Making Restricted Boltzmann Machines Work

Tapani Raiko

Aalto University School of Science, Department of Information and Computer Science

Oct 11, 2011

Background (1/2)

- ► Long tradition of studying unsupervised learning (SOM, ICA)
- Group: Bayesian algorithms for latent variable models Prof. Juha Karhunen, Prof. Erkki Oja,
 DSc Tapani Raiko, DSc Alexander Ilin,
 MSc KyungHyun Cho, MSc Jaakko Luttinen...
- Our focus is on probabilistic latent variable models (NFA, Valpola, 2000) and hierarchical representations (HNFA, Raiko, 2001)

Background (2/2)

- ▶ NFA and HNFA are directed graphical models
- Recently it was shown that undirected models can yield better representations (Hinton, 2006)
- ► Since 2006, learning hierarchical representations is known as deep learning and it is a hot topic

Analysing Documents by Word Counts (Hinton 1/5)

First compress all documents to 2 numbers using a type of PCA Then use different colors for different document categories

Autoencoder (Hinton 2/5)

Autoencoding Documents (Hinton 3/5)

Handwritten Digits (Hinton 4/5)

Examples of correctly recognized handwritten digits that the neural network had never seen before

Autoencoding Digits (Hinton 5/5)

Restricted Boltzmann Machine (RBM)

- Building block of deep belief networks
- Stochastic undirected neural network (Hinton & Sejnowski 1980s)
- Binary units in visible and hidden layers
- Can model any distribution

$$\begin{split} P(\mathbf{v}, \mathbf{h} \mid \boldsymbol{\theta}) &= \frac{1}{Z(\boldsymbol{\theta})} \exp \left(\mathbf{v}^T \mathbf{W} \mathbf{h} + \mathbf{b}^T \mathbf{v} + \mathbf{c}^T \mathbf{h} \right) \\ \Rightarrow P(v_i = 1 \mid \mathbf{h}, \boldsymbol{\theta}) &= \operatorname{sigmoid} \left(\sum_j W_{ij} h_j + b_i \right) \\ P(h_j = 1 \mid \mathbf{v}, \boldsymbol{\theta}) &= \operatorname{sigmoid} \left(\sum_i W_{ij} v_i + c_j \right) \end{split}$$

RBM Example

- lacktriangle Visible layer f v contains handwritten digits f x and their labels y
- ▶ Generated samples $p(\mathbf{x} \mid y)$ from the RBM:

▶ Classification accuracy based on $p(y \mid \mathbf{x})$: 97.06%

Training RBMs

- Stochastic gradient-based maximum likelihood learning:
 Gradient = statistics of data statistics of model samples
- ► Likelihood exponentially hard to compute
 (→ Difficult to evaluate the goodness)

Difficulties in Training

▶ Despite many success stories of deep networks, training even an RBM is rather difficult (Fischer & Igel, 2010)

► Same data, but flipping zeroes and ones: learning fails!

MNIST

1-MNIST

Improved Learning Algorithm (Cho, Raiko & Ilin, ICML 2011)

- Adaptive Learning Rate
- Enhanced Gradient

Adaptive Learning Rate

- ► Approximately compare increasing and decreasing learning rate
- ▶ Likelihood ratios can be estimated from samples

Enhanced Gradient (1/2)

- ▶ Flip some neurons $(0 \leftrightarrow 1)$
- Equivalent RBM model can be constructed by transforming parameters

- ▶ Update: Transform, update, and transform back
- $ightharpoonup 2^{n_v+n_h}$ well-founded ML updates exist

Enhanced Gradient (2/2)

- ▶ Weighted sum of all updates
- ► Results in simple equations (no computational overhead)

Robust Learning

- Visualization of weights after 5 epochs of learning
- ▶ Robust to setting learning parameters (initial learning rate η , scale of initial weights λ)
- ► Each hidden unit becomes useful

Experiment: Caltech 101 Silhouette Classification

	Test accuracy	
Hidden neurons	Proposed	Marlin et al. 2010
500	71.56%	65.8%
1000	72.61%	
2000	71.82%	

▶ Improved result without any laborious tuning

On-Going Work

- ► Continuous values, multiple layers, 3-way connections, . . .
- ► Collaboration: speech recognition and image annotation

