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Abstract. We propose a probabilistic model class for the analysis of
three-way count data, motivated by studying the subjectivity of lan-
guage. Our models are applicable for instance to a data tensor of how
many times each subject used each term in each context, thus revealing
individual variation in natural language use. As our main goal is ex-
ploratory analysis, we propose hybrid bilinear and trilinear models with
zero-mean constraints, separating modeling the simpler and more com-
plex phenomena. While helping exploratory analysis, this approach leads
into a more involved model selection problem. Our solution by forward
selection guided by cross-validation likelihood is shown to work reliably
on experiments with synthetic data.

Keywords: tensor factorization, multilinear model, unsupervised learn-
ing, exploratory data analysis, text analysis, Grounded Intersubjective
Concept Analysis

1 Introduction

As a generic task, analysis of counts in relation to two categorical variables also
known as factors, ways or modes is encountered in a vast number of scientific
studies and engineering applications. In order to make the problem setting and
evaluation of the present work more accessible, we concentrate on a concrete
example from text analysis where the counts of selected words in a set of doc-
uments is represented as a term-document matrix, words indexed as rows and
documents as columns. Common analyzes of this representation include relating
the documents to each other by the counts of the word occurrences in docu-
ments, or studying the relation of words by their co-occurrences in documents.
As such this comprises an example of 2-way data analysis.

It may be of interest to additionally study how the counts of the term-
document matrix vary according to some other factor such as the author of
the document. In fact, if the variation between documents according to the
author is included in analysis, one may be able to attribute some of the variation
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in the word counts to the language use of the author, and consequently, give
more accurate inference on relations between words (or documents) in general.
The term-document data augmented with information about the authors has a
representation as 3-way array. 3-way data arrays, or in general multi-way data,
can be studied for example using methods of tensor data analysis. For a generic
introduction to the topic, see e.g. [13].

The present work is originally motivated by the finding that there can be sub-
stantial individual variation in how natural language expressions are used and
interpreted. In [6], a method called Grounded Intersubjective Concept Analysis
(GICA) has been introduced. The essence of the GICA method is to model in-
dividual variation in using natural language expressions and for this purpose, a
3-way analysis of Subject-Object-Context (SOC) tensors is needed. The analy-
sis of such tensors may reveal individual differences in style but, more impor-
tantly, indicate subjectivity in modeling the relationship between language and
the world. If this kind of subjectivity remains unrecognized, various kinds of
problems related to communication may arise.

A more specific motivation for the present work stems from the fact that in [6]
the analysis of Subject-Object-Context tensors was conducted by flattening the
3-way arrays to 2-way matrices. These matrices can then be straightforwardly
analyzed using traditional data analysis methods such as PCA, SVD or ICA.
Each direction of flattening introduces a point of view and may, as such, provide
important insights into the data when analyzed. However, the flattening of the
original data appears to be useful, but possibly inadequate approach. It appears
necessary to devise a methodology that would make it possible to analyze all the
relationships without first determining which modes of the array are in focus. As
discussed above, traditional term-document matrices are formed by counting the
number of instances of each term in each document and by storing this count in
the element that corresponds to the row associated with the term in question and
the column associated with the particular document. The GICA data is formed
following the same basic principle, but adding a third mode which is used to
include all the subjects being included in the analysis. Moreover, rather than
considering frequency counts in whole documents, the counts concern typically
some context window of a given length.

One might think that subjectivity of language would be an exception rather
than a rule, since semantics appear to be well defined through thesauri, on-
tologies, and other knowledge representations. However, as natural language is
immersed with ambiguity, there is also a great amount of subjectivity and con-
textuality involved. A more detailed account on this matter is provided in [6].
Here it may be sufficient to refer to two examples. For the basic color terms,
there seems to be a high degree of intersubjective agreement. Around the idea
of prototypical red, green or blue there is not much subjective variation even
though a particular context may shift the evaluation, like in the case of phrases
“red skin” or “red wine” [3]. However, a lot more subjective variation is to be
expected if less typical color names are considered, such as “purple”, “khaki” or
“orchid”. An even more convincing example is when abstract words are consid-



Hybrid Bilinear and Trilinear Models for Analysis of 3-way Counts 3

ered. It is unlikely that all people mastering English would understand words
like “democracy/-tic”, “fair”, “love”, “wellbeing”, or even “computation” in a
mutually compatible manner. It should be obvious that there is variation in the
interpretation in the use of these and many other words. Tools for the formal
modeling and systematic analysis of this kind of semantic variation are not read-
ily available and widely used, though. The Subject-Object-Context tensors [6]
and the methodological development presented in this paper aim to alleviate
the lack of tools and to provide a systematic framework for approaching this
common but mostly unexplored phenomenon.

In this paper, we thus propose an unsupervised method for analyzing 3-way
count data – including GICA data – where a 2-way analysis based on decom-
position models is extended to allow 3-way analysis in the same framework in a
probabilistic manner. The complexity of the original phenomenon is very high
and the same concerns the data in question. With the methodology presented
in this paper, it should become possible to explore the data so that useful con-
clusions can be made. In particular, findings that show that there is significant
level of variation in the interpretation of some expression even if the context is
the same.

2 Proposed Model

The count xijk indexed by the levels i, j and k in the ranges {1, 2, . . . , I},
{1, 2, . . . , J} and {1, 2, . . . ,K} of the three modes under consideration is modeled
as Poisson distributed

P (xijk) = Pois(exp(lijk)), (1)

where the trilinear predictor

lijk =a(0)
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This specifies a model class that predicts the logarithm of the Poisson mean
count by a specially structured trilinear model consisting of

– bias parameters a(0), b(0), and c(0) for capturing the mean of each mode,
– all combinations of the bilinear factorizations with parameters a(q)

i: , b(q)j: and

c
(q)
k: , q = 1, 2 for capturing interactions between modes,

– the trilinear factorization or the PARAFAC model [4] with parameters a(3)
i: ,

b
(3)
j: and c

(3)
k: for capturing 3-way interactions between modes, and
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– hyperparameters h1, h2, h3 and h4 for adjusting the model complexity,

where the subscript “:” is used to denote all values of the index of summation
m within a factorization.

Without loss of generality, we assume that the vectors a(q), b(q), and c(q), q =
1, 2, 3 are zero-mean in the sense that

∑
i a

(q)
im = 0,

∑
j b

(q)
jm = 0 and

∑
k c

(q)
km = 0

for all m (see Appendix for proof). These parameter vectors are also known as
loadings.

The proposed model class can be interpreted as statistical multiple regres-
sion models, where a Poisson distributed count is regressed on three categorical
(factorial) independents. The dimension of the parameter space is the number of
parameters in a specific model, I+J +K+h1(I+J)+h2(J +K)+h3(I+K)+
h4(I + J + K). In the special case of h1 = h2 = h3 = h4 = 0 our specification
is linear and equals that of a Generalized Linear Model [12] with logarithmic,
canonical link function for Poisson distributed data. Our model is, however,
nonlinear in parameters in its general form.

2.1 Motivation: Exploratory Analysis

The reason we propose a combination of bilinear and trilinear terms instead of
only the trilinear part, is the exploratory analysis of the results: We wish each
phenomenon in the data to be modeled with as simple terms as possible. Since
the trilinear part is often the most interesting but also the most difficult one for
analysis, we hope to clarify it by separating the more trivial phenomena away.
It is easy to see that the trilinear term could emulate the other terms by using
constant loadings 1 for parameter vectors a, b or c. However, since we introduce
the zero-mean constraint, we force the simpler terms to be used, too.

In the GICA context, the interpretation of the terms in Equation (2) is as
follows. I is the number of people (or subjects), J is the number of terms (or
objects) and K is the number of contexts. Biases describe how much text we have
from each subject, and how common is each term and each context. The first
bilinear term models how people prefer using some objects (or terms). This part
is comparable to collaborative filtering. The second bilinear term is about how
terms are used in contexts (or documents). This part is comparable to latent
Dirichlet allocation. The third bilinear term models how common particular
contexts are for different people, again comparable to collaborative filtering.
The trilinear term can model the subjectivity of context to the use of terms.
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2.2 Parameter Estimation

The parameter vectors a, b, and c are learned by fitting the model to i.i.d. data.
The log-likelihood of the parameters is

ln
∏
i,j,k

P (xijk | lijk) =
∑
i,j,k

ln Pois(xijk | exp(lijk)) (3)

=
∑
i,j,k

ln
exp(lijk)xijk exp(− exp(lijk))

xijk!
(4)

=
∑
i,j,k

[xijklijk − exp(lijk)− ln(xijk!)] (5)

and its partial derivative w.r.t. lijk is

∂ ln
∏
P

∂lijk
= xijk − exp(lijk). (6)

The gradient for fitting the parameters is further derived using the chain rule.
Finding maximum likelihood estimates is subject to the zero-mean constraints
of the parameter vectors.

2.3 Model Selection

The proposed algorithm for model selection is as follows. First, we set the hyper-
parameters h1 = h2 = h3 = h4 = 0 to estimate the biases a(0)

i , b(0)j , c(0)k . Then
model complexity is increased by incrementing the hyperparameters one at a
time and thus introducing new components into the model. The new parameters
are fitted while keeping the old ones fixed.

The avoid overfitting, proper hyperparameter values are determined by cross-
validation [14], i.e., by splitting the tensor elements randomly into a number of
equal sized partitions and then, in turn, holding out each partition from the
parameter estimation as validation set. We stop increasing each hyperparameter
whenever the probability of validation set, that is, its evidence for the model,
stops increasing significantly. In cross-validation we compare the distribution of
changes in the model evidences of the validation sets between before and after
adding new parameters. We apply a non-parametric test (Wilcoxon signed-rank)
to compare the significance level of the increase to a critical value.

After determining the hyperparameters, thus fixing the model complexity, the
model parameters are estimated without holding out any data, and at the end,
the whole model is fine-tuned by estimating all the parameters simultaneously.

3 Simulation Experiment

In order to assess our contribution, comprising of a statistical model class to-
gether with parameter estimation, model selection and data analysis procedures
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Table 1. Summary of the experiment for identification of random models. Table A
(on the left) displays the count for each hyperparameter value k in the sample of 100
models. Table B (on the right) displays the accuracy of the method in the identification
test in terms of the error rate for each hyperparameter and value, and in total over the
types of factorizations and complexities.

k h1 h2 h3 h4 tot.

0 35 33 35 36 139

1 31 33 32 39 135

2 34 34 33 25 126

tot. 100 100 100 100 400

k h1 h2 h3 h4 tot.

0 0 0 0 0 0

1 0 0 0.03 0.10 0.04

2 0 0.03 0 0.12 0.03

tot. 0 0.01 0.01 0.07 0.02

proposed in Sect. 2, we apply them to synthetic data generated using 100 ran-
dom models in the proposed model class. For this purpose we first draw each hy-
perparameter for a model uniformly from {0, 1, 2}, and then draw values for the
respective parameter vectors uniformly from [−1, 1] and remove their mean. The
drawn models are summarized in Table 1.A. Finally, we sample size 40×25×15
(I × J ×K) data tensors from these models.

In the simulation we identified each of the models independently, applying
the proposed model selection procedure using 10-folds in cross-validation and
critical value of 0.15 for entering new components. In the models that generated
the 100 data tensors, we had in total 400 hyperparameter values to identify.
The method failed in 7 of the hyperparameter values for the 3-way components
(h4) and in 2 for the 2-way components (h2 and h3). In all but one case out of
the 9, the error was that one true generating component was excluded from the
identified model. Once, for h2, one extra component was included. In total 91
out of the 100 generating models were identified correctly. Table 1.B summarizes
the results in identification accuracy.

In overall, according to this experiment, the model selection procedure is
feasible. It seems that model estimation works surprisingly well despite the lack
of guarantees for finding the global optimum. Failures in the identification may
be due to suboptimal parameter values or to the sampling of cross-validation
data. Consequently, the improvement in the model evidence by introduction
of some components have not been considered significant in our conservative
model selection procedure. It is interesting to note that off-by-one errors in the
identification do not seem to induce further errors in subsequently identified
components and hence the estimation procedure can be considered robust in
this respect.

4 Discussion

Our method estimates the trilinear predictor tensor as a sum of finite number of
constraint rank-one tensors, i.e., as constraint CANDECOMP[1]/PARAFAC[4]
trilinear decomposition. Once this representation has been found, it follows from
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the properties of the decomposition that the trilinear components are unique up
to permutation and scaling of the parameter vectors under certain sufficient
conditions [11] that are true in most real world data analyses.

It is known that in general the approximation of a tensor by the trilinear
decomposition is an ill-posed problem [15] that does not have a bounded solu-
tion for some degenerate tensors. Also the greedy approach we apply (but not
depend on) for fitting the decomposition incrementally, does not result in best
fit in the sense that the optimal parameters of a less complex model are not
generally optimal in a more complex model [9]. Both of these results are de-
rived for approximations based on the Frobenius norm. We are not aware of
results that are valid for our probabilistic metric. Additionally, there are results
(e.g. [10]) that in real world applications the trilinear composition, fitted in the
greedy manner, gives comparable performance besides its lower computational
cost than the fitting of all of the parameters simultaneously.

Our model is a probabilistic generative model as opposed to traditional ten-
sor factorization models. One benefit from this is the well-founded handling of
missing values. We used missing values for the model selection by holding out
validation elements in the tensor, but in general, the original data might contain
missing elements, too. As the proportion of the missing values increases, mod-
elling the posterior uncertainty of the parameters starts to become important.
Our approach resembles the basic 2-way model in [7] and could be extended to
the more advanced treatment such as variational Bayes.

A tensor of size I×J×K can be factorized in many different ways, see [8] for
a review on tensor factorization. We build upon the CANDECOMP/PARAFAC
model in the multilinear predictor, that is, using factors I × h and J × h and
K×h, except that we include the simpler factorizations for explaining the other
phenomena. Another difference is of course that we use it hierarchically as a
parameter for the Poisson distribution. Tucker decomposition [5] is the oldest
tensor factorization method, which uses h1×h2×h3 and I ×h1 and J ×h2 and
K × h3. It can be used also in computing nonnegative tensor factorizations [2].
Recently, an algorithm for solving a set of factorization problems with possibly
coupled factors was given in [16].
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Appendix: Removing Mean of Parameter Vectors

Without loss of generality, we can assume that
∑

i a
(q)
im = 0,

∑
j b

(q)
jm = 0 and∑

k c
(q)
km = 0 for all m, q = 1, 2, 3 in Equation (2). This is because any non-zero

mean in parameter vectors could be moved to a simpler term. For instance the
mean µ

(a1)
m of a(1)

im could be moved to b(0)j by noting that for all i and k

b
(0)
j + a

(1)
imb

(2)
jm = [b(0)j + µ(a1)

m b
(2)
jm] + [a(1)

im − µ
(a1)
m ]b(2)jm. (7)

For removing the mean µ
(a3)
m of a(3)

im, we can increase h2 by 1 and set the new
part to

b
(1)
jh2

=
√
µ

(a3)
m b

(3)
jm, (8)

c
(2)
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=
√
µ

(a3)
m c

(3)
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