Combining Supervised and Unsupervised Learning (and the Ladder Network)

Tapani Raiko

Aalto University

28 August 2015

About me (Tapani Raiko)

- MSc 2001 Helsinki University of Technology Deep learning (Hierarchical Nonlinear Factor Analysis) Erkki Oja, Juha Karhunen, Harri Valpola
- DSc 2006, Same group
 Variational Bayesian modelling, relational models
- ZenRobotics Ltd 2009-2014 (primary job 2013)
- Assistant prof 2014- Aalto University
- Research visits:
 - ► Luc De Raedt, Freiburg, 2001-2002
 - ► Yann Lecun, New York, 2010
 - ► Geoffrey Hinton, Toronto, 2012
 - Yoshua Bengio, Montreal, 2014

Motivation

Deep learning today:

- Mostly about pure supervised learning
- Requires a lot of labeled data: expensive to collect

Deep learning in the future:

 Unsupervised, more human-like

"We expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object." -LeCun, Bengio, Hinton, Nature 2015

Motivation: Ladder network

Yearly progress in permutation-invariant MNIST. A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko. Semi-Supervised Learning with Ladder Network. ArXiv, July 2015.

Table of Contents

Semisupervised learning

Unsupervised learning and autoencoders

Supporting supervised learning

Denoising versus probabilistic modelling

Ladder network

How can unlabeled data help in classification? Example: Only two data points with labels.

Tapani Raiko (Aalto University) Combining Supervised

Combining Supervised and Unsupervised Lear

28 August 2015 6 / 71

How would you label this point?

Tapani Raiko (Aalto University) Combining Su

Combining Supervised and Unsupervised Lear

What if you see all the unlabeled data?

Tapani Raiko (Aalto University)

Combining Supervised and Unsupervised Lear

Labels are homogenous in densely populated space.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear

o Universit

Labels are homogenous in densely populated space.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear

Ito University

Labels are homogenous in densely populated space.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear

Labels are homogenous in densely populated space.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear

Labels are homogenous in densely populated space.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear

Labeled data: $\{\mathbf{x}_t, y_t\}_{1 \le t \le N}$. Unlabeled data: $\{\mathbf{x}_t\}_{N+1 \le t \le M}$. Often labeled data is scarce, unlabeled data is plentiful: $N \ll M$.

Early works (McLachlan, 1975; Titterington et al., 1985) modelled $P(\mathbf{x}|y)$ as clusters. Unlabeled data affects the shape and size of clusters. Use Bayes theorem $P(y|\mathbf{x}) \propto P(\mathbf{x}|y)P(y)$ to classify.

How about $P(y|\mathbf{x})$ directly?

Modelling $P(\mathbf{x}|y)$ is inefficient when real task is $P(y|\mathbf{x})$.

Idea? Assign probabilistic labels $q(y_t) = P(y_t | \mathbf{x}_t)$ to unlabeled inputs \mathbf{x}_t , and train $P(y | \mathbf{x})$ with them. However, there is no effect as the gradient vanishes:

$$\begin{split} \mathbb{E}_{q(y)} \left[\frac{\partial}{\partial \theta} \log P(y \mid \mathbf{x}) \right] &= \int q(y) \frac{\frac{\partial}{\partial \theta} P(y \mid \mathbf{x})}{P(y \mid \mathbf{x})} \mathrm{d}y \\ &= \frac{\partial}{\partial \theta} \int P(y \mid \mathbf{x}) \mathrm{d}y = \frac{\partial}{\partial \theta} 1 = 0. \end{split}$$

There are ways to adjust the assigned labels $q(y_t)$ to make them count.

Adjusting assigned labels $q(y_t)$ (1/2)

Label propagation (Szummer and Jaakkola, 2003)

- ► Nearest neighbours tend to have the same label.
- Propagate labels to their neighbours and iterate.

Pseudo-labels (Lee, 2013)

► Round probabilistic labels q(y_t) towards 0/1 gradually during training.

Adjusting assigned labels $q(y_t)$ (2/2)

Co-training (Blum and Mitchell, 1998)

- Assumes multiple views on \mathbf{x} , say $\mathbf{x} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)})$.
- Train a separate classifier $P(y | \mathbf{x}^{(j)})$ for each view.
- For unlabeled data, the true label is the same for each view.
- ► Combine individual q^(j)(y_t) into a joint q(y_t) and feed it as target to each classifier.

Part of Ladder network (Rasmus et al., 2015)

- Corrupt input \mathbf{x}_t with noise to get $\tilde{\mathbf{x}}_t$.
- Train $P(y|\tilde{\mathbf{x}})$ with a target from clean $q(y_t) = P(y_t|\mathbf{x}_t)$.

Code available

You can play with this as the last (third) exercise. In low dimensions, bad local minima are an issue.

Table of Contents

Semisupervised learning

Unsupervised learning and autoencoders

Supporting supervised learning

Denoising versus probabilistic modelling

Ladder network

Unsupervised learning

Data is just \mathbf{x}' , not input-output pairs \mathbf{x}, \mathbf{y} . Possible goals:

- Model $P(\mathbf{x}')$, or
- Representation $f : \mathbf{x}' \to \mathbf{h}$.

Comparisons to supervised learning $P(\mathbf{y}|\mathbf{x})$:

- See data as $\mathbf{x}' = \mathbf{y}$, model $P(\mathbf{y}|\mathbf{x} = \varnothing)$
- No right output y given, invent your own output h
- ► Concatenate inputs and outputs to x' = [x; y], prepare to answer any query, including P(y|x).

From here on, data is just \mathbf{x} . Notation \mathbf{x}' was used to avoid confusion.

Approaches to unsupervised learning (1/2)

Besides kernel density estimation, virtually all unsupervised learning approaches use variables **h**.

- Discrete h (cluster index, hidden state of HMM, map unit of SOM)
- Binary vector h (most Boltzmann machines)
- Continuous vector h (PCA, ICA, NMF, sparse coding, autoencoders, state-space models, ...)

Vocabulary:

- Encoder function $f : \mathbf{x} \to \mathbf{h}$
- Decoder function $g: \mathbf{h} \to \hat{\mathbf{x}}$
- Reconstruction $\hat{\mathbf{x}}$

 $\widehat{\mathbf{x}}$

g

h

Х

Approaches to unsupervised learning (2/2)

Often the encoder function $f : \mathbf{x} \rightarrow \mathbf{h}$ is implicit:

- Nearest cluster center $f(\mathbf{x}) = \arg\min_h D(\mathbf{x}, \mathbf{c}_h)$
- Bayesian inference in a generative model, e.g. maximum a posteriori f(x) = arg max_h P(x|h)P(h)

In complex models, exact inference is often impossible. Approximate inference might hurt learning.

Autoencoders have an explicit encoder function $f(\cdot)$, which makes learning complex models easier: Just backpropagation!

PCA as an autoencoder (1/2)

Assume linear encoder and decoder:

$$egin{aligned} f(\mathbf{x}) &= \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}\ g(\mathbf{h}) &= \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)} \end{aligned}$$

PCA solution minimizes criterion $C = \mathbb{E} \left| \|\mathbf{x} - \hat{\mathbf{x}}\|^2 \right|$.

Note: Solution is not unique, even if restricting $\mathbf{W}^{(2)} = \mathbf{W}^{(1)\top}$.

Aalto University

PCA as an autoencoder (2/2)

Just learning the identity mapping
$$g(f(\cdot)) = I(\cdot)$$
?
 $\hat{\mathbf{x}} = g(f(\mathbf{x})) = (\mathbf{W}^{(2)}\mathbf{W}^{(1)})\mathbf{x} + (\mathbf{W}^{(2)}\mathbf{b}^{(1)} + \mathbf{b}^{(2)})$
We get $\hat{\mathbf{x}} = \mathbf{x}$ when $\mathbf{W}^{(2)} = (\mathbf{W}^{(1)})^{-1}$ and
 $\mathbf{b}^{(2)} = -\mathbf{W}^{(2)}\mathbf{b}^{(1)}$.

So any encoder with an invertible $\mathbf{W}^{(1)}$ is optimal.

How to make the autoencoding problem harder?

Regularized autoencoders

Regularization avoids learning the identity function:

- Bottleneck autoencoder (limit dimensionality of h) (Bourlard and Kamp, 1988, Oja, 1991)
- Sparse autoencoder (penalize activations of h) (Ranzato et al., 2006, Le et al., 2011)
- Denoising autoencoder (inject noise to input x) (Vincent et al., 2008)
- ▶ Contractive autoencoder (penalize Jacobian of f(·)) (Rifai et al., 2011)
- Variational autoencoder (probabilistic)
- Sometimes also weight sharing W⁽²⁾ = W^{(1)⊤}.

Denoising autoencoder (Vincent et al., 2008)

Feed corrupted inputs $\tilde{\mathbf{x}} \sim c(\tilde{\mathbf{x}}|\mathbf{x})$

- Additive noise $\tilde{\mathbf{x}} = \mathbf{x} + \boldsymbol{\epsilon}$ where e.g. $\epsilon_i \sim \mathcal{N}(\mathbf{0}, \sigma^2)$
- Salt noise x̃ = m ⊙ x or x̃_i = m_ix_i where binary m_i ~ Bernoulli(p)
- Masking noise $\mathbf{\tilde{x}} = [\mathbf{m} \odot \mathbf{x}; \mathbf{m}]$

Train $\hat{\mathbf{x}} = g(f(\tilde{\mathbf{x}}))$ to minimize reconstruction error, e.g. $C = \mathbb{E} \left[\|\hat{\mathbf{x}} - \mathbf{x}\|^2 \right]$.

Aalto Universit

Denoising autoencoder

Basic encoder $\mathbf{h} = f(\tilde{\mathbf{x}}) = \Phi \left(\mathbf{W}^{(1)} \tilde{\mathbf{x}} + \mathbf{b}^{(1)} \right)$ and decoder $\hat{\mathbf{x}} = g(\mathbf{h}) = \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}$. Deep autoencoder: both f and g multi-layered.

What does denoising autoencoder learn?

To point $g(f(\cdot))$ towards higher probability. Image from (Alain and Bengio, 2014)

Table of Contents

Semisupervised learning

Unsupervised learning and autoencoders

Supporting supervised learning

Denoising versus probabilistic modelling

Ladder network

Comparison to training a classifier

- ► Training a classifier (left), when you get the labels right, learning stops. ⇒ Learned parameters are based on the information in labels: Less than #examples×#classes bits.
- Training a denoising autoencoder (right), outputs are richer: #examples×#dimensions.

- Use unsupervised learning to construct representations layer by layer (Ballard, 1987).
- Breakthrough with Boltzmann machines (Hinton and Salakhutdinov 2006), starting deep learning boom.
- Presented here: Stacked denoising autoencoders

Phase 1: Denoising autoencoder.

Toss away the decoder $g(\cdot)$.

Phase 2: Stack another layer, keep the bottom fixed.

Toss away the second decoder $g_2(\cdot)$.

Supervised finetuning

Phase 3: Supervised finetuning with labels y. Note: Encoder f of an autoencoder is the same mapping as used in supervised learning.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear 28 August 2015

36 / 71
On details and invariance

What is average of images in the category Cat? What is the average of Dog?

On details and invariance

Answer: both are just blurry blobs.

Autoencoder tries to learn a representation from which it can reconstruct the observations.

It cannot discard details: position, pose, lighting...

 \Rightarrow Not well compatible with supervised learning.

Table of Contents

Semisupervised learning

Unsupervised learning and autoencoders

Supporting supervised learning

Denoising versus probabilistic modelling

Ladder network

Denoising versus probabilistic modelling

- We noted that denoising models are much easier to train than probabilistic models.
 Trainable by basic back-propagation.
- There is a strong connection between the two: Models can be converted into each other.

Given: Model P(x) and observation $\tilde{x} = x + \text{noise}$. Noise distribution known.

Task: Find $\hat{x} = \arg \min \mathbb{E}_x \left[(x - \hat{x})^2 \right]$. Solution: Compute the posterior $P(x \mid \tilde{x})$, use its center of gravity as reconstruction \hat{x} .

Given: Model P(x) and observation $\tilde{x} = x + \text{noise}$. Noise distribution known.

Task: Find $\hat{x} = \arg \min \mathbb{E}_x \left[(x - \hat{x})^2 \right]$. Solution: Compute the posterior $P(x \mid \tilde{x})$, use its center of gravity as reconstruction \hat{x} .

Given: Model P(x) and observation $\tilde{x} = x + \text{noise}$. Noise distribution known.

Task: Find $\hat{x} = \arg \min \mathbb{E}_x \left[(x - \hat{x})^2 \right]$. Solution: Compute the posterior $P(x \mid \tilde{x})$, use its center of gravity as reconstruction \hat{x} .

Aalto University

Denoising to probability

(Generative Stochastic Networks, Bengio et al., 2014)

Markov chain alternating between corruption $C(\tilde{X}|X)$ and denoising $P(X|\tilde{X})$. Theoretical result: Stationary distribution is P(X).

Denoising to probability (Bengio et al., 2014)

Generating samples from the Markov chain.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear

Denoising to probability (Bengio et al., 2014)

Reconstructing the left half.

Table of Contents

Semisupervised learning

Unsupervised learning and autoencoders

Supporting supervised learning

Denoising versus probabilistic modelling

Ladder network

Ladder network, main ideas

- Shortcut connections in an autoencoder network allow it to discard details.
- Learning in deep networks can be made efficient by spreading unsupervised learning targets all over the network.

Combining DSS+DAE

Denoising Source Separation (Särelä and Valpola, 2005)

Denoising Autoencoder (Vincent et al., 2008)

Ladder Network (Valpola, 2015, Rasmus et al., 2015)

Same encoder $f(\cdot)$ used for corrupted and clean paths.

Supervised learning: Backprop from output \tilde{y} .

Unsupervised learning: Several denoising autoencoders simultaneously.

54 / 71

Unsupervised learning: Produce robust representations (DSS aspect).

Read test output from the clean path. (Not used in training.)

Aalto University

Training criterion

Only one phase of training: Minimize criterion C.

$$C = -\log P(\tilde{\mathbf{y}} = \mathbf{y}_t | \mathbf{x}_t) + \sum_{l=0}^{L} \lambda_l \left\| \mathbf{z}^{(l)} - \hat{\mathbf{z}}_{BN}^{(l)} \right\|^2$$

Scaling issues

Issue 1: Doubling $W^{(1)}$ and halving $W^{(2)}$ decreases noise. Issue 2: Collapsing $z^{(1)} = \hat{z}^{(1)} = 0$ eliminates cost $C^{(1)}$. Solution: Batch normalization (loffe and Szegedy, 2015)

Some model details

 $g(\tilde{\mathbf{z}}, \mathbf{u})$ done componentwise: $g_i(\tilde{z}_i, u_i)$.

Functional form of lateral connections?

Gaussian model: $P(z) = \mathcal{N}(\mu, \sigma_p^2)$ Gaussian noise: $P(\tilde{z}|z) = \mathcal{N}(z, \sigma_n^2)$ Optimal denoising: $\hat{z} = \frac{\sigma_n^2}{\sigma_p^2 + \sigma_n^2} \mu + \frac{\sigma_p^2}{\sigma_p^2 + \sigma_n^2} \tilde{z}$ Top-down signal *u* corresponds to P(z).

Functional form of lateral connections?

$$\widetilde{z} \xrightarrow{g(\widetilde{z}, u)} \widetilde{z}$$

11

Recall $\hat{z} = \frac{\sigma_n^2}{\sigma_p^2 + \sigma_n^2} \mu + \frac{\sigma_p^2}{\sigma_p^2 + \sigma_n^2} \tilde{z}$ from previous slide. Additive: $\hat{z}_{add} = g_1(\tilde{z}) + g_2(u)$ corresponds to modelling the mean μ with u. Modulated: $\hat{z}_{mod} = g_3(\tilde{z}, u)(\tilde{z} + \text{bias})$ corresponds to modelling variance σ_p^2 with u.

Functional form of lateral connections?

How to interpret top-down signal u modulating: Does this detail in \tilde{z} fit in the big picture? If yes, trust it at let it through to reconstruction \hat{z} . If not, filter it away as noise.

Analysis: Unsupervised learning

We compare deep denoising autoencoder and Ladder with additive or modulated lateral connections. Data is small natural image patches.

Analysis: Unsupervised learning Denoising performance

1 million parameters, vary sizes of layers. Result: Modulated connections best. Ladder needs fewer units on $\mathbf{h}^{(2)}$.

Tapani Raiko (Aalto University)

Analysis: Unsupervised learning

Translation invariance measure of units $\mathbf{h}^{(2)}$ as a function of unit significance.

With modulated connections, all units become invariant.

Analysis: Unsupervised learning

Learned pooling functions

Each $\mathbf{h}^{(1)}$ unit belongs to several pooling groups. Units $\mathbf{h}^{(2)}$ specialize to colour, orientation, location, ...

Small network for $\hat{z}_i = g(\tilde{z}_i, u_i)$

Each unit *i* has its own mini network with 9 parameters. Few parameters compared to weight matrices. Product $u_i \tilde{z}_i$ for modulating (variance modelling). Nonlinearity for multimodal distributions.

Example of a multimodal distribution

Signal $z_0^{(L)}$ for digit 0 just before softmax.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear

Aalto University

Algorithm 1 Calculation of the output and cost function of the Ladder network

Require: $\mathbf{x}(n)$ # Corrupted encoder and classifier $\tilde{\mathbf{h}}^{(0)} \leftarrow \tilde{\mathbf{z}}^{(0)} \leftarrow \mathbf{x}(n) + \texttt{noise}$ for l = 1 to L do $\tilde{\mathbf{z}}_{\text{pre}}^{(l)} \leftarrow \mathbf{W}^{(l)} \tilde{\mathbf{h}}^{(l-1)}$ $\tilde{\boldsymbol{\mu}}^{(l)} \leftarrow \texttt{batchmean}(\tilde{\mathbf{z}}_{\text{pre}}^{(l)})$ $\tilde{\boldsymbol{\sigma}}^{(l)} \leftarrow \texttt{batchstd}(\tilde{\mathbf{z}}_{\text{pre}}^{(l)})$ $\tilde{\mathbf{z}}^{(l)} \leftarrow \texttt{batchnorm}(\tilde{\mathbf{z}}^{(l)}_{\texttt{pre}}) + \texttt{noise}$ $\tilde{\mathbf{h}}^{(l)} \leftarrow \texttt{activation}(\boldsymbol{\gamma}^{(l)} \odot (\tilde{\mathbf{z}}^{(l)} + \boldsymbol{\beta}^{(l)}))$ end for $P(\tilde{\mathbf{v}} \mid \mathbf{x}) \leftarrow \tilde{\mathbf{h}}^{(L)}$ # Clean encoder (for denoising targets) $\mathbf{h}^{(0)} \leftarrow \mathbf{z}^{(0)} \leftarrow \mathbf{x}(n)$ for l = 1 to L do $\mathbf{z}^{(l)} \leftarrow \texttt{batchnorm}(\mathbf{W}^{(l)}\mathbf{h}^{(l-1)})$ $\mathbf{h}^{(l)} \leftarrow \texttt{activation}(\boldsymbol{\gamma}^{(l)} \odot (\mathbf{z}^{(l)} + \boldsymbol{\beta}^{(l)}))$ end for

Final classification: $P(\mathbf{y} \mid \mathbf{x}) \leftarrow \mathbf{h}^{(L)}$ # Decoder and denoising for l = L to 0 do if l = L then $\mathbf{u}^{(L)} \leftarrow \texttt{batchnorm}(\tilde{\mathbf{h}}^{(L)})$ else $\mathbf{u}^{(l)} \leftarrow \texttt{batchnorm}(\mathbf{V}^{(l)}\hat{\mathbf{z}}^{(l+1)})$ end if $\forall i: \hat{z}_i^{(l)} \leftarrow q(\tilde{z}_i^{(l)}, u_i^{(l)}) \# \text{Eq.} (1)$ $\forall i : \hat{z}_{i \text{ BN}}^{(l)} \leftarrow \frac{\hat{z}_{i}^{(l)} - \tilde{\mu}_{i}^{(l)}}{\tilde{z}^{(l)}}$ end for # Cost function C for training: $C \leftarrow 0$ if t(n) then $C \leftarrow -\log P(\tilde{\mathbf{v}} = t(n) \mid \mathbf{x})$ end if $\mathbf{C} \leftarrow \mathbf{C} + \sum_{l=0}^{L} \lambda_l \left\| \mathbf{z}^{(l)} - \hat{\mathbf{z}}_{BN}^{(l)} \right\|^2$

MNIST results

Aalto University

Thanks for listening!

Deep Learning and Bayesian Modelling group

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Lear

28 August 2015 71 / 71

Gamma (Г) model

Simplified model: Only auxiliary cost just before softmaxim

Tapani Raiko (Aalto University)

Combining Supervised and Unsupervised Lear