
Gaussian-Bernoulli Deep Boltzmann Machine

KyungHyun Cho, Tapani Raiko and Alexander Ilin

Department of Information and Computer Science,

Aalto University School of Science

Email: firstname.lastname@aalto.fi

Abstract—In this paper, we study a model that we call
Gaussian-Bernoulli deep Boltzmann machine (GDBM) and dis-
cuss potential improvements in training the model. GDBM is
designed to be applicable to continuous data and it is constructed
from Gaussian-Bernoulli restricted Boltzmann machine (GRBM)
by adding multiple layers of binary hidden neurons. The studied
improvements of the learning algorithm for GDBM include
parallel tempering, enhanced gradient, adaptive learning rate
and layer-wise pretraining. We empirically show that they help
avoid some of the common difficulties found in training deep
Boltzmann machines such as divergence of learning, the difficulty
in choosing right learning rate scheduling, and the existence of
meaningless higher layers.

I. INTRODUCTION

Deep Boltzmann machine (DBM) [1] is a recent extension

of the simple restricted Boltzmann machine (RBM) in which

several RBMs are stacked on top of each other. Unlike in other

models, such as deep belief network or deep autoencoders

(see, e.g., [2], [3]), in DBM, each neuron in the intermediate

layers receives both top-down and bottom-up signals, which

facilitates propagation of uncertainty during the inference

procedure [1]. The original DBM is constructed such that each

visible neuron represents a binary variable, that is DBM learns

distributions over binary vectors.

A popular approach to modeling real-valued data is normal-

izing each input variable to [0, 1] and treating it as a probability
(e.g., using a gray-scale value of a pixel as a probability [2],

[4]). This approach is however restrictive and it fits best to

bounded variables. In the original DBM [1], real-valued data

are first transformed into binary codes by training a model

called Gaussian-Bernoulli RBM (GRBM) [2], and DBM is

learned for the binary codes extracted from the data. This

approach showed promising results [1], [5], [6] but it may

be beneficial to combine GRBM and DBM in a single model

and allow their joint optimization.

In this paper, we study a Gaussian-Bernoulli deep Boltz-

mann machine (GDBM) which uses Gaussian units in the

visible layer of DBM. Even though deriving stochastic gra-

dient is rather easy for GDBM, the training procedure can

easily run into problems without careful selection of the

learning parameters. This is largely caused by the fact that

GRBM is known to be difficult to tune, especially the variance

parameters of the visible neurons (see, e.g., [7]). We propose

an algorithm for training GDBM based on the improvements

introduced for training GRBM in [8]. Also, we discuss the

universal approximator property of GDBM.

The rest of the paper is organized as follows. The GDBM

model is introduced in Section II. In Section III, we present the

training algorithm and explain how to compute the terms of

the stochastic gradient using mean-field approximations and

parallel tempering sampling. In Section IV-A, we describe

the update rules that are invariant to the data representation

and more robust to the initialization of the parameters. In

Section IV-B, we describe how we adapt the learning rate

using the ideas proposed in [9].

We first presented most of this work as an introduction to

GDBMs in the NIPS 2011 Workshop on Deep Learning and

Unsupervised Feature Learning [10]. However, this workshop

has no proceedings, and therefore our paper presented there

is not a proper publication. After this, GDBM has been used

in applications such as multimodal learning [11] and image

denoising [12].

II. GAUSSIAN-BERNOULLI DEEP BOLTZMANN MACHINE

GDBM with a single visible layer and L hidden layers

is parameterized with weights W of synaptic connections

between the visible layer and the first hidden layer, W
(l)

between layers l and l+1, biases b of the visible layer, b(l) of

each hidden layer l, and standard-deviations σi of the visible

neurons. For a certain state [vT
h
(1)T · · · h(L)T]T , the energy

is defined as:

E(v,h(1), · · · ,h(L) | θ) =
Nv
∑

i=1

(vi − bi)
2

2σ2
i

−
Nv
∑

i=1

N1
∑

j=1

vi
σ2
i

h
(1)
j wij−

L
∑

l=1

Nl
∑

j=1

b
(l)
j h

(l)
j −

L−1
∑

l=1

Nl
∑

j=1

Nl+1
∑

k=1

h
(l)
j h

(l+1)
k w

(l)
jk

and the corresponding probability is

p

(

v,
{

h
(l)
}L

l=1

∣

∣

∣

∣

θ

)

=
1

Z(θ)
exp

(

−E

(

v,
{

h
(l)
}L

l=1

∣

∣

∣

∣

θ

))

,

(1)

where Nv and Nl are the number of neurons in the visible

layer and the l-th hidden layer, respectively, and Z(θ) is

the normalizing constant dependent on the parameters θ of

the GDBM. Note that we use the GRBM parameterization,

including learning zi = log σ2
i instead of σi directly, from [8].

Note also that GRBM is a special case of GDBM with L = 1.
The states of the neurons in the same layer are independent

of each other given the adjacent upper and lower layers. The

conditional probability of a visible neuron is

p(vi|h
(1),θ) = N

vi

∣

∣

∣

∣

∣

∣

N1
∑

j=1

h
(1)
j wij + bi, σ

2
i

 ,

where N (· | µ, σ2) is a probability density of Normal

distribution with a mean µ and a standard deviation σ, and
the conditional probabilities of the hidden neurons are

P (h
(1)
j |v,h

(2),θ) = f

(

N
∑

i=1

vi
σ2
i

wij +

N2
∑

k=1

h
(2)
k w

(1)
jk + b

(1)
j

)

,

P (h
(l)
j |h

(l−1),h(l+1),θ) =

f

Nl−1
∑

i=1

h
(l−1)
i w

(l−1)
ij +

Nl+1
∑

k=1

h
(l+1)
k w

(l)
jk + b

(l)
j

 ,

where f(·) is a sigmoid function and NL+1 = 0.

A. GDBM is a universal approximator

GRBM belongs to the family of mixture of Gaussians

(MoG) since its joint distribution can be factorized into

p(v,h(1)) = P (h(1))p(v | h(1)) where P (h(1)) is the mixture

coefficients and p(v | h(1)) is Gaussian. MoGs are known to

be universal approximators [13]. However, the center points

of the exponentially many Gaussians in the data space are

defined by only a linear number of parameters with respect to

the number of hidden units, so not all MoGs can be written

as a GRBM.

Given a MoG, we could transform it into a GRBM if we

further constrain that exactly one of the hidden units is active

at a time, that is,
∑

j h
(1)
j = 1. We set the columns of W to

match the center points of the MoG and b to 0, and b
(1) is

set such that the marginals P (h(1)) would match the mixing

coefficients of the MoG.

As the final step, we implement the restriction
∑

j h
(1)
j = 1

using another hidden layer. We set N2 = N1 and b
(2)
j = −ω

for each j, w
(1)
ij = 3ω for all i = j and w

(1)
ij = −ω for

all i 6= j, and further subtract ω from each b
(1)
i . As ω goes

to infinity, it is clear that the probability of all states where

h
(2) 6= h

(1) or
∑

j h
(1)
j 6= 1 goes to zero and other states

implement the previous GRBM with the wanted restriction.

We have thus shown that any MoG can be modeled with a

GDBM, and GDBM is a universal approximator.

III. TRAINING GDBM

GDBM can be trained with the stochastic maximization of

the likelihood, where the likelihood function is computed by

marginalizing out all the hidden neurons. For each parameter

θ, the partial-derivative of the log-likelihood function is

∂L

∂θ
∝

〈

∂
(

−E(v(t),h | θ)
)

∂θ

〉

d

−

〈

∂ (−E(v,h | θ))

∂θ

〉

m

,

(2)

where 〈·〉d and 〈·〉m denote the expectation over the data

distribution P (h | {v(t)},θ) and the model distribution

P (v,h | θ), respectively.{v(t)} is a set of all the training

samples.

A. Computing expectation over the data distribution

Computing the first term of (2) is straightforward for

restricted Boltzmann machines because in that model the

hidden neurons are independent of each other given the visible

neurons. However, this does not apply to GDBM and therefore

one needs to use some sort of approximation. We employ the

mean-field approximation that was used for training binary

DBM in [1].

In the mean-field approximation, the visible neurons are

fixed to a training data sample, and the state of each hidden

neuron h
(l)
j is described with its probability µ

(l)
j of being ac-

tive, which is updated with the following fixed-point iterations:

µ
(l)
j ← f

Nl−1
∑

i=1

µ
(l−1)
i w

(l−1)
ij +

Nl+1
∑

k=1

µ
(l+1)
k w

(l)
jk + b

(l)
j

 ,

Note that N0 = Nv , µ
(0)
i = vi/σ

2
i , and the update rule for

the top-most layer not contain the summation term
∑Nl+1

k=1 .

Using the mean-field approximation is known to introduce a

bias. However, this is a computationally efficient scheme to

capture only one mode of the posterior distribution, which

can be desirable in many practical applications [1].

B. Computing expectation over the model distribution: Paral-

lel Tempering approach

The second term of the gradient (2) can be computed using

Markov-chain Monte-Carlo (MCMC) sampling. The original

approach proposed in [14] uses persistent Gibbs sampling with

only a few steps of sampling at each update. This is equivalent

to persistent contrastive divergence (PCD) introduced for train-

ing RBM [15]. Unfortunately the persistent Gibbs sampling

suffers from poor mixing of samples, which results in the fact

that trained models may have probability mass in the areas

which are not represented in the training data (false modes)

[16], [14], [5], [17]. In our experiments, we were able to

observe that learning can easily diverge when persistent Gibbs

sampling is used (see Section V).

We therefore use parallel tempering recently proposed in

the context of RBM and GRBM [16], [18], [8] as a sampling

procedure for GDBM. Parallel tempering overcomes the poor-

mixing problem by maintaining multiple chains of sampling

with different temperatures. In the chain with a high tempera-

ture, particles are more likely to explore the state space easily,

whereas particles in the chain with low temperatures more

closely follow the target model distribution.

We define the tempered distributions by varying parameters

θ of the original GDBM (1). We denote by θβ the parameters

of the intermediate models defined by inverse temperatures

β, where β = 0 corresponds to the base (most diffuse)

distribution and β = 1 corresponds to the target distribution

defined by the original GDBM. Defining appropriate inter-

mediate distributions is quite straightforward for binary RBM

[16], [18] but it is not as trivial for models with real-valued

visible units [8]. In this work, we use the tempering scheme

defined by the following choice of θβ :

bβ = βb+ (1− β)m,

b
(l)
β = βb(l) (l ≥ 1),

σβ,i =
√

βσ2
i + (1− β)s2i ,

W
(l)
β = βW(l),

where m = [mi]
Nv

i=1 and s2i are the means and variances

estimated from the samples obtained from all the tempered

distributions. Thus, the base distribution is the Gaussian dis-

tribution fitted to the samples from all the intermediate chains.

The proposed scheme assures that the swapping happens even

if the target distribution diverges from the data distribution.

According to our experiments, this results in more stable

learning compared to the scheme proposed in [8].

Adapting the temperature during learning can improve mix-

ing and therefore facilitate learning [19]. In our experiments,

we adapt the temperatures so as to maintain the numbers of

particle swaps between the consecutive chains as equal as

possible. This is done by adjusting the inverse temperatures

{βi, i = 1, . . . , Nchains} after every swapping round using the

following heuristic:

β
(t)
i ← ηβ

(t−1)
i + (1− η)

∑i−1
j=1 nj

∑Nchains−1
k=1 nk

,

where η is the damping factor, nj denote the number of swaps

between the chains defined by βj and βj+1, and the hottest

chain is kept at the initial temperature, that is β1 = 0. This
simple approach does not have much computational overhead

and seems to improve learning, as we show in Section V.

The proposed scheme of adapting the base distribution and

the temperatures seem to work well in practice, although it

may introduce a bias. The analysis of the possible biases of

this approach is a question for further research.

IV. IMPROVING THE TRAINING PROCEDURE

In this section, we show how to improve training of GDBM

by adapting several ideas introduced for training RBM and

deep networks.

A. Enhanced gradient for GDBM

Enhanced gradient was introduced recently to make the up-

date rules of binary Boltzmann machines invariant to data rep-

resentation [20], [9]. The gradient was derived by introducing

bit-flipping transformations and making the update rule, which

follows from (2), invariant to such transformations. It has been

shown to improve learning of RBM by making the results less

sensitive to the learning parameters and initialization.

The same ideas can be used for enhancing the gradient in

the models with Gaussian visible neurons such as GRBM and

GDBM. Instead of the bit-flipping transformations, one can

transform the original model by shifting each visible unit as

ṽi = vi −∆i and correcting the bias terms accordingly: b̃i =

bi +∆i and b̃
(1)
i = b

(1)
i −

∑N
i

∆i

σ2
i

wij , which would result in

an equivalent model. Following the methodology of [9], one

can select the shifting parameters ∆i such that the resulting

gradient with respect to weights w
(l)
ij and biases b

(l)
i do not

contain the same terms. This yields the following update rules:

∇e wij = Covd

(

vi
σ2
i

, h
(1)
j

)

− Covm

(

vi
σ2
i

, h
(1)
j

)

,

∇e w
(l)
ij = Covd

(

h
(l)
i , h

(l+1)
j

)

− Covm

(

h
(l)
i , h

(l+1)
j

)

(1 ≤ l < L),

∇e bi = ∇bi −
∑

j

〈

h
(1)
j

〉

dm
∇e wij ,

∇e b
(1)
i = ∇b

(1)
i −

∑

j

〈

h
(2)
j

〉

dm
∇e w

(1)
ij −

∑

k

〈vk〉dm∇e wki,

∇e b
(l)
i = ∇b

(l)
i −

∑

j

〈

h
(l+1)
j

〉

dm
∇e w

(l)
ij

−
∑

k

〈

h
(l−1)
k

〉

dm
∇e w

(l−1)
ki (l > 1),

where
〈

h
(l)
j

〉

dm
= 1

2

〈

h
(l)
j

〉

d
+ 1

2

〈

h
(l)
j

〉

m
is the average

activity of a neuron under the data and model distributions and

〈vi〉dm = 1
2

〈

vi/σ
2
i

〉

d
+ 1

2

〈

vi/σ
2
i

〉

m
. CovP (·, ·) is a covariance

between two variables under the distribution P defined as

CovP (vi, hj) = 〈vihj〉P − 〈vi〉P 〈hj〉P .

B. Adaptive learning rate

The choice of the learning rate to be used with the stochastic

gradient (2) greatly affects the training procedure [21], [22],

[9]. In order to avoid this effect of choosing a learning rate and

its scheduling, we adopt the strategy of automatic adaptation of

the learning rate, as proposed in [9]. The adaptation is done

based on the estimate of the likelihood computed using the

identity

p(vd|θη) =
p∗(vd|θη)

Z(θ)

〈

p∗(v|θη)

p∗(v|θ)

〉−1

p(v|θ)

, (3)

where θη are the model parameters obtained by updating θ

with learning rate η, p∗ denotes an unnormalized pdf such

that p(v|θ) = p∗(v|θ)/Z(θ) and the required expectation is

approximated using samples from p(v|θ).
The unnormalized probabilities p∗(v|θ) are obtained by

integrating out the hidden neurons from the joint model:

p∗(v|θ) =
∑

h

p∗(v,h),

which yields a simple analytical form in the case of RBM or

GRBM. However, explicit integration of the hidden neurons

is not tractable for GDBM and therefore one has to employ

some approximations. We use the approximation
∑

h

E(v,h) ≈ E(v,µ),

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Updates

β

Model

Base

200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

18

20

Updates

T
em

p
er
ed

ch
ai
n
s

Model

Base

200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

45

Updates

T
em

p
er
ed

ch
ai
n
s

Model

Base

Fig. 1. The left figure shows the evolution of the inverse temperatures during the learning while β1 is fixed to 0. The middle and right figures plot the
number of swaps between a pair of consecutive samples at each update (swap) while the temperatures were adapted (middle) and the temperatures were fixed
at the equally spaced levels (right).

where µ is the mean-field approximation of the hidden acti-

vations which is computed as discussed in Section III-A.

Note that we use different portions of data (mini-batches)

for computing the stochastic gradient and adaptation of the

learning rate, as was suggested in [9]. Therefore, the fixed-

point iterations required for computing the mean-field approx-

imation have to be run twice. However, initializing the mean-

field values with samples from the model distribution seems to

yield fast convergence. Also, making only a few fixed-point

iterations (without convergence) seems to be enough to get

stable behavior of the learning rate adaptation.

C. Layer-wise pretraining

Layer-wise pretraining is commonly used in deep networks

to help obtain better models by initializing weights sensibly

[23]. DBM requires special care during the pretraining phase

because the neurons in the intermediate layers receive signal

both from the upper and the lower layers, unlike in deep

belief networks [2]. Salakhutdinov proposed cope with this

problem by halving the pretrained weights in the intermediate

layers and duplicating the visible and topmost layers during the

pretraining [14]. The pretrained GRBM containing the visible

layer has the following energy:

E(v,h(1) | θ) =
∑

i

(vi − bi)
2

2σ2
i /Nv

−
∑

j

cjh
(1)
j −

∑

i

∑

j

vi
σ2
iNv

h
(1)
j wij ,

where Nv = 2 corresponds to duplicating the visible layer.

Similarly, the topmost RBM during pretraining has the energy

E(h(L−1),h(L) | θ) =−
∑

i

bih
(L−1)
i −

∑

j

(Nhcj)h
(L)
j −

∑

i

∑

j

h
(L−1)
i h

(L)
j (Nhw

(L−1)
ij),

where we also use Nh = 2.

V. EXPERIMENTS

We train the GDBM model on Olivetti face dataset [24].

Out of 400 faces, we used the first 350 faces of 35 people for

training and the remaining ones of 5 people as test samples.

We test the model in the problem of reconstructing the left half

of the face from the right half. We compared the reconstruction

results using the methodology presented in [25]. Note that the

test set does not contain faces of people from the training set

for better assessment of the generalization skills. The dataset

was initially normalized such that each pixel has zero-mean

and unit variance. We trained GDBM models with three hidden

layers, where each hidden layer had 500 neurons.

Unless specified otherwise, GDBM is trained using pretrain-

ing, enhanced gradient and adaptive learning rate. The size

of a minibatch and the number of samples from the model

distribution were both set to 64. The initial learning rate and

its upper-bound were both set to 0.001 for pretraining and

to 0.0005 for joint training of all the layers. Weight-decay

of 0.005 was used both during training RBM and pretraining

DBM. The reconstruction was performed by fixing the known

half of the image, computing the mean-field approximation

of the posterior distribution over all the unknown neurons

including the missing half of the image.

Adaptive Learning Rate. Our experiments confirmed that

the learning rate was able to adapt automatically using the

proposed strategy. The upper plot in Figure 3 shows that the

algorithm very quickly finds the appropriate region of learning

rates. After that, the learning rate slowly decreases, which is

a desired property in stochastic optimization (see, e.g., [26]).

Parallel Tempering. Parallel tempering yields pretty good

results (see Fig. 4) while we were not able to achieve con-

vergence of GDBM with PCD. Fig. 1 indicates that proposed

scheme of temperature adaptation results in the increased and

consistent number of swaps among all consecutive pairs of

tempered chains, and hence, in better mixing.

Enhanced Gradient and Pretraining. One obvious way

to check whether the higher layers of GDBM have learned

any useful structure is to inspect the mean-field approximation

values of the neurons in those layers given the training or

test data samples. When no useful structure was learned, most

hidden neurons in the top layer converge near 0.5 which means

that nearly no signal was received from the neighboring layers.

On the other hands, when those neurons actually affect the

modeling of the distribution, they converge to the values close

to either 0 or 1.

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T
es
t
sa
m
p
le
s

Hidden neurons at layer 1

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es
t
sa
m
p
le
s

Hidden neurons at layer 2

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es
t
sa
m
p
le
s

Hidden neurons at layer 3

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es
t
sa
m
p
le
s

Hidden neurons at layer 1

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es
t
sa
m
p
le
s

Hidden neurons at layer 2

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es
t
sa
m
p
le
s

Hidden neurons at layer 3

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es
t
sa
m
p
le
s

Hidden neurons at layer 1

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es
t
sa
m
p
le
s

Hidden neurons at layer 2

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es
t
sa
m
p
le
s

Hidden neurons at layer 3

Fig. 2. The figures visualize the mean-field values of the hidden neurons at different hidden layers when the visible neurons are fixed to the test data samples.
The top figures were obtained using the GDBM trained without any pretraining. The middle and bottom figures were obtained from the GDBM trained with
both the pretraining and the joint-training using either using the traditional gradient or the enhanced gradient, respectively. All three GDBMs were trained for
215 epochs.

One GDBM was trained without the layer-wise pretraining,

starting from the random initialization. In this case it was clear

that except for the first hidden layer no upper layer was able to

learn any useful structure, as shown on the top row of Figure 2.

Most of approximated values of the hidden neurons in the

second and third layers are near 0.5.

We trained the second GDBM by first initializing it with

layer-wise pretraining. However, this time, we did not use

the enhanced gradient for either the pretraining or the joint

training. Comparing with the top row of Figure 2, it is apparent

from the figures of the middle row that the hidden neurons

in the upper layers are approximated closer to 0 or 1 when

the layers were pretrained. It suggests that the pretraining is

important in a sense that it enables the upper layers to learn

the structure of the data distribution.

However, we were able to observe that many hidden neurons

in the higher layers (see the hidden layer 2, for instance) do

not contribute much to the modeling of the distribution, as

they are either always inactive (= 0) or always active (= 1).

This behavior was already discovered in case of RBM, and it

was shown that the enhanced gradient can resolve the problem

[9].

Thus, we trained yet another GDBM now by using the en-

hanced gradient. The bottom row of Figure 2 clearly indicates

that the enhanced gradient was able to address the problem.

Now the hidden neurons in the layer 3 respond differently to

the distinct test samples, and by doing so, encourages the flow

of the uncertainty between the hidden layer 1 and the hidden

layer 3, enabling the hidden neurons in the layer 3 to capture

the structure also.

Comparison with other models. We trained principal

component analysis (PCA) and GRBM on the same dataset.

PCA used 100 principal components [25], and GRBM had 500

hidden neurons. We limited the number of the principal com-

ponents to 100 because including more components resulted

in stronger overfitting and larger reconstruction errors.

The lower plot in Fig. 3 shows the evolution of the dif-

ference between the original test faces and the reconstructed

Original images PCA reconstruction GRBM reconstruction GDBM reconstruction

Fig. 4. Reconstructed test samples using PCA, GRBM and GDBM.

0 200 400 600 800 1000 1200
10

−5

10
−4

10
−3

Updates

η

0 50 100 150 200 250 300
40

45

50

55

60

65

70

75

80

Updates

R
M
S
E

PCA

GRBM

GDBM

Fig. 3. The evolution of the learning rate when the adaptive learning rate
was used (left) and the reconstruction errors using three different methods:
PCA, GRBM, and GDBM (right).

faces for each model. It indicates that GRBM start overfitting

quickly, which results in the increase of the reconstruction

error of the unseen faces. It is also evident from the recon-

structed faces in Fig. 4. Ultimately, GRBM performs worse

than PCA evidenced by both RMSE and the visual inspection

of the reconstructed faces.

GDBM trained only with pretraining using the identical

GRBM training procedure, however, does not become over-

fitted and performs better than GRBM, which indicates that

the additional hidden layers help perform and generalize better.

Furthermore, the joint training of GDBM by the proposed

learning algorithm improves the performance significantly. It

suggests that it is indeed important to jointly train all layers

of GDBM in order to obtain a better generative model.

VI. DISCUSSION

In this paper, we described Gaussian-Bernoulli deep Boltz-

mann machine and discussed its universal approximator prop-

erty. Based on the learning algorithm for the binary DBM [1],

we adapted three improvements which are parallel tempering,

enhanced gradient, and adaptive learning rate for training a

GDBM. Through the experiments we were able to empiri-

cally show that GDBM trained using these improvements can

achieve good generative performance.

Although they are not presented in this paper, using the

same hyper-parameters for learning faces, we were able to

train GDBM on other data sets such as NORB [27] and

CIFAR-10 [7]. It clearly indicates that the proposed improve-

ments make learning insensitive to the choice of the learn-

ing hyper-parameters and thus easier. However, the trained

GDBMs were not able to produce any state-of-the-art clas-

sification accuracy. The discrepancy between the generative

capability and the classification performance of GDBM is left

for the future research.

Recently, several novel approaches have been proposed for

efficiently training DBM. Some of them are; adaptive MCMC

sampling [5], tempered-transition [14], using a separate set

of recognition weights [6], centering trick [28], two-stage

pretraining algorithm [29] and metric-free natural gradient

method [30]. It will be interesting to see how they perform

when they are used for training GDBMs compared to the

learning algorithm proposed in this paper.

REFERENCES

[1] R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann machines,” in
Proceedings of the Internation Conference on Artificial Intelligence and

Statistics (AISTATS 2009), 2009, pp. 448–455.
[2] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of

data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
July 2006.

[3] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[4] B. Lake, R. Salakhudinov, J. Gross, and J. Tenenbaum, “One shot
learning of simple visual concepts,” in Proceedings of the 33rd Annual

Meeting of the Cognitive Science Society, 2011.
[5] R. Salakhutdinov, “Learning deep Boltzmann machines using adaptive

MCMC,” in Proceedings of the 27th International Conference on

Machine Learning (ICML 2010), J. Fürnkranz and T. Joachims, Eds.
Haifa, Israel: Omnipress, June 2010, pp. 943–950.

[6] R. Salakhutdinov and H. Larochelle, “Efficient learning of deep boltz-
mann machines,” in Proceedings of the 27th Conference on Uncertainty

in Artificial Intelligence, 2011.
[7] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

Computer Science Department, University of Toronto, Tech. Rep., 2009.
[8] K. Cho, A. Ilin, and T. Raiko, “Improved learning of Gaussian-Bernoulli

restricted Boltzmann machines,” in Proceedings of the 20th International
Conference on Artificial Neural Networks (ICANN 2010), 2011.

[9] K. Cho, T. Raiko, and A. Ilin, “Enhanced gradient and adaptive learning
rate for training restricted Boltzmann machines,” in Proceedings of the

28th International Conference on Machine Learning (ICML 2011). New
York, NY, USA: ACM, June 2011, pp. 105–112.

[10] ——, “Gaussian-Bernoulli deep Boltzmann machine,” in NIPS 2011

Workshop on Deep Learning and Unsupervised Feature Learning, Sierra
Nevada, Spain, December 2011.

[11] N. Srivastava and R. Salakhutdinov, “Multimodal learning with deep
boltzmann machines,” in Advances in Neural Information Processing

Systems 25, P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Wein-
berger, Eds., 2012, pp. 2231–2239.

[12] K. Cho, “Boltzmann machines and denoising autoencoders for image
denoising,” ArXiv e-prints, Jan. 2013.

[13] A. S. D.M. Titterington and U. Makov, Statistical Analysis of Finite

Mixture Distributions. New York, London, Sydney: John Wiley &
Sons, 1985.

[14] R. Salakhutdinov, “Learning in Markov random fields using tempered
transitions,” in Advances in Neural Information Processing Systems 22,
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,
Eds., 2009, pp. 1598–1606.

[15] T. Tieleman, “Training restricted Boltzmann machines using approxima-
tions to the likelihood gradient,” in Proceedings of the 25th Internation

Conference on Machine Learning (ICML 2008). New York, NY, USA:
ACM, 2008, pp. 1064–1071.

[16] G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and O. Delalleau,
“Parallel tempering for training of restricted Boltzmann machines,” in
Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, ser. JMLR Workshop and Conference Pro-
ceedings, Y.-W. Teh and M. Titterington, Eds. JMLR W&CP, 2010,
pp. 145–152.

[17] K. Cho, “Improved Learning Algorithms for Restricted Boltzmann
Machines,” Master’s thesis, Aalto University School of Science, 2011.

[18] K. Cho, T. Raiko, and A. Ilin, “Parallel tempering is efficient for learning
restricted boltzmann machines,” in Neural Networks (IJCNN), The 2010

International Joint Conference on, 2010, pp. 1–8.
[19] G. Desjardins, A. Courville, and Y. Bengio, “Adaptive parallel tempering

for stochastic maximum likelihood learning of RBMs,” in NIPS 2010

Workshop on Deep Learning and Unsupervised Feature Learning, 2010.
[20] T. Raiko, K. Cho, and A. Ilin, “Enhanced gradient for learning boltz-

mann machines (abstract),” in The Learning Workshop, Fort Lauderdale,
Florida, April 2011.

[21] A. Fischer and C. Igel, “Empirical analysis of the divergence of Gibbs
sampling based learning algorithms for restricted Boltzmann machines,”
in Proceedings of the 20th international conference on Artificial neural

networks: Part III, ser. ICANN’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 208–217.

[22] H. Schulz, A. Müller, and S. Behnke, “Investigating Convergence of
Restricted Boltzmann Machine Learning,” in NIPS 2010 Workshop on

Deep Learning and Unsupervised Feature Learning, 2010.
[23] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and

S. Bengio, “Why does unsupervised pre-training help deep learning?”
Journal of Machine Learning Research, vol. 11, pp. 625–660, Mar. 2010.

[24] F. Samaria and A. Harter, “Parameterisation of a stochastic model for
human face identification,” in Proceedings of the Second IEEE Workshop

on Applications of Computer Vision, 1994., dec 1994, pp. 138 –142.
[25] H. Poon and P. Domingos, “Sum-Product networks: A new deep

architecture,” in Proceedings of the 27th Conference on Uncertainty in

Artificial Intelligence, 2011.
[26] H. Kushner and G. Yin, Stochastic Approximation and Recursive Algo-

rithms and Applications. Springer, 2003.
[27] Y. Lecun, F. J. Huang, and L. Bottou, “Learning methods for generic

object recognition with invariance to pose and lighting,” vol. 2, 2004.
[28] G. Montavon and K.-R. Müller, “Deep Boltzmann machines and the

centering trick,” in Neural Networks: Tricks of the trade, Reloaded,
2nd ed., ser. LNCS, G. Montavon, G. B. Orr, and K.-R. Müller, Eds.
Springer, 2012, vol. 7700.

[29] K. Cho, T. Raiko, A. Ilin, and J. Karhunen, “A Two-Stage Pretraining
Algorithm for Deep Boltzmann Machines,” in NIPS 2012 Workshop

on Deep Learning and Unsupervised Feature Learning, Lake Tahoe,
December 2012.

[30] G. Desjardins, R. Pascanu, A. Courville, and Y. Bengio, “Metric-free
natural gradient for joint-training of boltzmann machines,” in Proceed-

ings of the First International Conference on Learning Representations

(ICLR 2013), 2013.

