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ABSTRACT

The properties of the nonlinear factor analysis
(NFA) model are studied by measuring how well
it reconstructs missing values in observations. The
NFA model uses a multi-layer perceptron (MLP)
network for approximating the nonlinear mapping
from factors to observations. The NFA model is
compared with linear factor analysis (FA) and with
the self-organising map (SOM). The number of pa-
rameters in the NFA model is closer to FA than the
SOM, but unlike FA, NFA is able to model nonlinear
manifolds. Based on experiments with real world
speech data and Boston housing data, we conclude
that the performance of the NFA model is closer to
FA.

1. INTRODUCTION

Generative models handle missing values in an easy
and natural way. Whenever a model is found, recon-
structions of the missing values are also obtained.
Generative models are not the only way to handle
the missing data [8, 10, 11], but we only cover them
in this paper. Unsupervised learning can be used
for supervised learning by considering the outputs
of the test data as missing values (Figure 1). This
combines feature extraction and supervised learn-
ing.

The ability to reconstruct missing values mea-
sures the quality of a model and its ability to gen-
eralise. Reconstructions are used in this paper to
demonstrate the properties of nonlinear factor anal-
ysis (NFA) [6] by comparing it to linear factor anal-
ysis (FA) and to the self-organising map (SOM) [5].

FA is like principal component analysis (PCA)
with modelled noise. It is a basic tool that works
well when nonlinear effects are not important.
Large dimensionality of data is not a problem. The
SOM captures nonlinearities and clusters, but has
difficulties with data of high intrinsic dimensionality
and generalisation. NFA has properties of both of
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Figure 1: Unsupervised learning can be used for
supervised learning by considering the outputs of
the test data as missing values.

them; It can handle both large dimensionality and
nonlinear effects.

The three methods are described shortly in the
next two sections. The fourth section describes the
experiments and the results. They are discussed in
section five.

2. SUPERVISED SELF-ORGANISING
MAP

A self-organising map, which is used to reconstruct
missing values, is called the Supervised SOM [5].
Model vectors lie in the same space as the data.
Here we use a variant in which each data vector
is matched to model vectors ignoring the values
that are missing. In the learning phase, the win-



ning model vector and its neighbours in the map
are moved slightly towards the data vector ignoring
the dimensions of the missing values again. Finally
the reconstructions of the missing values are combi-
nations of the values from the model vectors, which
are weighted according to Gaussian kernels assigned
to them:
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x(t) is a data vector and %X(t) its reconstruction.
m; is a model vector. Parameter o is called the
width of the softening kernels. When o approaches
zero, the reconstruction approaches the single win-
ning model vector. The data set might contain miss-
ing values in each of the vectors, but the model vec-
tors contain no missing values.

The reconstructions are restricted to convex
combinations of the model vectors. This might be
significant, when the true dimensionality of the data
is large and most of the data is on the border: When
a three dimensional ball loses 5 percent of its ra-
dius, it loses about 14 percent of its mass, but a 50
dimensional ball loses more than 92 percent of its
mass.

3. LINEAR AND NONLINEAR FACTOR
ANALYSIS

3.1. Model structure

According to the general FA model the data has
been generated by factors s through mapping f:

x(t) = £(s(t),0) +e(t) , (4)

where x is a data vector, s is a factor vector, @ is a
parameter vector and e is a noise vector. The linear
mapping f used in FA is

f(s,0) = As+b . (5)

The model is similar to principal component analy-
sis except that FA includes the noise term and the
factors have a Gaussian distribution. In NFA, the
function f is allowed to be nonlinear. We use the
method proposed in [6], where the MLP network

f(S, 0) =A, tanh(Als + bl) + b, (6)

is used to model the nonlinearity. The parameter
vector @ contains both A and b. The factors and the
noise are assumed to be independent and Gaussian.

In NFA the data is modelled by a high dimen-
sional manifold created by function f from a prior
Gaussian distribution. It can be compared to the
self-organising map (SOM) [5], but the number of
parameters scale more like in FA. The SOM scales
exponentially as function of the dimensionality of
the underlying data manifold. A small number of
parameters keeps the modelled manifold smooth.
We find the parameter vector 6 using ensemble
learning.

3.2. Ensemble learning

In general there are infinitely many possible ex-
planations of different complexity for the observed
data. Choosing too complex a model results in over-
fitting, where the model tries to make up meaning-
less explanations for the noise in addition to the true
factors. Choosing too simple a model results in un-
derfitting, leaving hidden some of the true factors
that have generated the data.

The solution to the problem is that no single
model should actually be chosen. Instead, all the
possible explanations should be taken into account
and weighted according to their posterior probabil-
ities. This approach, known as Bayesian learning,
optimally solves the tradeoff between under- and
overfitting.

In practice, exact treatment of the posterior pdfs
of the models is impossible. Therefore, some suit-
able approximation method must be used. Ensem-
ble learning [4, 1, 7, 9], which is one type of varia-
tional learning, is a method for parametric approx-
imation of posterior pdfs. The basic idea in ensem-
ble learning is to minimise the misfit between the
posterior pdf and its parametric approximation.

Let P(f|x) denote the exact posterior pdf and
Q(0) its parametric approximation. The misfit is
measured with the Kullback-Leibler (KL) diver-
gence Ckr, between P and @, defined by the cost
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Because the KL divergence involves an expecta-
tion over a distribution, it is sensitive to probability
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Figure 2: Upper figure: MLP net as a generative
model, Lower figure: Error propagates only from
observed values to factors.

mass rather than to probability density. The term
log P(x) does not depend on the parameters or the
factors and can be neglected.

The learning resembles the expectation maximi-
sation (EM) algorithm. The factors are adjusted
while keeping the mapping constant and the map-
ping is adjusted while keeping the factors constant
always minimising the cost function. All the pa-
rameters and factors are modelled with Gaussian
distributions rather than point estimates.

A more detailed account of the unsupervised
ensemble learning method used for nonlinear fac-
tor analysis and discussion of potentially appearing
problems can be found in [6].

3.3. Reconstruction

The approximation Q(s, 0) is assumed to be a Gaus-
sian density with a diagonal covariance matrix.
This simplifies the cost function given by (7) into
expectations of many simple terms. Some of them
relate to the noise vectors e(t) which are also the re-
construction errors as seen in formula (4). In case of
a missing value this term is not included in the cost
function and the factors are thus estimated based
only on the available observations. The reconstruc-
tion of data is obtained by the mapping f from the
estimated factors (Figure 2).

There is an analogy with the SOM. Factor vec-
tor s corresponds to the winning map unit in the
SOM and f(s) corresponds to the model vector of
the winner.

3.4. Learning procedure

First, linear PCA (principal component analysis) is
applied to find sensible initial values for the poste-
rior means of the factors. PCA has been modified
to accept missing values by calculating the covari-
ances from only those pairs of data values where
both values are observed (as opposed to missing).
The posterior variances of the factors are initialised
to small values.

The factors were fixed at the values given by lin-
ear PCA for the first 50 sweeps through the entire
data set. This allows the network to find a mean-
ingful mapping from factors to the observations,
thereby justifying using the factors for the represen-
tation. For the same reason, the parameters control-
ling the distributions of the factors, weights, noise
and the hyperparameters are not adapted during
the first 100 sweeps. They are adapted only af-
ter the network has found sensible values for the
variables whose distributions these parameters con-
trol. This setting is important for the method be-
cause the network can effectively prune away un-
used parts, which would lead to a local minimum
from which the network would never recover.

4. EXPERIMENTS

4.1. Experiment settings

The experiment setting is to reconstruct the missing
values and the mean square error of the reconstruc-
tions are used for the comparison. The two data sets
that are used are speech data and Boston housing
data. Ignorability of the data collection mechanism
[3] is assumed in this paper. The collection mecha-
nism is nonignorable, for instance, when out-of-scale
measurements are marked as missing.

The first data set consists of real-world Finnish
speech spectrograms spoken by several individuals.
Short term spectra are windowed to 30 dimensions
with a standard preprocessing procedure for speech
recognition. It is clear that a dynamic model [12]
would give better reconstructions, but in this case
the temporal information is left out to ease the com-
parison of the models. Half of the about 5000 sam-
ples are used as test data with some missing val-
ues. Missing values are set in four different ways to
measure different properties of the algorithms (Fig-
ure 3):

1. 38 percent of the values are set to miss ran-
domly in 4 times 4 patches. (Figure 4) This
is the main setting, since it is most realistic.

2. 10 percent of the values are set to miss ran-
domly independent of any neighbours. This is
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Figure 3: Four different experiment settings with
the speech data try to measure different properties
of the algorithms.

an easier setting, since simple smoothing using
nearby values would give fine reconstructions.

3. Training and testing sets are randomly per-
muted before setting missing values in 4 times
4 patches as in setting 1. The training set con-
tains vectors more similar to the test set now.

4. Training and testing sets are permuted and 10
percent of the values are set to miss indepen-
dently of any neighbours.

The second data set is Boston housing data,
which is publicly available at [2]. It concerns hous-
ing values in suburbs of Boston. Data set contains
506 vectors of 13 dimensions excluding one binary
attribute. Four of the 13 values were common to
each town, which consist of 1 to 50 suburbs. 70%
of the data vectors are used as training data and
the rest as testing data, which has 10% of its values
missing randomly.

4.2. Implementation

Self-organising map was learned using the SOM
Toolbox! for Matlab. The number of model vectors
and the width of the softening kernels associated
with them were left as parameters and the selection
of values is not studied herein. Instead, the values
with the best results were used. Number of itera-
tions was the default value in the SOM toolbox and
additional 50 iterations through all the data were
run with neighbourhood set off.

The NFA code for Matlab was modified to sup-
port missing values. The code needed to reproduce
the experiments is publicly available?. The NFA
method was tried with fixed number of hidden neu-
rons using several different number of factors only,
because the algorithm requires about ten thousand

thttp:/ /www.cis.hut.fi/projects/somtoolbox/
2http://www.cis.hut.fi/projects/ica/bayes/

batch iterations, where one batch iteration means
going through all the observations once.

4.3. Performance with the speech data

The performance of different methods with speech
data can be seen in Figure 5. NFA was tested with
30 hidden neurons and 2 to 15 factors and FA with
number of factors varying from 1 to 30. The im-
plemented NFA algorithm suffered from instability
when the number of factors was greater than 15.
The NFA model performed always better than FA
with same number of factors.

The mean square reconstruction errors are col-
lected here in the same order as in Figure 3:

NFA FA SOM
1.76 | 0.57 1.88 | 0.57 1.73 | 0.83
1731057  1.85] 0.58 1.52 ] 0.85

The first setting proved to be the hardest as
expected, since new words require generalisation
and missing values in patches makes nonlinear ef-
fects more important. With optimal parameter val-
ues the SOM gave marginally better reconstructions
than NFA. FA performed the worst.

The second setting was easier: NFA and FA per-
formed equally well, but the SOM could not achieve
same accuracy. A large number of model vectors did
not help the SOM to get enough representing power.

The third setting had permuted data sets, which
makes generalisation less important. This helped
the SOM a lot and it gave clearly the best results.
NFA and FA benefitted only marginally and were
left behind.

Results of the fourth setting did not differ from
the second setting. The change in the missing value
pattern from the first and third settings seems to
have the dominant effect.

The reconstruction errors of the observed values
(lower curves in Figure 5) are of interest, too. The
SOM can not represent the data as accurately with
the map unit activities as the factor analysis models
can with the factor values. The FA model with 30
factors could have represented the data perfectly,
but the modelled noise accounted for some varia-
tion.

The best number of model vectors in the SOM
was 1600 in the first case, but at least 2400 in the
other cases. This has caused a change in the re-
construction error of the observed values. The opti-
mal width of the softening kernel was also somewhat
larger in the first experiment. The number of map
units is normally not as large as half of the number
of data vectors.
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Figure 4: Speech data reconstruction example with
best parameters of each algorithm.

4.4. Performance with the Boston data

The experiments with Boston data were run four
times with random division of data into training
and test sets. Mean square reconstruction errors
were scaled such that the SOM errors were 100 in
each case. The NFA errors were 118 with standard
deviation of 17 and the FA errors were 151 with
standard deviation of 22.

This data set is clustered, because of the town
structure, and the dimensionality of the data mani-
fold is not too large for the SOM to handle. There-
fore it is not very surprising that it made better
reconstructions than NFA. Nonlinearities were cru-
cial in the data set, since FA was inferior to the
nonlinear methods. NFA was run with 20 hidden
neurons and from 1 to 9 factors. Best number of
them varied from 5 to 9. The best number model
vectors in the SOM varied from 500 to 1800, which
is far greater than the number of data points.

5. DISCUSSION

Figures 6 and 7 show some projections of the data
and the models. The SOM manifold looks quite
curly. NFA manifold with two factors is also rolled
up, but in a smoother way. Important differences
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Figure 5: Mean square reconstruction errors of
speech data as a function of number of factors or
softening width. The rows correspond to the ex-
periment settings reading from up to down. The
upper curve in each plot is the test result for miss-
ing values and the lower curve is the reconstruction
of observed values.

between high dimensional NFA manifolds are not
visible in these projections.

As expected, the SOM performs the best for
clustered data and NFA performed better than FA.
Results show that NFA is closer to FA than to the
SOM. The greatest problem of the SOM is that the
number of parameters scales exponentially with the
number of intrinsic dimensions of the data manifold,
which leads to bad generalisation. The NFA model
does not work well, if the data is clustered. It is
hard to find the function that shapes a Gaussian
continuum to clusters, but when the data forms a
continuum, too, the NFA model is more appropri-
ate.

The NFA algorithm searches only for local op-
tima, so multiple runs with different initialisations
would have better chances globally. The stability
should be guaranteed and some speedups could be
made for the algorithm to be a ready-to-use tool.

Even though the learning algorithm requires a
lot processing, the NFA model, when it has learned,
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Figure 6: The speech data sets, the SOM model
vectors and some points generated by NFA with
varying number of factors are projected on three
planes. In the uppermost row the plane is the 1st
and 2nd principal components and in the middle the
1st and 3rd components and in lowermost row the
1st and 4th component. NFA models were used by
generating random factor vectors from their prior
distribution. The dots shown are the corresponding
expected values of the data vectors.
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Figure 7: Boston housing data, projections as in
Figure 6.

can be applied in real time. The computational
complexity of the algorithm scales to the product
of number of factors and hidden neurons per batch
iteration. By contrast, the number of map units
in a SOM scales exponentially as a function of the
dimensionality of the map. NFA is best suited for
fairly strongly nonlinear problems with an intrinsic
dimension of the order of ten.

When compared to the SOM, factor analysis
models are simpler in terms of the number of pa-
rameters. While even the largest NFA model had
about 3000 parameters, the SOM had about 50000
parameters. This can be seen in Figure 6 from the
fact that NFA did not capture all the finest de-
tails in the data set. Experimental results support
the statement that small number of parameters en-
hances the ability to generalise.

6. CONCLUSIONS

The ability to reconstruct missing values measures
the quality of a model: its ability to generalise,

memorise and represent. The nonlinear factor anal-
ysis model turned out to perform well in generalisa-
tion and representation while its ability to memorise
is limited due to the small number of parameters in
the model. NFA performed better than FA in all
the experiments, but with large number of factors,
the current NFA algorithm becomes computation-
ally expensive. We conclude that nonlinear factor
analysis (NFA) is best suited for fairly strongly non-
linear problems with an intrinsic dimension of the
order of ten. 3
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