

(2)
ik are additional parameters to model the pair-wise connec-

tions between two sets of visible neurons {x,y} and hidden neurons h. Instead
of looking for the image transformation, we seek for the internal structure of
texture information. Therefore, the same patch of image is fed to the two sets
of visible neurons, that is x = y. Accordingly, the weights v and bias b for the
two sets of visible neurons are tied, which is V = V(1) = V(2) ; b = bx = by.
Also, a unified variance σ2 = σ2

i = σ2
j is learned to reduce the complexity of the

model further
The complexity of the model remains as the weight tensor wijk still needs

huge learning efforts. As x = y, xi and yj can be considered a pair of pixels,
and hk is learned to model this interaction. Given an image patch, the tradi-
tional GGBM will go through all the combinations of such pairs. This is highly
redundant as the texture is repetitive within a very small region. Recalling that
co-occurrence matrix tries to summarize the interaction of pairs of pixels over a
certain area, this structure can be introduced to GGBM. In order to do that, we
will assume wijk = wdk, such that the weight wijk depends only on the displace-
ment d and the hidden neuron hk. d represents the offest from i to j. Similarly,
uij = ud. One can think of wdk and ud as a convolutional model only over the
local regions in image patches. Convolutional approximation has been argued to
be rather successful in other applications such as image recognition tasks [10].
It is further assumed tthat wdk = 0 for large displacement d.

After these simplifications, the energy function (4) becomes

E(x,y,h) =− 1

σ2

∑
ijk

xiyjhkwdijk −
1

σ2

∑
d

xiyjudij +
1

2σ2

∑
i

(xi − bi)2

− 1

σ2

∑
ik

xihkvik −
∑
k

hkck

(5)

Ignoring the restriction x = y, learning and inference of GGBM can be based
on sequentially sampling from the conditional distributions p(x|y,h), p(y|x,h)



and p(h|x,y). These conditional forms can all be written in a close form as

p(x|y,h) =
∏
i

N

bi +
∑
jk

yjhkwijk +
∑
j

yjuij +
∑
k

hkvik, σ
2

 (6)

p(h|x,y) =
∏
k

1

1 + exp
(
− 1
σ2

∑
i xivik −

1
σ2

∑
j yjvjk −

1
σ2

∑
ij xiyjwijk − chk

) .
(7)

3.1 GRBM with Preprocessing

We also define a related but much simpler model as follows. Firstly, we define
auxiliary variables td =

∑
i xiyi+d where d is the offset between pixels i and j

as before. This formulation stems from the principle of the co-occurrence matrix
where each feature is only related to particular pairs of pixels in the image.
These computations can be done as a preprocessing step. Secondly, we learn
a GRBM using the concatenation of vectors [x, t] as data. We call this model
the GRBM(X,T) and illustrate it in Figure 1c. In the figure, the dashed line
represents t being computed from x.

When we write the energy function of GRBM(X,T)

E(x, t,h) = − 1

σ2

(∑
ik

xihkvik +
∑
dk

tihkwdk

)
−
∑
k

hkck

+
1

2σ2

(∑
i

(xi − bi)2 +
∑
d

(td − ud)2
)
,

(8)

we notice the similarities to the GGBM energy function in Equation (5). Each
parameter has its corresponding counterpart. The only remaining difference is

E(x, t,h)−E(x,y,h) =
1

2σ2

∑
d

t2d + const (9)

It turns out p(h|x,y) can be written in the exact same form as in Equation (7).
Since learning higher order Boltzmann machines is known to be quite difficult,

we propose to use this related model as a way for learning them. So in practice we
first train a GRBM(X,T), and then convert the parameters to the GGBM model.
Actually, in texture classification, the converted model produces exactly the same
hidden activations h and thus the same classification results. On the other hand,
in the texture reconstruction problem, the GRBM(X,T) model cannot be used
directly, since t cannot be computed from partial observations.

We noticed experimentally, that the converted GGBM model needs to be
further regularized, since the regularizing terms t2d in the energy function of
GRBM(X,T) are dropped off as seen in Equation (9). We simply converted wdk
and ud by scaling them with a constant factor smaller than 1, and chose that
constant by the smallest validation reconstruction error.



Settings Training Testing

X 25.0% 16.2%
T 54.2% 50.4%

XT 61.8% 52.8%
FX 87.6% 63.0%
FT 91.7% 65.3%

FXT 94.8% 67.0%

(a) Brodatz 24 data set

Settings Training Testing

X 29.2% 19.0%
T 46.7% 43.8%

XT 57.3% 49.2%
FX 68.2% 60.4%
FT 72.0% 62.2%

FXT 77.4% 66.2%

(b) KTH data set

Table 1: The texture classification result on various benchmark data sets.

4 Experiments

We test our methods with texture classification and reconstruction experiments.
The proposed method is first run to extract a set of meaningful features from
different datasets, and these features are then used for the classification and
reconstruction.

4.1 Texture Classification

Two publicly available texture data sets are tested. The liblinear library [5]
is used to build a classifier. In all classification experiments, a L1-regularized
logistic regression (L1LR) is trained. For the feature extraction experiments,
one step contrastive divergence and some regularization parameters1 are used.
In all experiment, 1000 hidden neurons are chosen, and wdk = 0 for all ||d||∞ > 5.
For comparison, we conducted six different classification experiments:

raw image patches (X) L1LR on X

transforms of X (T) L1LR on T

joint X and T (XT) L1LR on XT

features from X (FX) First run GRBM on X, and then L1LR on FX

features from T (FT) First run GRBM on T, and then L1LR on FT

features from XT (FXT) First run GRBM on XT, and then L1LR on FXT

The classification results in our experiments cannot be directly compared to
other texture classification experiments as they typical extract a highly complex
feature set from the whole image, while we directly extract features from small
patches of textures. In other words, our model is capable of performing classifi-
cation even though there is only little information about the texture, while it is
typically hard to extract features if the images are too small in other conventional
texture classification experiments.

1 weight decay = 0.0002, momentum = 0.2



Brodatz 24 Data Set A subset of 24 different textures is manually selected
from a large collection of 112 different textures. Only one large image is
available for each class [11]. Each image in each class is divided into 25
{128 × 128} small images, 13 of them are used to generate the training
patches, and rest of them are used to generate the testing patches. The
patch size in the learning and testing is manually selected as {20 × 20}.
240000 image patches are used in extracting the features. 24000 samples
are used for training a classifier and 2400 samples are used for testing. The
classification results are shown in Table 1a. Among all the experiments, the
proposed method performs the best.

KTH texture dataset This dataset [1] has 11 different textures, 4 different
samples for each texture, and 108 different images are available for each
sample. Each image is of size {200× 200}, and the patch size is still selected
as 20 × 20. Only the 108 images from sample a2 in each texture are used:
54 for generating training samples and 54 for generating testing samples.
118800 patches are used for extracting the features. 11000 patches are used
for training a classifier and 1100 sample are used for testing. The best result
is obtained with the proposed method. Please note a poorer overall perfor-
mance is expected as the variations within the training samples make the
problem harder. The detailed results are shown in Table 1b.

4.2 Texture Reconstruction

We also made a demonstration of texture reconstruction for showing the connec-
tions between the proposed model and its approximation. In this experiment, 6
random image patches are chosen from the Brodatz 24 dataset testing samples,
and a {10 × 10} square center of the patches are removed for reconstruction.
The reconstruction result can be seen in Figure 2. For comparison, the recon-
struction result from GRBM(X) model is provided. From this experiment, we
can see that the learned model is capable of learning a generative model for the
texture successfully. Despite the regularization, the reconstructions still seem to
have blockiness by over-emphasizing low frequencies. One way to improve the
result would be to use the GRBM(X,T) as an initialization for the GGBM, and
train it further.

5 Conclusions

In this paper, we tackled the problem of modeling texture information. We pro-
posed a modified version of GGBM and a simpler learning algorithm for that.
From the experimental results, we can argue that the proposed model is bene-
ficial in terms of modeling the structured information such as textures. Among
all the results, the highest accuracies are obtained by the features learned from
the proposed model. Although these accuracies are not the state-of-the-art, the
proposed model opened up a possibility where the texture information can be
successfully modeled using the higher order Boltzmann machine.

2 Available at http://www.nada.kth.se/cvap/databases/kth-tips/



Fig. 2: The texture reconstruction experiment. The first row shows the random
samples with missing centers. The second row shows the reconstruction from
GRBM model, and the reconstruction from the proposed model is shown in the
third row. The original samples are shown at the last row.
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