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Background (1/2)

» Long tradition of studying unsupervised learning (SOM, ICA)

» Group: Bayesian algorithms for latent variable models
Prof. Juha Karhunen, Prof. Erkki Oja,
DSc Tapani Raiko, DSc Alexander llin,
MSc KyungHyun Cho, MSc Jaakko Luttinen. ..

» Our focus is on probabilistic latent variable models (NFA,
Valpola, 2000) and hierarchical representations (HNFA, Raiko,
2001)



Background (2/2)

» NFA and HNFA are directed graphical models

> Recently it was shown that undirected models can yield better
representations (Hinton, 2006)

» Since 2006, learning hierarchical representations is known as
deep learning and it is a hot topic



Analysing Documents by Word Counts (inton 1/5)

First compress all -dc-)c;umeat;to 2 n-umbers using a type of PCA
Then use different colors for different document categories




Autoencoder inon 2/5)

How to compress document count vectors

output
| 2000 reconstructed counts | vector

* We train the
autoencoder to
reproduce its input

vector as its output

* This forces it to
compress as much
information as possible
into the 2 real numbers

in the central bottleneck.
250 neurons

* These 2 numbers are
then a good way to
500 neurons visualize documents.
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Autoencoding Documents (inon 3/5)

First compress all documents to 2 numbers.
Then use different colors for different document categories
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Handwritten Digits ginton 45)

Examples of correctly recognized handwritten digits
that the neural network had never seen before
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Autoencoding Digits (inon s5/5)
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Restricted Boltzmann Machine (RBM)

» Building block of deep belief networks Hidden layer

» Stochastic undirected neural network

(Hinton & Sejnowski 1980s) Q[ OI O}
» Binary units in visible and hidden

ayers O 00O

» Can model any distribution Visible layer

P(v,h|0) =

1
70) exp (VTWh +blv+ CTh)

= P(v; = 1| h,0) =sigmoid | Y Wi;h; + b;
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P(h; =1|v,8) = sigmoid (Z Wijvi + Cj)



RBM Example

» Visible layer v contains handwritten digits x and their labels y
» Generated samples p(x | y) from the RBM:
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» Classification accuracy based on p(y | x): 97.06%



Training RBMs

()

fantasy particles old model

from model @ new model
. . «
. data . * — .

» Stochastic gradient-based maximum likelihood learning:
Gradient = statistics of data - statistics of model samples
> Likelihood exponentially hard to compute
(— Difficult to evaluate the goodness)



Difficulties in Training

» Despite many success stories of deep networks,
training even an RBM is rather difficult (Fischer & igel, 2010)
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Improved Learning Algorithm (Cho, Raiko & liin, ICML 2011)

» Adaptive Learning Rate

» Enhanced Gradient



Adaptive Learning Rate
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» Approximately compare increasing and decreasing learning rate

» Likelihood ratios can be estimated from samples



Enhanced Gradient (1/2)

» Flip some neurons (0 <> 1)

» Equivalent RBM model can be constructed by transforming

parameters
RBM, Update RBM;
Flip Flip back
Transform Transform back

4 RBM, '

» Update: Transform, update, and transform back

» 2™ well-founded ML updates exist



Enhanced Gradient (2/2)

£=(0,0,---,0)
f=(1,0,---,0) —— Traditional gradient]
c 10° —— Robust gradient
¥ 5 —— Difference
o
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I 2nvtmh gradients
/ 500
Updates

£= (1,1, ,1)
> Weighted sum of all updates

> ReSU|tS in Slmp|e equations (no computational overhead)



Robust Learning
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» Visualization of weights after 5 epochs of learning
» Robust to setting learning parameters

(initial learning rate 7, scale of initial weights \)
» Each hidden unit becomes useful
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Experiment: Caltech 101 Silhouette Classification
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Test accuracy
Hidden neurons | Proposed Marlin et al. 2010

500 71.56% 65.8%
1000 72.61%
2000 71.82%

» Improved result without any laborious tuning
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On-Going Work

» Continuous values, multiple layers, 3-way connections, ...
» Collaboration: speech recognition and image annotation

Gaussian
Deep Boltzmann Machines

Training Generation




