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Abstract

We transform the outputs of each hidden neuron in a multi-layer perceptron net-
work to be zero mean and zero slope, and use separate shortcut connections to
model the linear dependencies instead. This transformation aims at separating
the problems of learning the linear and nonlinear parts of the whole input-output
mapping, which has many benefits. We study the theoretical properties of the
transformation by noting that they make the Fisher information matrix closer to
a diagonal matrix, and thus standard gradient closer to the natural gradient. We
experimentally confirm the usefulness of the transformations by noting that they
make basic stochastic gradient learning competitive with state-of-the-art learning
algorithms in speed, and that they seem also to help find solutions that generalize
better. The experiments include both classification of handwritten digits with a 3-
layer network and learning a low-dimensional representation for images by using
a 6-layer auto-encoder network. The transformations were beneficial in all cases,
with and without regularization.

1 Introduction

Learning deep neural networks has become a popular topic since the invention of unsupervised
pretraining [5]. Some later works have returned to traditional back-propagation learning and noticed
that it can also provide impressive results given either a sophisticated learning algorithm [10] or
simply enough computational power [3]. In this work we study back-propagation learning in deep
networks with up to five hidden layers.

In learning multi-layer perceptron (MLP) networks by back-propagation, there are known transfor-
mations that speed up learning [9]. For instance, inputs are recommended to be centered to zero
mean (or even whitened), and nonlinear functions are proposed to have a range from -1 to 1 rather
than 0 to 1 [9]. Schraudolph [12] proposed a transformation of gradients of the error signals to
have zero slope on average. In this paper we achieve equivalent transformations to the gradient by
transforming the nonlinearities in the hidden units.

It is well known that second-order optimization methods such as the natural gradient [1] or Newton’s
method decrease the number of required iterations compared to the basic gradient descent, but they
cannot be easily used with high-dimensional models in practice due to heavy computations with
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large matrices. In practice, it is possible to use a diagonal or block-diagonal approximation [7] of
the Fisher information matrix. If we will be approximating most of the matrix with zeros anyway,
we should use transformations that make those elements to be as close to zero as possible.

2 Proposed Transformations

Let us study an MLP-network with a single hidden layer1 and a shortcut mapping, that is, the output
column vectors yt for each sample t are modelled as a function of the input column vectors xt with

yt = Af (Bxt) +Cxt + εt, (1)

where f is a nonlinearity (such as tanh) applied to each component of the vector separately, A, B,
and C are the weight matrices, and εt is the noise which is assumed to be zero mean and Gaussian,
that is, p(εit) = N

(
εit; 0, σ

2
i

)
. In order to avoid separate bias vectors that complicate formulas, the

input vectors are assumed to have been supplemented with an additional component that is always
one.

Let us supplement the tanh nonlinearity with auxiliary scalar variables αi and βi for each nonlinear-
ity fi. They are not learnt, but instead they will be set in a manner to help learn the other parameters.
We define

fi(bixt) = tanh(bixt) + αibixt + βi. (2)
An example can be seen in Figure 1. We will ensure that

T∑
t=1

fi(bixt) = 0

T∑
t=1

f ′
i(bixt) = 0 (3)

by setting αi and βi to

αi = −
1

T

T∑
t=1

tanh′(bixt) βi = −
1

T

T∑
t=1

[tanh(bixt) + αibixt] . (4)

Schraudolph [12] proposed transformations to the gradient that has the same effect as Equation (3),
which was shown to speed up learning significantly.

The effect of a change of the auxiliary parameters α and β can be compensated exactly by updating
the shortcut mapping C accordingly by

Cnew = Cold −A(αnew −αold)B

−A(βnew − βold) [0 0 . . . 1] , (5)

where α is a matrix with elements αi on the diagonal and one empty row below for the bias term,
and β is a column vector with components βi and one zero below for the bias term.

We also emphasize making the inputs xk zero mean (and similar in scale) as a preprocessing step
(see e.g. [9]).

We expect that the linear part will be easier to learn than the nonlinear part. When learning the
nonlinear part, without the transformations, the linear part would have to adapt to the changes.
By using the proposed automatic transformations we will make learning of the nonlinear part less
dependent on the linear part and also different hidden neurons less dependent on each other.

3 Intuitive Justification

Second-order optimization methods such as the natural gradient [1] or Newton’s method decrease
the number of required iterations compared to the basic gradient descent, but they cannot be easily
used with large models in practice due to heavy computations with large matrices. Using basic
gradient descent can be seen as approximating the Fisher information matrix with a unit matrix. We
will see how the proposed transformations changes at least the non-diagonal elements to be as close
to zero as possible.

1The assumption is done for notational simplicity only, the method is applied in the general deep case.
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The Fisher information matrix contains elements

Gij =
∑
t

〈
∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉
, (6)

where 〈·〉 is the expectation over the Gaussian distribution of noise εt in Equation (1), and vector θ
contains all the elements of matrices A, B, and C. These elements are:

∂

∂aij

∂

∂ai′j′
log p =

{
0 i′ 6= i
− 1

σ2
i

∑
t fj(bjxt)fj′(bj′xt) i′ = i, (7)

where aij is the ijth element of matrix A, fj is the jth nonlinearity, and bj is the jth row vector of
matrix B. Similarly

∂

∂bjk

∂

∂bj′k′
log p = −

∑
i

1

σ2
i

aijaij′
∑
t

f ′
j(bjxt)f

′
j′(bj′xt)xktxk′t (8)

and
∂

∂cik

∂

∂ci′k′
log p =

{
0 i′ 6= i
− 1

σ2
i

∑
t xktxk′t i′ = i. (9)

The cross terms are

∂

∂aij

∂

∂bj′k
log p = − 1

σ2
i

aij′
∑
t

fj(bjxt)f
′
j′(bj′xt)xkt (10)

∂

∂cik

∂

∂ai′j
log p =

{
0 i′ 6= i
− 1

σ2
i

∑
t fj(bjxt)xkt i′ = i (11)

∂

∂cik

∂

∂bjk′
log p = − 1

σ2
i

aij
∑
t

f ′
j(bjxt)xktxk′t. (12)

Now we can notice that Equations (7–12) contain factors such as fi(·), f ′
i(·), and xit. By making

them as close to zero as possible, we help in making nondiagonal terms of the Fisher information
closer to zero, and thus, the basic gradient descent direction closer to the natural gradient. For
instance, E[fi(·)fj(·)] = E[fi(·)]E[fj(·)] + Cov[fi(·), fj(·)], so assuming that the hidden units
i and j are representing different things, that is, fi(·) and fj(·) are uncorrelated, the nondiagonal
element of the Fisher information in Equation (7) becomes zero by using the transformation. The
same applies to all other elements in Equations (8–12), some of them also highlighting the benefit
of making the input data x zero-mean.

3.1 Positive Side Effect

Having a non-zero αi has a positive side effect of reducing plateaus in learning. Typical nonlineari-
ties like the tanh function saturate exponentially on positive and negative sides. When the derivative
of an activation f ′

i(·) is about zero for most of the data samples, the gradient propagated through it
also becomes almost zero, and learning can proceed very slowly or even seem to stop completely.
This may explain plateaus in typical learning curves, where the learning proceeds slowly at times.
To alleviate the problem, Glorot and Bengio [4] suggested to use the soft-sign nonlinearity that satu-
rates more slowly, but having a non-zero αi provides a nonlinearity that does not saturate at all. The
difference is illustrated in Figure 1.

4 Experimental Protocol

There are many practical issues when learning MLP networks and they are addressed below.

Learning: Backpropagation learning is basically a gradient ascent algorithm to maximize the
log likelihood log p({yt}Tt=1 | {xt}Tt=1,θ) of the parameter vector θ, where the back propagation
corresponds to using the chain rule of derivatives and dynamic programming to compute the gradient
efficiently.
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Figure 1: Left: As a positive side effect, the nonlinearity in Equation (2) does not saturate at all
for example with a typical α = −0.5 and β = 0. Right top: Traditional structure for a feed-
forward multi-layer perceptron network with full connections. Right bottom: Network with shortcut
connections included, also used in the proposed method with transformations.

The gradient is

gi =
∂ 〈log p(yt | xt,θ)〉

∂θi
, (13)

where 〈·〉 is the expectation over the data set. The update is

θi ← θi + γgi, (14)

where γi is a learning rate.

Online Learning: It is well known (see e.g. [2]) that looking at all the available data before each
update is wasteful, because many samples possess redundant information. We will use a mini-batch
learning algorithm, where each update is done based on the 1000 next samples. To reduce the effect
of noise due to such a small sample, a momentum term is used. The update direction is thus set to

gi ← 0.1
∂ 〈log p(yt | xt,θ)〉

∂θi
+ 0.9gi. (15)

The transformations parameters αi and βi, however are updated after the initialization and after
every 1000 iterations thereafter, using the whole data set in Equation (4). At the same time, the
changes are compensated by updating the shortcut mappings according to Equation (5) and the
momentum gi for the gradient updates is reset to zero.

Discrete Outputs: In classification problems, the output yt is discrete and one can use the soft-max
model. The Equation (1) is replaced by

P (yt = i | xt,θ) =
exp [Aif (Bxt) +Cixt]∑
j exp [Ajf (Bxt) +Cjxt]

, (16)

where Ai is the ith row of matrix A. Backpropagation is done as before.

Multiple Hidden Layers: The extension of the proposed approach to multiple hidden layers is
straightforward. Equations (2–4) apply to all nonlinear units with bixt replaced by the appropriate
input signal. The shortcut mappings need to be included for skipping any number of layers (see
Figure 1 for an example). The number of weights of course increases quadratically with the number
of layers, but this can be avoided by including a layer without transformations as shown in Figure 5.

Initialization: We use the initialization proposed in [4] for weights between consecutive layers,
that is, the weight is drawn from a uniform distribution between ±

√
6/
√
nj + nj+1 where nj is

the number of neurons on the jth layer. This normalized initialization is based on the objectives
of maintaining activation variances and back-propagated gradient’s variance throughout the layers.
With unnormalized initialization, the gradient tends to vanish or explode exponentially with the
number of layers [4]. Biases are drawn from a uniform distribution between ±0.5. Weights for all
shortcut connections are initialized to zero.
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Figure 2: Left: Top row shows the PCA filters corresponding to the largest eigenvalues (1–5),
second row to the smallest eigenvalues (196–200). The bottom rows show 10 filters after the random
rotation in the principal subspace. Right: Top row shows 5 examples from the MNIST handwritten
digit data set. The second row shows reconstructions from the 200 component principal subspace.
The third and forth row show reconstructions when including the added noise to the training data.
Two instantiations of the noise is shown to remind that the noise is resampled for each epoch.

Learning Rate: We use a hand-set learning rate γi for each problem. The base learning rate γ is
halved for shortcut mappings once for each layer that the mapping skips. This is a heuristic to take
into account that shortcut connections have a more direct influence to the final output of the network.
Also we linearly decrease the learning rate to zero after half of the allocated computational time has
been used.

Regularization: Overfitting is a crucial problem in large networks, and regularization is essential
to make it perform well with new data. We use three different regularization methods. Firstly, the
dimensionality of input data was decreased as a preprocessing step. We used principal component
analysis (PCA) followed by a random rotation (see Figure 2). The motivation for the random rota-
tion was to make each input approximately equally important, which works well with the uniform
initialization of weights and with the following regularization procedures. Secondly, we use weight
decay (see e.g. [6]), or equivalently a Gaussian prior on the parameters θ. The final update direction
becomes

gi ← 0.1

[
∂ 〈log p(yt | xt,θ)〉

∂θi
− λθi

]
+ 0.9gi, (17)

where λ is the weight decay parameter. Thirdly, we add randomly generated Gaussian noise to the
original input data each time they are presented to the learner, inspired by denoising autoencoders
in [13] and also recently proposed in [11].

5 Experiments

We compare MLP learning with and without proposed transformations in three problems where
we can also compare to other state-of-the-art learning algorithms. The two first experiments are
image classification tasks, and the last one is an autoregressive model to find a low-dimensional
representation of images. Even though all experiments use image data, we do not use or compare to
any image-specific processing such as convolutional networks or elastic distortions. Our approach
would work exactly the same even if the order of pixels was randomly permutated. All experiments
were run on a desktop computer with Intel Core i7 2.93GHz and 8 gigabytes of memory.
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Figure 3: MNIST classification problem. Left: Classification error rate in percentage as a function
of learning rate after 15 minutes of learning. Lower curves in each figure are the training error rates
and higher curves are test error rates. Right: Error rates against learning time for the best learning
rates for each method. The vertical dashed line shows the point at which the learning rate starts to
be decreased.

5.1 MNIST Handwritten Digit Classification

The MNIST data set [8] consists of 28 by 28 pixel gray-scale images of handwritten digits with
examples depicted in Figure 2. There are 60000 training samples and 10000 test samples. The mean
activation of each pixel was subtracted from the data, and the dimensionality was dropped from
28 × 28 = 784 to 200 using PCA followed by a random rotation (see Figure 2). A classification
network with layer sizes 200–200–200–10 was learned with a normal MLP model (original), one
with shortcut mapping C included (shortcuts), and the proposed model with shortcut mappings and
transformations in the nonlinearities (transformations) (see Figure 1). We also ran a simple 200–10
network (linear) for comparison. Training and test errors were tracked during learning and their
computation was not included in learning time. Learning time was restricted to 15 minutes, weight
decay parameter was λ = 0.0001 and the regularization noise was used with standard deviation 0.4
for each input (see Figure 2).

The results are shown in Table 1 and Figure 3. With a proper learning rate (1.0, see Figure 3), the
proposed method gets the test error below 1.5% in six minutes and to 1.1% in fifteen minutes. Thus,
the transformations make a simple gradient descent algorithm competitive in speed with complex
state-of-the-art learning methods such as TONGA [7], which reaches test error 1.7% in around 30
minutes (although with an older computer and with a different network structure). Deep networks
learned with backpropagation have reached 1.64% error in [4]. Deep belief network [5] gives 1.20%
error.

The experiments were run with an 8-core desktop computer and Matlab implementation. The learn-
ing time was measured with Matlab function cputime, which counts time spent by each core, so
wall-clock learning times were smaller, for example 233 seconds for a 900 cpu-second run includ-
ing computations of the training and test errors. Table 1 reports the number of iterations reached in
the allocated learning time.

Let us also study some of the properties of learning, for instance, how the transformations affect the
Fisher information matrix. Equation (7) measures the covariance of the signals fi(·). The ratio of
mean square nondiagonal element of the covariance to mean square diagonal element drops from
0.051 to 0.007 in the first hidden layer and from 0.080 to 0.009 in the second hidden layer, when
comparing models learned traditionally or with transformation. Figure 4 shows what the transformed
nonlinearities look like in practice. The transformations also decrease the norm of the gradient with
respect to non-shortcut weights. The decrease is about 2 to 3-fold in the initial phase of learning.
This might also explain why the proposed model performed worse than the others with a too small
learning rate (See left part of Figure 3). With a small norm of the gradient and a small learning rate,
the optimization simply does not finish in the allocated time.
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linear original shortcuts transformations literature

MNIST
classification

training error 8.99 0.063 0.058 0.068 -
test error 8.58 1.15 1.22 1.10 1.64

learning rate - 1.0 0.5 1.0 -
# of iterations 30k 4717 3498 2674 -

MNIST
autoencoder

training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

# of iterations 92k 49k 38k 37k -

Table 1: Results of the proposed method (transformations) compared against other methods run
with the same settings and against results in the literature [4, 10]. The number of iterations in the
allocated time is reported to compare the computational complexities.
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Figure 4: MNIST classification problem. Histograms of the transformation parameters αi (left)
and βi (middle) for the first hidden layer after learning. Right: Twenty examples of corresponding
nonlinearities fi(·).

To study which regularization method was important, the runs were repeated by including modifi-
cations one by one. Table 2 shows test errors evaluated by including regularization methods one by
one using learning rate γ = 1.0. The final run was repeated with ten times the learning time and
γ = 0.5. Adding noise to the inputs turned out to be the most important regularization method,
followed by dimensionality reduction by PCA. Using the transformations improved all versions.

regularization none weight decay PCA rotation input noise long run
original 1.87 1.85 1.62 1.63 1.15 1.03
shortcuts 2.02 1.77 1.59 1.60 1.23 1.17

transform. 1.63 1.56 1.56 1.48 1.10 1.02

Table 2: Evaluation of regularization methods in MNIST classification.

5.2 MNIST Autoencoder

The third problem uses the same MNIST handwritten digit dataset [8], but in this case both the
inputs and outputs of the network are the images. The network topology is 784–500–250–30–250–
500–784 with tanh-nonlinearity at each layer except the bottleneck layer in the middle. The output
is scaled from -1 to 1 to match the tanh nonlinearity. The goal in this problem is to find a good
30-dimensional representation from which the image can be reconstructed. Naturally the shortcut
connections that skip the bottleneck are not used. The labels are not used in this experiment at all.
Learning time was restricted to 60000 seconds, the base learning rate was γ = 0.05, weight decay
parameter was λ = 0.001 and the regularization noise was used with standard deviation 0.1 for each
input. To avoid early divergence of learning, the learning rate was increased from one hundredth to
the full rate exponentially during the first one percent of learning time.

The error is measured by the average sum of squared reconstruction error on the test data when
scaled back from [-1,1] to [0,1]. The final reconstruction error is 2.44 and some reconstructions
are visualized in the left part of Figure 5. As a comparison, a linear 784–30–784 autoencoder
gives an error 7.85. State-of-the-art comparison results are presented by Martens [10]: Hessian-free
optimization gives 2.55 with a larger network. The results in [10] were further improved to 2.28 by
initializing the network with layerwise pretraining, which could also be used here.
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Figure 5: MNIST autoencoder. Left: Traditional autoencoder network above, shortcut connections
included below. Note that the bottleneck layer does not have a nonlinearity or transformations.
Middle: Each triplet shows an example digit from the validation data, its reconstruction with a deep
autoencoder, and a reconstruction with a linear autoencoder as a comparison. Right: Error rate in
average sum of squared reconstruction errors plotted against learning time in seconds. Higher curves
are test errors, lower curves are training errors. The vertical dashed line shows the point at which
the learning rate starts to be decreased.

6 Discussion

We proposed transformations that make learning MLP networks much easier. By transforming the
nonlinearities of an MLP by Equations (2–4) such that they would become separated from the linear
mapping which is modelled separately using shortcut weights. A basic stochastic gradient became
faster than state-of-the-art learning algorithms. Those algorithms could also be tested with trans-
formations for further improvements. The theory of the speed-up is based on making the standard
gradient and the natural gradient more similar by having the nondiagonal terms of the Fisher in-
formation matrix closer to zero. As a side effect, the added linear part in the nonlinearity might
also help in avoiding plateaus [9]. The experiments showed that these simple transformations helps
learning deep structures at least up to 5 hidden layers using good-old backpropagation learning.

The transformations also seemed to help generalization when no regularization was used. We think
that this is because the transformations help to separate the simpler and complex parts of each map-
ping. Let us think of a network with just one hidden layer. The linear part of the problem (the
shortcut connections C) do not suffer much from the overfitting and can be learned more reliably
even without regularization. Overfitting the more complex parts A and B does not hurt the perfor-
mance as much when they do not influence the linear part of the whole mapping.

The effect of the transformations could also be studied in other contexts. For variational Bayesian
(VB) learning, the same transformations make both the signals in the network and the network
weights less dependent a posteriori. Often they are assumed to be independent in the posterior
approximation of VB anyway. Thus, the transformation makes the effect of the assumption smaller
and the approximation more accurate. This should help in avoiding the problem of underfitting (or
output weights of too many hidden neurons going to zero). One could also use MCMC methods for
sampling network weights. The effectiveness of the sampling process depends heavily on how large
jumps in the parameter space can be made. We can make longer jumps for the matrices A and B
if we use the proposed transformations to ensure that even large changes in them do not affect the
linear part of the input-output mapping.

The term deep learning refers either to networks with many layers (as in this work) but sometimes
it is used for a network learned with unsupervised pretraining which allows for better performing
deeper networks in practice. The proposed transformations could also be applied to initializations
based on unsupervised pretraining. We could also study a network with both the class labels and the
inputs are used as outputs.
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