Deep Learning Made Easier

by Linear Transformations in Perceptrons
Tapani Raiko, Harri Valpola, Yann LeCun
Aalto University, New York University
AISTATS 2012

Background

- Learning deep networks (many hidden layers) used to be difficult
- Layerwise pretraining by RBMs or denoising autoencoders helps
- Could similar performance be achieved with back-propagation?

Proposed method

- Standard MLP (only shallow shown)
- Include shortcut connections C

$$
\mathbf{y}_{t}=\mathbf{A} \mathbf{f}\left(\mathbf{B}_{t}\right)+\mathbf{C} \mathbf{x}_{t}+\boldsymbol{\epsilon}_{t}
$$

- Add linear transformations to nonlinearities

$$
f_{i}\left(\mathbf{b}_{i} \mathbf{x}_{t}\right)=\tanh \left(\mathbf{b}_{i} \mathbf{x}_{t}\right)+\alpha_{i} \mathbf{b}_{i} \mathbf{x}_{t}+\beta_{i}
$$

- Alphas and betas are not learned, but set to make learning the weights A, B, C easier

$$
\mathbf{y}_{t}=\mathbf{A f}\left(\mathbf{B x} \mathbf{x}_{t}\right)+\mathbf{C \mathbf { x } _ { t }}+\boldsymbol{\epsilon}_{t}
$$

- Separate the nonlinear and linear problems by disabling linear dependencies from f

$$
\sum_{t=1}^{T} f_{i}\left(\mathbf{b}_{i} \mathbf{x}_{t}\right)=0 \quad \sum_{t=1}^{T} f_{i}^{\prime}\left(\mathbf{b}_{i} \mathbf{x}_{t}\right)=0
$$

by setting

$$
\alpha_{i}=-\frac{1}{T} \sum_{t=1}^{T} \tanh ^{\prime}\left(\mathbf{b}_{i} \mathbf{x}_{t}\right) \quad \beta_{i}=-\frac{1}{T} \sum_{t=1}^{T}\left[\tanh \left(\mathbf{b}_{i} \mathbf{x}_{t}\right)+\alpha_{i} \mathbf{b}_{i} \mathbf{x}_{t}\right]
$$

- Compensate by changing C accordingly

$$
\begin{aligned}
\mathbf{C}_{\text {new }}=\mathbf{C}_{\text {old }} & -\mathbf{A}\left(\boldsymbol{\alpha}_{\text {new }}-\boldsymbol{\alpha}_{\text {old }}\right) \mathbf{B} \\
& \left.-\mathbf{A}\left(\boldsymbol{\beta}_{\text {new }}-\boldsymbol{\beta}_{\text {old }}\right)\left[\begin{array}{lll}
0 & 0
\end{array}\right] 1\right]
\end{aligned}
$$

Theoretical Motivation

- Fisher information matrix becomes more diagonal
- Standard gradient becomes closer to natural gradient

A
B
C

Implementation Details

- Learning algorithm: Stochastic gradient
- Mini-batch size 1000 , momentum 0.9
- Transformations done initially and after every 1000 iterations
- Soft-max for discrete outputs
- Normalized random initialization, shortcut weights to zero
- Learning rate decreased linearly in the second half of learning time
- Regularization: PCA in classification, weight decay, added noise to inputs

Experiments

- MNIST Classification
- CIFAR-IO Classification
- MNIST Autoencoder
- Image data, but nothing image-specific

MNIST Classification

MNIST Classification

Error against learning rate

Error against learning time Training (lower) and test errors (higher)

MNIST Classification

- Test errors after 15 minutes as regularization methods are included:

regularization	none	weight decay	PCA	noise	$(150$ minutes)
original	1.87	1.85	1.62	1.15	1.03
shortcuts	2.02	1.77	1.59	1.23	1.17
transform.	1.63	1.56	1.56	1.10	$\mathbf{1 . 0 2}$

Histograms of α_{i} and β_{i} in the first hidden layer. Examples of $f_{i}(\cdot)$.

MNIST Classification

- Visualization of learned weights to randomly chosen hidden units on layers I and 2, and to the class outputs $0, \mathrm{I}, \ldots, 9$

CIFAR-IO Classification

after PCA to 500
with noise
with noise

- 500-500-500-I0 network

CIFAR-IO Classification

CIFAR-IO Classification

Classification \%	linear	original	shortcuts	transf.	Krizhevsky (2009)
Training error	58.07	23.21	22.46	4.56	
Test error	59.09	44.42	44.99	43.70	48.47

MNIST Autoencoder

MNIST Autoencoder

Reconstruction error against learning time

MNIST Autoencoder

	linear	original	shortcuts	transf.	Martens (2010)
training error	8.11	2.37	2.11	1.94	1.75
test error	7.85	2.76	2.61	$\mathbf{2 . 4 4}$	2.55
$\#$ of iterations	92 k	49 k	38 k	37 k	$?$

h4-y

h5-y

Discussion

- Simple transformations make basic gradient competitive with state-of-the-art
- Making parameters more independent will also help variational Bayes and MCMC
- Could be initialized with unsupervised pretraining for further improvement
- How about doing classification and autoencoder as a multitask?

