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Collaborative filtering
• Consider a table of ratings of movies (m1,m2,...) 

given by different people (p1,p2,...)

• The task is to make personalized recommendations

• This can be seen as reconstructing missing ratings 
in the table given the observed ones

p1 p2 p3 p4 p5 p6
m1 4 5 ? 5 2
m2 5 ? 5 3
m3 1 3 5 ?



Principal Component Analysis 
(PCA)

• Data Y consists of n d-dimensional vectors

• Matrix Y is decomposed in to a product of smaller 
matrices such that the square reconstruction error 
is minimized
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Abstract

Lately there has been the interest of categorization and pattern detection in large data sets, including

the recovering of the dataset missing values. In this project the objective will be to recover the subset

of missing values as accurately as possible from a movie rating data set. Initially the data matrix is

preprocessed and its elements are divided in training and test sets. Thereafter the resulting matrices

are factorized and reconstructed according to probabilistic principal component analysis (PCA). We

compare the quality of reconstructions done with sampling and variational Bayesian (VB) approach.

The results of the experiments showed that sampling improved the quality of the recovered missing

values over VB-PCA typically after roughly 100 steps of Gibbs sampling.

1 Introduction

Human preferences (the quality tags we put on

things) are language terms that can be easily trans-

lated into a numerical domain. We could assign low

values to odd things and high values to enjoyable

things, i.e.; rate things according to our experience.

These ratings serve us to easily (and grossly) classify

and order our preferences from the ones we like the

most to the ones we dislike the most. Of course we

are limited: we can not rate what we do not know,

however; it may be of our interest to know the possi-

ble ratings of these unknowns.

In this project we will be working with large and

sparse matrices of movies ratings. The objective will

be to recover a subset of the missing values as accu-

rately as possible. Recovering these missing values

equal to predictingmovies ratings and, therefore; pre-

dicting movies preferences for different users. The

idea of correctly recovering movies ratings for differ-

ent users has been a hot topic during the last years

motivated by the Netflix prize.

The concept of mining users preferences to predict

a preference of a third user is called Collaborative Fil-

tering, it involves large data sets and has been used by

stores like Amazon and iTunes.

We can start by considering that the preferences of

the users are determined by a number of unobserved

factors (that later we will call components). These

hidden variables can be, for example, music, screen-

play, special effects, etc. These variables weight dif-

ferent and are rated independently, however; they, to-

gether, sum up for the final rating, the one we ob-

serve. Therefore; if we can factorize the original ma-

trix (the one with the ratings) in a set of sub-matrices

that represent these hidden factors, we may have a

better chance to find the components and values to

recover the missing ratings [1]. One approach to find

these matrices is to use SVD (Single Value Decom-

position), a matrix factorization method. With SVD

the objective is to find matricesU V minimizing the

sum-squared distance to the target matrixR [2].

For this project we consider matrix Y to be our

only informative input. Matrix Y is, usually, large

and disperse, i.e.; with lots of missing values. The ob-

servable values are the ratings given to movies (rows)

by users (columns). Our objective is to recover the

missing values, or a subset of them, with a small er-

ror. We can factorize matrixY such that

Y ≈ WX + m, (1)

where the bias vector m is added to each column of

the matrix WX. Matrices W X m will let us re-

cover the missing values, of course, the quality of the

recovering depends on the quality of these matrices.

Sampling will let us improve the fitness of matrices



Algorithms for PCA

• Eigenvalue decomposition (standard approach)

• Compute the covariance matrix and its 
eigenvectors

• EM algorithm

• Iterates between updates of W and X



PCA with missing values

• Red and blue data points are reconstructed based 
on only one of the two dimensions
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1. PCA with Missing Values

• Model: X
d×n

≈ A
d×c

S
c×n

, c ≤ d ≤ n

• Minimized cost function:

Ce =
∑

(i,j)∈O

(
xij−

c∑

k=1

aikskj

)2

• Reconstruction:

x̂ij =
c∑

k=1

aikskj , (i, j) /∈ O

2. Algorithms

• Imputation algorithm: 1) Replace missing values with zeros, 2) Com-
pute PCA, 3) Update mising values with AS, 4) Go to step 2).

• EM-like learning:

A ← arg max
A

Ce , S ← arg max
S

Ce

• Subspace Learning (Oja’s subspace rule):

A ← A − γ
∂Ce

∂A
, S ← S − γ

∂Ce

∂S
.

3. Regularized PCA
• Model: X = AS + noise

• Gaussian model for A, S, noise
(Bayesian regularization)

• Minimized cost function:

Cbr = v−1
x Ce + ‖A‖2

F

+
c∑

k=1

v−1
sk ‖Sk:‖2

F +C(vx, vsk)

• Point (MAP) estimates for A and S

4. Variational Bayesian (VB) PCA

•A and S are modeled a posteriori using simple distributions
q(aik) = N (aik; aik, ãik), q(skj) = N

(
skj; skj, s̃kj

)

•Minimized cost function

Cvb = Eq

{
ln

q(A,S)

p(X,A,S)

}
= Cbr + C(ãik, s̃kj)

• Extra term C(ãik, s̃kj) accounts for posterior uncertainty

• aik, ãik, skj, s̃kj are found by minimizing Cvb

5. Overfitting in Sparse Problems

Left: Unregularized PCA solution is based on the only pair of fully
observed vectors. Right: In regularized solution, the correlations are
not trusted that much

6. Fast Learning for Sparse Large-Scale Data

•Most existing implementations of PCA are inefficient

•We propose a gradient-based implementation which does not recon-
struct the missing values during learning (memory efficient)

• Faster convergence can be achieved using proposed approxiate New-
ton’s iteration

∆θi ∝ −
(

∂2C

∂θ2
i

)−α
∂C

∂θi

• α = 0: gradient descent, α = 1: Newton’s method

•The update rules are modifications of Oja’s subspace rule

7. Experiments with Netflix data (http://www.netflixprize.com/)

•Collaborative filtering task: predict people’s preferences based
on other people preferences

• d = 1.8 · 103 movies, n = 5 · 105 customers, given N = 108

movie ratings from 1 to 5, 98.8% of the values are missing

• Left fig.: Training rms error against computation time in hours

•The learning speed of the proposed optimization scheme is
demonstrated using unregularized PCA with α = 0 (gradient)
and with α = 5/8 (speed-up)

•Right fig.: The rms errors on test data against computation
time in hours

•Regularization helps avoid severe overfitting ! " # $ % "& '# &$
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Adapting the algorithms for 
missing values

• Iterative imputation

• Alternately 1) fill in missing values and 
2) solve normal PCA with the standard approach 

• EM algorithm becomes a bit more involved

• Can be extended, and was thus used here



Overfitting in case of sparse data
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Regularization against Overfitting

• Penalizing the use of large parameter values

• Estimating the distribution of unknown parameters 
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(
skj; skj, s̃kj

)

•Minimized cost function

Cvb = Eq

{
ln

q(A,S)

p(X,A,S)

}
= Cbr + C(ãik, s̃kj)
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Modelling the uncertainty

• The optimal reconstruction is an integral over the 
unknown variables of the model

• There is no analytical solution to the integral so 
approximative methods must be used

• Variational Bayes and Gibbs sampling are such 
methods

W X m to better recover matrixY. We can use VB-

PCA (Variational Bayes PCA) for the initial decom-

position of the input matrix Y. VB-PCA is known

to be less prone to over-fitting and more accurate for

lager-scale data sets with lots of missing values com-

pared to traditional PCA methods [3, 4]. However;

VB-PCA is not compulsory for sampling, a random

initialization method is also explored in this project.

2 Sampling PCA

Sampling can be seen as the generation of numerical

values with the characteristics of a given distribution.

Sampling is used when other approaches are not fea-

sible.

For high-dimensional probabilistic modelsMarkov

chainMonte Carlo methods are used to go over the in-

tegrals with good accuracy. Gibbs sampling is a well

known MCMC method [5, 6]. In Gibbs approach we

sample one variable, for exampleW, conditioned to

the remaining variables, X m. In the following step

we sample another variable fixing the rest; we repeat

this process generating as many samples as necessary.

In our project we have matrixY that is a joint dis-

tribution of the form Y = WX + m+noise to pre-
dict the missing values inY we need to solve:

P (YMIS |YOBS) =

∫
P (YMIS |W,X,m) (2)

P (W,X,m|YOBS) dW dX dm.

Solving the integral is complex, therefore; we

make use of Gibbs sampling to approximate its

solution. To recover matrices W X m we need

to solve P (W|YOBS ,X,m), P (X|YOBS ,W,m)
and P (m|YOBS ,W,X) each one following a Gaus-
sian distribution, contrary to P (W,X,m|YOBS)
that follows an unknown and complex distribution.

The mean matrices, X̄ W̄ m̄, and covariance matri-

ces, Σx Σw m̃, are calculated according to the for-

mulas provided at [4] Appendix D; this is done as

follows:

X̄:j = (W̄T
j W̄j + vI)−1

W̄
T
j (Y̊:j − m̄j) (3)

Σx,j = v(W̄T
j W̄j + vI)−1 (4)

W̄i: = (Y̊i: − m̄i)
T
X̄

T
i (X̄iX̄

T
i + v diag(w−1

k ))
(5)

Σw,i = v(X̄iX̄
T
i + v diag(w−1

k )) (6)

m̄i =
wm

|Oi|(wm + v/|Oi|)

∑
jεOi

[yij − W̄i:X̄:j ] (7)

m̃i =
vwm

|Oi|(wm + v/|Oi|)
. (8)

Indices j = 1, . . . , p and i = 1, . . . , m go over

the rows (people) and columns (movies) of matrixY,

and yij is the ijth element of matrix Y. X̄:j is the

column j of matrix X̄, W̄i: is row i of matrix W̄,

m̄i is element i of vector m. v and wm are hyper-

parameters. Y̊ is the data matrix where the missing

values have been replaced with zeroes. O is the set of

indices ij for which yij is observed. Oi is the set of

indices j for which yij is observed. |Oi| is the num-
ber of elements in Oi. I is the identity matrix. diag
is the diagonalizing of the referred values. Wj is ma-

trix W in which an ith row is replaced with zeros if
yij is missing,mj is vectorm in which each ith ele-
ment is replaced with zero if yij is missing, andXi is

the matrix X in which a jth column is replaced with
zeros if yij is missing.

Using the mean and covariance matrices we are

able to sampleW′ X′ andm′ using the methods pre-

sented in [6]. With the sampled and mean matrices

we recover a full matrix Y′, i.e.; including the miss-

ing values; more of this is explained in the following

subsections.

2.1 Recovering the Missing Values

To recover the matrix Y we need to multiply ma-

trix W by X and add the m bias vector to each col-

umn. Referring to the ideas presented by [1], matrix

W represents the different and weighted factors that

conform a movie. On the other hand, matrix X rep-

resents the values assigned to each factor by the dif-

ferent users. The resulting matrix Y′ has, therefore,

the ratings given to movies m by users p. The bias

term,m, is used to compensate the differences in re-

sults from the recovered matrix Y′ and the original

observed values used during the training.

To prove the quality of the ratings in the recovered

matrix Y′ it is necessary to have a test set different

from the training set. At every step during sampling

when the values are recovered we calculate the Root

Mean Square Error, RMSE, using the test set as base-

line. RMSE is a well known measure to quantify the

amount by which a predictor differs from the value

being predicted.

The sampling and recovering process is as follows:

1. Start point i = 1, with matricesWi Xi andmi.

2. Calculate mean matrix X̄ and covariance matrix

Σx usingWi by Eqs. (3)–(4).



Variational Bayes

• Distribution with a fixed form is fitted to the true 
distribution

• The misfit between the two distributions is minimized 
iteratively



Gibbs sampling

• The distribution of W and 
m given Y and X has a 
simple form

• The distribution of X 
given Y, W and m has a 
simple form

• Draw random samples 
alternately from these

3. Recover Y′ with Wi and X̄ by Eq. (1).

4. Increase i by one.

5. Sample Xi using from N(X̄,Σx).

6. Calculate mean matrix W̄ and covariance ma-

trix Σw using Xi by Eqs. (5)–(6).

7. Recover matrix Y′ with W̄ and Xi by Eq. (1).

8. Sample Wi from N(W̄,Σw).

9. Calculate bias mean m̄ and variance m̃ using

Wi Xi by Eqs. (7)–(8).

10. Sample bias mi from N(m̄, m̃).

11. Loop from step 2.

This can be graphically visualized at Figure 1. At ev-

ery loop, when calculating the mean matrices W̄ X̄

(steps 2 and 6), we use the original matrix Y, this

leads to an improvement in the recovered values (bet-

ter representing the original matrix with the observed

values) and hence and improvement in the future

sampled matrices.

X

W
calculate

loopsample

W

X

W

Y

Y
Starting point

Initial W 
From PCA Full/Diag

Randomly initialized

recover

Figure 1: Sampling PCA process.

Every time matrix Y′ is calculated (steps 3 and 7)

the missing values are recovered. At every recovering

step the missing values are averaged with the previ-

ously recovered ones

ȳk+1 =
kȳk + yk+1

k + 1
, (9)

where k is the step, ȳ is the average of the previous

values and y are the new recovered values. Using the

average will lead to better results than just using the

single-samples alone. The more samples are aver-

aged, the close the approximation is to the true in-

tegral in Equation 2.

3 Tests and Results

The Sampling PCA method was tested with an arti-

ficial data set and the MovieLens data set. For the

MovieLens test the missing values were also pre-

dicted randomly to observe how close a random pre-

diction is from the sampling approach, i.e.; to grossly

measure the benefit of using sampling. With the ar-

tificial data we will focus on recovering all missing

values while with MovieLens data only a subset of

the missing values.

3.1 Artificial Data

The initial testing was done using artificially gener-

ated data. The artificial data consists on generating

matrices W[m, c] (normally distributed N (0, 1), ran-

dom values); X[c, p] (uniformly distributed [0 . . . 1],
random values) and, an additional noise matrix

N[m, p] (normally distributed N (0, var) where noise

variance (var) is given in the table below). Matrix

Y[m, p] is generated as Y = WX + N. From ma-

trix Y a given percentage of ratings is selected at ran-

dom and set to NaN in matrix Yt, i.e.; set to be miss-

ing values1.

Three data sets were generated with the following

characteristics:

Set m p c Noise Var Missing Values

A 100 125 8 0.05 50%

B 150 200 15 0.3 70%

C 300 450 18 0.5 85%

Using the VB-PCA approach, PCA FULL function

[4], we recover W X and m (plus hyper-parameters)

from matrix Yt. We do this using 10, 20 and 30

components. With the recovered matrices we run the

Sampling PCA algorithm; 500 samples are generated

from each input.

We can observe at Table 1, how the noise, size and

proportion of missing values of the original matrix Y

affect the quality of the recovered missing values. It

is also noticeable that when the problem is simple, as

1Where m stands for number of movies; p for number of people

and c for number of components.



MovieLens data

• 100000 ratings from 1-5 given by 943 people to 1682 
movies

• We used 95000 ratings for training and 5000 ratings 
for testing

• 94% missing values



Results with MovieLens data
• Sampling against variational Bayes with different 

number of components c=10,20,30

• RMS reconstruction error of test ratings
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Figure 5: RMSE for first samples after random ini-

tialization (discarded samples).
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Figure 6: Sampling process for random initialization.

4 Conclusions

This project lead to interesting results. The artifi-

cial tests let us know that small matrices with small

portion of missing values are not easily improved by

sampling. For the MovieLens test we observed that

sampling improved the quality of the recovered miss-

ing values over VB-PCA using the later as an initial

step. We also noticed that the random initialization

does not affect sampling and the results are good. The

best results were obtained using PCA DIAG and 20

components; the worst results were obtained using

PCA FULL and 10 components. A future improve-

ment could be achieved rounding the recovered val-

ues that are outside the range of the expected ones,

i.e.; values ≤ 1 to 1 and ≥ 5 to 5. A look at the

recovered vector, for the best results, shows 6 values

below 1 and 32 above 5.
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Conclusions

• When the data becomes very sparse, modelling 
uncertainty in PCA becomes important

• Sampling required about 100 samples to surpass 
variational Bayesian reconstructions


