
Principal Component Analysis (PCA)
for Sparse High-Dimensional Data

Tapani Raiko

Helsinki University of Technology, Finland
Adaptive Informatics Research Center

AB

The Data Explosion

• We are facing an enormous challenge in the
ever increasing amount of data in electronic
form

• First wave: text, second wave: real-world data

• Basically, any information that may have value
will be made available, e.g., through the Web

• We need ”adaptive informatics” which adds
intelligence at the access point.

Adaptive Informatics:

• A field of research where automated learning
algorithms are used to discover informative
concepts, components, and their mutual
relations from large amounts of real-world data

• The goal is to understand the underlying
phenomena, structures, and patterns buried in
the large data sets, in order to make the
information usable.

Retrieval of multimodel objects:

Proactive Information Retrieval

Principal Component Analysis
• Data X consists of n d-dimensional vectors

• Matrix X is decomposed in to a product of smaller
matrices such that the square reconstruction error
is minimized

2 Tapani Raiko et al.

inadequate in this case, and we thus propose a new algorithm. The problem of
overfitting is also studied and solutions based on regularization and variational
Bayesian learning are given.

2 Algorithms for Principal Component Analysis

Principal subspace and components Assume that we have n d-dimensional
data vectors x1,x2, . . . ,xn, which form the d×n data matrix X = [x1,x2, . . . ,xn].
The matrix X is decomposed into

X ≈ AS, (1)

where A is a d× c matrix, S is a c×n matrix and c ≤ d ≤ n. Principal subspace
methods [6, 4] find A and S such that the reconstruction error

C = ‖X − AS‖2
F =

d
∑

i=1

n
∑

j=1

(xij −
c

∑

k=1

aikskj)
2 , (2)

is minimized. There F denotes the Frobenius norm, and xij , aik, and skj ele-
ments of the matrices X, A, and S, respectively. Typically the row-wise mean
is removed from X as a preprocessing step.

Without any further constraints, there exist infinitely many ways to perform
such a decomposition. However, the subspace spanned by the column vectors of
the matrix A, called the principal subspace, is unique. In PCA, these vectors
are mutually orthogonal and have unit length. Further, for each k = 1, . . . , c,
the first k vectors form the k dimensional principal subspace. This makes the
solution practically unique, see [4, 2, 5] for details.

There are many ways to determine the principal subspace and components
[6, 4, 2]. We will discuss three common methods that can be adapted for the case
of missing values.

Singular Value Decomposition PCA can be determined by using the singular
value decomposition (SVD) [5]

X = UΣVT , (3)

where U is a d × d orthogonal matrix, V is an n × n orthogonal matrix and Σ
is a d×n pseudodiagonal matrix (diagonal if d = n) with the singular values on
the main diagonal [5]. The PCA solution is obtained by selecting the c largest
singular values from Σ, by forming A from the corresponding c columns of U,
and S from the corresponding c rows of ΣVT .

Note that PCA can equivalently be defined using the eigendecomposition of
the d × d covariance matrix C of the column vectors of the data matrix X:

C =
1

n
XXT = UDUT , (4)

2 Tapani Raiko et al.

inadequate in this case, and we thus propose a new algorithm. The problem of
overfitting is also studied and solutions based on regularization and variational
Bayesian learning are given.

2 Algorithms for Principal Component Analysis

Principal subspace and components Assume that we have n d-dimensional
data vectors x1,x2, . . . ,xn, which form the d×n data matrix X = [x1,x2, . . . ,xn].
The matrix X is decomposed into

X ≈ AS, (1)

where A is a d× c matrix, S is a c×n matrix and c ≤ d ≤ n. Principal subspace
methods [6, 4] find A and S such that the reconstruction error

C = ‖X − AS‖2
F =

d
∑

i=1

n
∑

j=1

(xij −
c

∑

k=1

aikskj)
2 , (2)

is minimized. There F denotes the Frobenius norm, and xij , aik, and skj ele-
ments of the matrices X, A, and S, respectively. Typically the row-wise mean
is removed from X as a preprocessing step.

Without any further constraints, there exist infinitely many ways to perform
such a decomposition. However, the subspace spanned by the column vectors of
the matrix A, called the principal subspace, is unique. In PCA, these vectors
are mutually orthogonal and have unit length. Further, for each k = 1, . . . , c,
the first k vectors form the k dimensional principal subspace. This makes the
solution practically unique, see [4, 2, 5] for details.

There are many ways to determine the principal subspace and components
[6, 4, 2]. We will discuss three common methods that can be adapted for the case
of missing values.

Singular Value Decomposition PCA can be determined by using the singular
value decomposition (SVD) [5]

X = UΣVT , (3)

where U is a d × d orthogonal matrix, V is an n × n orthogonal matrix and Σ
is a d×n pseudodiagonal matrix (diagonal if d = n) with the singular values on
the main diagonal [5]. The PCA solution is obtained by selecting the c largest
singular values from Σ, by forming A from the corresponding c columns of U,
and S from the corresponding c rows of ΣVT .

Note that PCA can equivalently be defined using the eigendecomposition of
the d × d covariance matrix C of the column vectors of the data matrix X:

C =
1

n
XXT = UDUT , (4)

Algorithms for PCA
• Eigenvalue decomposition (standard approach)

• Compute the covariance matrix and its
eigenvectors

Algorithms for PCA
• Eigenvalue decomposition (standard approach)

• Compute the covariance matrix and its
eigenvectors

• EM algorithm

• Iterates between:

3 PCA by minimizing the reconstruction error

3.1 The EM algorithm in the zero-noise limit

PCA can be seen as a special case of the probabilistic PCA model [7] in the zero-noise limit. The model can
be identified using the EM algorithm which in the zero-noise case iterates updating A and S alternately
[8]. When either of these matrices is fixed, the other one can be obtained from an ordinary least-squares
problem:

A ← XST(SST)−1 , S ← (ATA)−1ATX . (7)

This approach is especially efficient when only a few principal components are needed, that is c " d [8].

Juha: Please give more details here in the longer report version.

Grung and Manne [9] studied the same algorithm in the case of missing values. The learning algorithm
alternates between updating A and S using the update rules shown in Table 1. There,

◦
X is the matrix X

in which all the missing values are replaces with zeros,
◦
X:j is the j-th column and

◦
X

T

i: is the i-th row of
◦
X. Aj is matrix A in which each i-th row is replaced with zeros if xij is not observed, and Si is matrix S
in which each j-th column is replaced with zeros if xij is not observed. Note the similarity of the update
rules to (7). However, now there are more computations involved because each column of S and each row
of A has to be computed separately. This becomes too heavy in high dimensions.

Table 1: Least-squares algorithm for PCA with missing values

S A

s:j = (AT
j Aj)−1AT

j

◦
X:j AT

i: =
◦
XT

i:ST
i (SiST

i)−1

j = 1, . . . , n i = 1, . . . , d

Experiments showed a faster convergence compared to the iterative imputation algorithm. The computa-
tional complexity in the general case is O(Nc2+nc3), where N is the number of observed values, assuming
näıve matrix multiplications and inversions but exploiting sparsity. The computational complexity can
be smaller in the cases when, for example, several rows of the data matrix X have missing values exactly
at the same columns. In that case, the matrix (SiST

i)−1 is same for all such rows and can be computed
once. Similarly, one matrix of form (AT

j Aj)−1 can be computed once for all columns of X which contain
missing values in the same rows.

3.2 Subspace Learning Algorithms

The same reconstruction error (2) can also be minimized using the gradient descent procedure yielding
the update rules

A ← A + γ(X − AS)ST , S ← S + γAT(X − AS) . (8)

The above learning rules are batch versions of Oja’s subspace rule [10, 11]. In the classical Oja’s algorithm,
A is updated using (8) while S can be computed using the least squares solution in (7) or simply as
S = ATX. The presented approach is not very practical for processing fully observed data in the batch
mode. However, we show experimentally that a similar approach can be useful for PCA learning in
high-dimensional problems with lots of missing data. Alex: Please check.

If needed, the end result can be transformed into the PCA solution, for instance, by computing the eigen-
value decomposition SST = USDSUT

S and the singular value decomposition AUSD1/2
S = UAΣAVT

A.
The transformed A is formed from the first c columns of UAΣA and the transformed S from the first
c rows of VT

AD−1/2
S UT

SS. Note that the required decompositions are computationally lighter than the
ones done to the data matrix directly.

4

Algorithms for PCA
• Eigenvalue decomposition (standard approach)

• Compute the covariance matrix and its
eigenvectors

• EM algorithm

• Iterates between:

• Minimization of cost C (Oja’s subspace rule)

3 PCA by minimizing the reconstruction error

3.1 The EM algorithm in the zero-noise limit

PCA can be seen as a special case of the probabilistic PCA model [7] in the zero-noise limit. The model can
be identified using the EM algorithm which in the zero-noise case iterates updating A and S alternately
[8]. When either of these matrices is fixed, the other one can be obtained from an ordinary least-squares
problem:

A ← XST(SST)−1 , S ← (ATA)−1ATX . (7)

This approach is especially efficient when only a few principal components are needed, that is c " d [8].

Juha: Please give more details here in the longer report version.

Grung and Manne [9] studied the same algorithm in the case of missing values. The learning algorithm
alternates between updating A and S using the update rules shown in Table 1. There,

◦
X is the matrix X

in which all the missing values are replaces with zeros,
◦
X:j is the j-th column and

◦
X

T

i: is the i-th row of
◦
X. Aj is matrix A in which each i-th row is replaced with zeros if xij is not observed, and Si is matrix S
in which each j-th column is replaced with zeros if xij is not observed. Note the similarity of the update
rules to (7). However, now there are more computations involved because each column of S and each row
of A has to be computed separately. This becomes too heavy in high dimensions.

Table 1: Least-squares algorithm for PCA with missing values

S A

s:j = (AT
j Aj)−1AT

j

◦
X:j AT

i: =
◦
XT

i:ST
i (SiST

i)−1

j = 1, . . . , n i = 1, . . . , d

Experiments showed a faster convergence compared to the iterative imputation algorithm. The computa-
tional complexity in the general case is O(Nc2+nc3), where N is the number of observed values, assuming
näıve matrix multiplications and inversions but exploiting sparsity. The computational complexity can
be smaller in the cases when, for example, several rows of the data matrix X have missing values exactly
at the same columns. In that case, the matrix (SiST

i)−1 is same for all such rows and can be computed
once. Similarly, one matrix of form (AT

j Aj)−1 can be computed once for all columns of X which contain
missing values in the same rows.

3.2 Subspace Learning Algorithms

The same reconstruction error (2) can also be minimized using the gradient descent procedure yielding
the update rules

A ← A + γ(X − AS)ST , S ← S + γAT(X − AS) . (8)

The above learning rules are batch versions of Oja’s subspace rule [10, 11]. In the classical Oja’s algorithm,
A is updated using (8) while S can be computed using the least squares solution in (7) or simply as
S = ATX. The presented approach is not very practical for processing fully observed data in the batch
mode. However, we show experimentally that a similar approach can be useful for PCA learning in
high-dimensional problems with lots of missing data. Alex: Please check.

If needed, the end result can be transformed into the PCA solution, for instance, by computing the eigen-
value decomposition SST = USDSUT

S and the singular value decomposition AUSD1/2
S = UAΣAVT

A.
The transformed A is formed from the first c columns of UAΣA and the transformed S from the first
c rows of VT

AD−1/2
S UT

SS. Note that the required decompositions are computationally lighter than the
ones done to the data matrix directly.

4

3 PCA by minimizing the reconstruction error

3.1 The EM algorithm in the zero-noise limit

PCA can be seen as a special case of the probabilistic PCA model [7] in the zero-noise limit. The model can
be identified using the EM algorithm which in the zero-noise case iterates updating A and S alternately
[8]. When either of these matrices is fixed, the other one can be obtained from an ordinary least-squares
problem:

A ← XST(SST)−1 , S ← (ATA)−1ATX . (7)

This approach is especially efficient when only a few principal components are needed, that is c " d [8].

Juha: Please give more details here in the longer report version.

Grung and Manne [9] studied the same algorithm in the case of missing values. The learning algorithm
alternates between updating A and S using the update rules shown in Table 1. There,

◦
X is the matrix X

in which all the missing values are replaces with zeros,
◦
X:j is the j-th column and

◦
X

T

i: is the i-th row of
◦
X. Aj is matrix A in which each i-th row is replaced with zeros if xij is not observed, and Si is matrix S
in which each j-th column is replaced with zeros if xij is not observed. Note the similarity of the update
rules to (7). However, now there are more computations involved because each column of S and each row
of A has to be computed separately. This becomes too heavy in high dimensions.

Table 1: Least-squares algorithm for PCA with missing values

S A

s:j = (AT
j Aj)−1AT

j

◦
X:j AT

i: =
◦
XT

i:ST
i (SiST

i)−1

j = 1, . . . , n i = 1, . . . , d

Experiments showed a faster convergence compared to the iterative imputation algorithm. The computa-
tional complexity in the general case is O(Nc2+nc3), where N is the number of observed values, assuming
näıve matrix multiplications and inversions but exploiting sparsity. The computational complexity can
be smaller in the cases when, for example, several rows of the data matrix X have missing values exactly
at the same columns. In that case, the matrix (SiST

i)−1 is same for all such rows and can be computed
once. Similarly, one matrix of form (AT

j Aj)−1 can be computed once for all columns of X which contain
missing values in the same rows.

3.2 Subspace Learning Algorithms

The same reconstruction error (2) can also be minimized using the gradient descent procedure yielding
the update rules

A ← A + γ(X − AS)ST , S ← S + γAT(X − AS) . (8)

The above learning rules are batch versions of Oja’s subspace rule [10, 11]. In the classical Oja’s algorithm,
A is updated using (8) while S can be computed using the least squares solution in (7) or simply as
S = ATX. The presented approach is not very practical for processing fully observed data in the batch
mode. However, we show experimentally that a similar approach can be useful for PCA learning in
high-dimensional problems with lots of missing data. Alex: Please check.

If needed, the end result can be transformed into the PCA solution, for instance, by computing the eigen-
value decomposition SST = USDSUT

S and the singular value decomposition AUSD1/2
S = UAΣAVT

A.
The transformed A is formed from the first c columns of UAΣA and the transformed S from the first
c rows of VT

AD−1/2
S UT

SS. Note that the required decompositions are computationally lighter than the
ones done to the data matrix directly.

4

PCA with Missing Values

• Red and blue data points are reconstructed based
on only one of the two dimensions

Principal Component Analysis
for Large Scale Problems with Lots of Missing Values

Tapani.Raiko, Alexander.Ilin, Juha.Karhunen @hut.fi

Helsinki University of Technology, Adaptive Informatics Research Center, Finland

Abstract Principal component analysis (PCA) is a well-known classical data analysis technique. There are a number of algorithms
for solving the problem, some scaling better than others to problems with high dimensionality. They also differ in their ability to handle
missing values in the data. We study a case where the data are high-dimensional and a majority of the values are missing. In case of very
sparse data, overfitting becomes a severe problem even in simple linear models such as PCA. We propose an algorithm based on speeding up
a simple principal subspace rule, and extend it to use regularization and variational Bayesian (VB) learning. The experiments with Netflix
data confirm that the proposed algorithm is much faster than any of the compared methods, and that VB-PCA method provides more
accurate predictions for new data than traditional PCA or regularized PCA.

1. PCA with Missing Values

• Model: X
d×n

≈ A
d×c

S
c×n

, c ≤ d ≤ n

• Minimized cost function:

Ce =
∑

(i,j)∈O

(
xij−

c∑

k=1

aikskj

)2

• Reconstruction:

x̂ij =
c∑

k=1

aikskj , (i, j) /∈ O

2. Algorithms

• Imputation algorithm: 1) Replace missing values with zeros, 2) Com-
pute PCA, 3) Update mising values with AS, 4) Go to step 2).

• EM-like learning:

A ← arg max
A

Ce , S ← arg max
S

Ce

• Subspace Learning (Oja’s subspace rule):

A ← A − γ
∂Ce

∂A
, S ← S − γ

∂Ce

∂S
.

3. Regularized PCA
• Model: X = AS + noise

• Gaussian model for A, S, noise
(Bayesian regularization)

• Minimized cost function:

Cbr = v−1
x Ce + ‖A‖2

F

+
c∑

k=1

v−1
sk ‖Sk:‖2

F +C(vx, vsk)

• Point (MAP) estimates for A and S

4. Variational Bayesian (VB) PCA

•A and S are modeled a posteriori using simple distributions
q(aik) = N (aik; aik, ãik), q(skj) = N

(
skj; skj, s̃kj

)

•Minimized cost function

Cvb = Eq

{
ln

q(A,S)

p(X,A,S)

}
= Cbr + C(ãik, s̃kj)

• Extra term C(ãik, s̃kj) accounts for posterior uncertainty

• aik, ãik, skj, s̃kj are found by minimizing Cvb

5. Overfitting in Sparse Problems

Left: Unregularized PCA solution is based on the only pair of fully
observed vectors. Right: In regularized solution, the correlations are
not trusted that much

6. Fast Learning for Sparse Large-Scale Data

•Most existing implementations of PCA are inefficient

•We propose a gradient-based implementation which does not recon-
struct the missing values during learning (memory efficient)

• Faster convergence can be achieved using proposed approxiate New-
ton’s iteration

∆θi ∝ −
(

∂2C

∂θ2
i

)−α
∂C

∂θi

• α = 0: gradient descent, α = 1: Newton’s method

•The update rules are modifications of Oja’s subspace rule

7. Experiments with Netflix data (http://www.netflixprize.com/)

•Collaborative filtering task: predict people’s preferences based
on other people preferences

• d = 1.8 · 103 movies, n = 5 · 105 customers, given N = 108

movie ratings from 1 to 5, 98.8% of the values are missing

• Left fig.: Training rms error against computation time in hours

•The learning speed of the proposed optimization scheme is
demonstrated using unregularized PCA with α = 0 (gradient)
and with α = 5/8 (speed-up)

•Right fig.: The rms errors on test data against computation
time in hours

•Regularization helps avoid severe overfitting ! " # $ % "& '# &$
!()&

!(%

!(%$

!(%%

!(*#

!(*&

"

+

+

,-./0123

4511/!65

07563.3082

9:

! " # $ % "& '#

!(*#

!(*$

!(*&

!(*%

"

"(!#

"(!$

"(!&

"(!%

"("

+

+
,-./0123

4511/!65

-1,6;.-0<1/

=>"

=>#

Adapting the Algorithms for
Missing Values

• Iterative imputation

• Alternately 1) fill in missing values and
2) solve normal PCA with the standard approach

Adapting the Algorithms for
Missing Values

• Iterative imputation

• Alternately 1) fill in missing values and
2) solve normal PCA with the standard approach

• EM algorithm becomes computationally heavier

3 PCA by minimizing the reconstruction error

3.1 The EM algorithm in the zero-noise limit

PCA can be seen as a special case of the probabilistic PCA model [7] in the zero-noise limit. The model can
be identified using the EM algorithm which in the zero-noise case iterates updating A and S alternately
[8]. When either of these matrices is fixed, the other one can be obtained from an ordinary least-squares
problem:

A ← XST(SST)−1 , S ← (ATA)−1ATX . (7)

This approach is especially efficient when only a few principal components are needed, that is c " d [8].

Juha: Please give more details here in the longer report version.

Grung and Manne [9] studied the same algorithm in the case of missing values. The learning algorithm
alternates between updating A and S using the update rules shown in Table 1. There,

◦
X is the matrix X

in which all the missing values are replaces with zeros,
◦
X:j is the j-th column and

◦
X

T

i: is the i-th row of
◦
X. Aj is matrix A in which each i-th row is replaced with zeros if xij is not observed, and Si is matrix S
in which each j-th column is replaced with zeros if xij is not observed. Note the similarity of the update
rules to (7). However, now there are more computations involved because each column of S and each row
of A has to be computed separately. This becomes too heavy in high dimensions.

Table 1: Least-squares algorithm for PCA with missing values

S A

s:j = (AT
j Aj)−1AT

j

◦
X:j AT

i: =
◦
XT

i:ST
i (SiST

i)−1

j = 1, . . . , n i = 1, . . . , d

Experiments showed a faster convergence compared to the iterative imputation algorithm. The computa-
tional complexity in the general case is O(Nc2+nc3), where N is the number of observed values, assuming
näıve matrix multiplications and inversions but exploiting sparsity. The computational complexity can
be smaller in the cases when, for example, several rows of the data matrix X have missing values exactly
at the same columns. In that case, the matrix (SiST

i)−1 is same for all such rows and can be computed
once. Similarly, one matrix of form (AT

j Aj)−1 can be computed once for all columns of X which contain
missing values in the same rows.

3.2 Subspace Learning Algorithms

The same reconstruction error (2) can also be minimized using the gradient descent procedure yielding
the update rules

A ← A + γ(X − AS)ST , S ← S + γAT(X − AS) . (8)

The above learning rules are batch versions of Oja’s subspace rule [10, 11]. In the classical Oja’s algorithm,
A is updated using (8) while S can be computed using the least squares solution in (7) or simply as
S = ATX. The presented approach is not very practical for processing fully observed data in the batch
mode. However, we show experimentally that a similar approach can be useful for PCA learning in
high-dimensional problems with lots of missing data. Alex: Please check.

If needed, the end result can be transformed into the PCA solution, for instance, by computing the eigen-
value decomposition SST = USDSUT

S and the singular value decomposition AUSD1/2
S = UAΣAVT

A.
The transformed A is formed from the first c columns of UAΣA and the transformed S from the first
c rows of VT

AD−1/2
S UT

SS. Note that the required decompositions are computationally lighter than the
ones done to the data matrix directly.

4

Adapting the Algorithms for
Missing Values

• Iterative imputation

• Alternately 1) fill in missing values and
2) solve normal PCA with the standard approach

• EM algorithm becomes computationally heavier

• Minimization of cost C

• Easy to adapt: Take error over observed values only

3 PCA by minimizing the reconstruction error

3.1 The EM algorithm in the zero-noise limit

PCA can be seen as a special case of the probabilistic PCA model [7] in the zero-noise limit. The model can
be identified using the EM algorithm which in the zero-noise case iterates updating A and S alternately
[8]. When either of these matrices is fixed, the other one can be obtained from an ordinary least-squares
problem:

A ← XST(SST)−1 , S ← (ATA)−1ATX . (7)

This approach is especially efficient when only a few principal components are needed, that is c " d [8].

Juha: Please give more details here in the longer report version.

Grung and Manne [9] studied the same algorithm in the case of missing values. The learning algorithm
alternates between updating A and S using the update rules shown in Table 1. There,

◦
X is the matrix X

in which all the missing values are replaces with zeros,
◦
X:j is the j-th column and

◦
X

T

i: is the i-th row of
◦
X. Aj is matrix A in which each i-th row is replaced with zeros if xij is not observed, and Si is matrix S
in which each j-th column is replaced with zeros if xij is not observed. Note the similarity of the update
rules to (7). However, now there are more computations involved because each column of S and each row
of A has to be computed separately. This becomes too heavy in high dimensions.

Table 1: Least-squares algorithm for PCA with missing values

S A

s:j = (AT
j Aj)−1AT

j

◦
X:j AT

i: =
◦
XT

i:ST
i (SiST

i)−1

j = 1, . . . , n i = 1, . . . , d

Experiments showed a faster convergence compared to the iterative imputation algorithm. The computa-
tional complexity in the general case is O(Nc2+nc3), where N is the number of observed values, assuming
näıve matrix multiplications and inversions but exploiting sparsity. The computational complexity can
be smaller in the cases when, for example, several rows of the data matrix X have missing values exactly
at the same columns. In that case, the matrix (SiST

i)−1 is same for all such rows and can be computed
once. Similarly, one matrix of form (AT

j Aj)−1 can be computed once for all columns of X which contain
missing values in the same rows.

3.2 Subspace Learning Algorithms

The same reconstruction error (2) can also be minimized using the gradient descent procedure yielding
the update rules

A ← A + γ(X − AS)ST , S ← S + γAT(X − AS) . (8)

The above learning rules are batch versions of Oja’s subspace rule [10, 11]. In the classical Oja’s algorithm,
A is updated using (8) while S can be computed using the least squares solution in (7) or simply as
S = ATX. The presented approach is not very practical for processing fully observed data in the batch
mode. However, we show experimentally that a similar approach can be useful for PCA learning in
high-dimensional problems with lots of missing data. Alex: Please check.

If needed, the end result can be transformed into the PCA solution, for instance, by computing the eigen-
value decomposition SST = USDSUT

S and the singular value decomposition AUSD1/2
S = UAΣAVT

A.
The transformed A is formed from the first c columns of UAΣA and the transformed S from the first
c rows of VT

AD−1/2
S UT

SS. Note that the required decompositions are computationally lighter than the
ones done to the data matrix directly.

4

Speeding up Gradient Descent

• Newton’s method is known to converge fast, but

• It requires computing the Hessian matrix which is
computationally too demanding in high-
dimensional problems

• We propose using only the diagonal part of the
Hessian

• We also include a control parameter to interpolate
between standard gradient descent (0) and the
diagonal Newton’s method (1)

4 Tapani Raiko et al.

Adapting SVD: Imputation Algorithm One can use the SVD approach
(4) in order to find an approximate solution to the PCA problem. However,
estimating the covariance matrix C becomes very difficult when there are lots
of missing values. If we estimate C leaving out terms with missing values from
the average, we get for the estimate of the covariance matrix

C =
1

n
XXT =

0.5 1 0
1 0.667 ?
0 ? 1

 . (9)

There are at least two problems. First, the estimated covariance 1 between the
first and second components is larger than their estimated variances 0.5 and
0.667. This is clearly wrong, and leads to the situation where the covariance
matrix is not positive (semi)definite even though it theoretically should be, with
some of its eigenvalues being negative. Secondly, the covariance between the
second and the third component could not be estimated at all1.

Another option is to complete the data matrix by iteratively imputing the
missing values (see, e.g., [10]). Initially, the missing values can be replaced by
zeroes. The covariance matrix of the complete data can be estimated without
the problems mentioned above. Now, the product AS can be used as a better es-
timate for the missing values, and this process can be iterated until convergence.
This approach requires the use of the complete data matrix, and therefore it is
computationally very expensive if a large part of the data matrix is missing. The
time complexity of computing the sample covariance matrix explicitly is O(nd2).
We will further refer to this approach as the imputation algorithm.

Adapting the EM Algorithm Grung and Manne [11] studied the EM algo-
rithm in the case of missing values. Experiments showed a faster convergence
compared to the iterative imputation algorithm. The computational complexity
is O(Nc2 + nc3) per iteration, where N is the number of observed values, as-
suming näıve matrix multiplications and inversions but exploiting sparsity. This
is quite a bit heavier than EM with complete data, whose complexity is O(ndc)
[7] per iteration.

Adapting the Subspace Learning Algorithm The subspace learning algo-
rithm works in a straightforward manner also in the presence of missing values.
We just take the sum over only those indices i and j for which the data entry
xij (the ijth element of X) is observed, in short (i, j) ∈ O. The cost function is

C =
∑

(i,j)∈O

e2
ij , with eij = xij −

c∑

k=1

aikskj . (10)

1 It could be filled by finding a value that maximizes the determinant of the covariance
matrix (and thus the entropy of the underlying Gaussian distribution).

The cost function:

Principal Component Analysis for Sparse High-Dimensional Data 5

and its partial derivatives are

∂C

∂ail
= −2

∑

j|(i,j)∈O

eijslj ,
∂C

∂slj
= −2

∑

i|(i,j)∈O

eijail . (11)

We propose a novel speed-up to the original simple gradient descent algo-
rithm. In Newton’s method for optimization, the gradient is multiplied by the
inverse of the Hessian matrix. Newton’s method is known to converge fast es-
pecially in the vicinity of the optimum, but using the full Hessian is computa-
tionally too demanding in truly high-dimensional problems. Here we use only
the diagonal part of the Hessian matrix. We also include a control parameter α
that allows the learning algorithm to interpolate between the standard gradient
descent (α = 0) and the diagonal Newton’s method (α = 1), much like the well
known Levenberg-Marquardt algorithm. The learning rules then take the form

ail ← ail − γ′

(
∂2C

∂a2
il

)−α
∂C

∂ail
= ail + γ

∑
j|(i,j)∈O eijslj

(∑
j|(i,j)∈O s2

lj

)α , (12)

slj ← slj − γ′

(
∂2C

∂s2
lj

)−α
∂C

∂slj
= slj + γ

∑
i|(i,j)∈O eijail

(∑
i|(i,j)∈O a2

il

)α . (13)

The computational complexity is O(Nc + nc) per iteration.

4 Overfitting

A trained PCA model can be used for reconstructing missing values:

x̂ij =
c∑

k=1

aikskj , (i, j) /∈ O . (14)

Although PCA performs a linear transformation of data, overfitting is a serious
problem for large-scale problems with lots of missing values. This happens when
the value of the cost function C in Eq. (10) is small for training data, but the
quality of prediction (14) is poor for new data. This effect is illustrated using a
toy problem in the longer version of this paper [12].

Another way to examine overfitting is to compare the number of model pa-
rameters to the number of observed values in data. A coarse rule of thumb in
estimation is that the latter should be at least tenfold to avoid overfitting. Con-
sider the subproblem of finding the jth column vector of S given jth column
vector of X while regarding A a constant. Here, c parameters are determined
by the observed values of the jth column vector of X. If the column has fewer
than 10c observations, it is likely to suffer from at least some overfitting, and if
it has fewer than c observations, the subproblem becomes underdetermined.

4 Tapani Raiko et al.

Adapting SVD: Imputation Algorithm One can use the SVD approach
(4) in order to find an approximate solution to the PCA problem. However,
estimating the covariance matrix C becomes very difficult when there are lots
of missing values. If we estimate C leaving out terms with missing values from
the average, we get for the estimate of the covariance matrix

C =
1

n
XXT =

0.5 1 0
1 0.667 ?
0 ? 1

 . (9)

There are at least two problems. First, the estimated covariance 1 between the
first and second components is larger than their estimated variances 0.5 and
0.667. This is clearly wrong, and leads to the situation where the covariance
matrix is not positive (semi)definite even though it theoretically should be, with
some of its eigenvalues being negative. Secondly, the covariance between the
second and the third component could not be estimated at all1.

Another option is to complete the data matrix by iteratively imputing the
missing values (see, e.g., [10]). Initially, the missing values can be replaced by
zeroes. The covariance matrix of the complete data can be estimated without
the problems mentioned above. Now, the product AS can be used as a better es-
timate for the missing values, and this process can be iterated until convergence.
This approach requires the use of the complete data matrix, and therefore it is
computationally very expensive if a large part of the data matrix is missing. The
time complexity of computing the sample covariance matrix explicitly is O(nd2).
We will further refer to this approach as the imputation algorithm.

Adapting the EM Algorithm Grung and Manne [11] studied the EM algo-
rithm in the case of missing values. Experiments showed a faster convergence
compared to the iterative imputation algorithm. The computational complexity
is O(Nc2 + nc3) per iteration, where N is the number of observed values, as-
suming näıve matrix multiplications and inversions but exploiting sparsity. This
is quite a bit heavier than EM with complete data, whose complexity is O(ndc)
[7] per iteration.

Adapting the Subspace Learning Algorithm The subspace learning algo-
rithm works in a straightforward manner also in the presence of missing values.
We just take the sum over only those indices i and j for which the data entry
xij (the ijth element of X) is observed, in short (i, j) ∈ O. The cost function is

C =
∑

(i,j)∈O

e2
ij , with eij = xij −

c∑

k=1

aikskj . (10)

1 It could be filled by finding a value that maximizes the determinant of the covariance
matrix (and thus the entropy of the underlying Gaussian distribution).

The cost function:

Its partial derivatives:

Principal Component Analysis for Sparse High-Dimensional Data 5

and its partial derivatives are

∂C

∂ail
= −2

∑

j|(i,j)∈O

eijslj ,
∂C

∂slj
= −2

∑

i|(i,j)∈O

eijail . (11)

We propose a novel speed-up to the original simple gradient descent algo-
rithm. In Newton’s method for optimization, the gradient is multiplied by the
inverse of the Hessian matrix. Newton’s method is known to converge fast es-
pecially in the vicinity of the optimum, but using the full Hessian is computa-
tionally too demanding in truly high-dimensional problems. Here we use only
the diagonal part of the Hessian matrix. We also include a control parameter α
that allows the learning algorithm to interpolate between the standard gradient
descent (α = 0) and the diagonal Newton’s method (α = 1), much like the well
known Levenberg-Marquardt algorithm. The learning rules then take the form

ail ← ail − γ′

(
∂2C

∂a2
il

)−α
∂C

∂ail
= ail + γ

∑
j|(i,j)∈O eijslj

(∑
j|(i,j)∈O s2

lj

)α , (12)

slj ← slj − γ′

(
∂2C

∂s2
lj

)−α
∂C

∂slj
= slj + γ

∑
i|(i,j)∈O eijail

(∑
i|(i,j)∈O a2

il

)α . (13)

The computational complexity is O(Nc + nc) per iteration.

4 Overfitting

A trained PCA model can be used for reconstructing missing values:

x̂ij =
c∑

k=1

aikskj , (i, j) /∈ O . (14)

Although PCA performs a linear transformation of data, overfitting is a serious
problem for large-scale problems with lots of missing values. This happens when
the value of the cost function C in Eq. (10) is small for training data, but the
quality of prediction (14) is poor for new data. This effect is illustrated using a
toy problem in the longer version of this paper [12].

Another way to examine overfitting is to compare the number of model pa-
rameters to the number of observed values in data. A coarse rule of thumb in
estimation is that the latter should be at least tenfold to avoid overfitting. Con-
sider the subproblem of finding the jth column vector of S given jth column
vector of X while regarding A a constant. Here, c parameters are determined
by the observed values of the jth column vector of X. If the column has fewer
than 10c observations, it is likely to suffer from at least some overfitting, and if
it has fewer than c observations, the subproblem becomes underdetermined.

Principal Component Analysis for Sparse High-Dimensional Data 5

and its partial derivatives are

∂C

∂ail
= −2

∑

j|(i,j)∈O

eijslj ,
∂C

∂slj
= −2

∑

i|(i,j)∈O

eijail . (11)

We propose a novel speed-up to the original simple gradient descent algo-
rithm. In Newton’s method for optimization, the gradient is multiplied by the
inverse of the Hessian matrix. Newton’s method is known to converge fast es-
pecially in the vicinity of the optimum, but using the full Hessian is computa-
tionally too demanding in truly high-dimensional problems. Here we use only
the diagonal part of the Hessian matrix. We also include a control parameter α
that allows the learning algorithm to interpolate between the standard gradient
descent (α = 0) and the diagonal Newton’s method (α = 1), much like the well
known Levenberg-Marquardt algorithm. The learning rules then take the form

ail ← ail − γ′

(
∂2C

∂a2
il

)−α
∂C

∂ail
= ail + γ

∑
j|(i,j)∈O eijslj

(∑
j|(i,j)∈O s2

lj

)α , (12)

slj ← slj − γ′

(
∂2C

∂s2
lj

)−α
∂C

∂slj
= slj + γ

∑
i|(i,j)∈O eijail

(∑
i|(i,j)∈O a2

il

)α . (13)

The computational complexity is O(Nc + nc) per iteration.

4 Overfitting

A trained PCA model can be used for reconstructing missing values:

x̂ij =
c∑

k=1

aikskj , (i, j) /∈ O . (14)

Although PCA performs a linear transformation of data, overfitting is a serious
problem for large-scale problems with lots of missing values. This happens when
the value of the cost function C in Eq. (10) is small for training data, but the
quality of prediction (14) is poor for new data. This effect is illustrated using a
toy problem in the longer version of this paper [12].

Another way to examine overfitting is to compare the number of model pa-
rameters to the number of observed values in data. A coarse rule of thumb in
estimation is that the latter should be at least tenfold to avoid overfitting. Con-
sider the subproblem of finding the jth column vector of S given jth column
vector of X while regarding A a constant. Here, c parameters are determined
by the observed values of the jth column vector of X. If the column has fewer
than 10c observations, it is likely to suffer from at least some overfitting, and if
it has fewer than c observations, the subproblem becomes underdetermined.

4 Tapani Raiko et al.

Adapting SVD: Imputation Algorithm One can use the SVD approach
(4) in order to find an approximate solution to the PCA problem. However,
estimating the covariance matrix C becomes very difficult when there are lots
of missing values. If we estimate C leaving out terms with missing values from
the average, we get for the estimate of the covariance matrix

C =
1

n
XXT =

0.5 1 0
1 0.667 ?
0 ? 1

 . (9)

There are at least two problems. First, the estimated covariance 1 between the
first and second components is larger than their estimated variances 0.5 and
0.667. This is clearly wrong, and leads to the situation where the covariance
matrix is not positive (semi)definite even though it theoretically should be, with
some of its eigenvalues being negative. Secondly, the covariance between the
second and the third component could not be estimated at all1.

Another option is to complete the data matrix by iteratively imputing the
missing values (see, e.g., [10]). Initially, the missing values can be replaced by
zeroes. The covariance matrix of the complete data can be estimated without
the problems mentioned above. Now, the product AS can be used as a better es-
timate for the missing values, and this process can be iterated until convergence.
This approach requires the use of the complete data matrix, and therefore it is
computationally very expensive if a large part of the data matrix is missing. The
time complexity of computing the sample covariance matrix explicitly is O(nd2).
We will further refer to this approach as the imputation algorithm.

Adapting the EM Algorithm Grung and Manne [11] studied the EM algo-
rithm in the case of missing values. Experiments showed a faster convergence
compared to the iterative imputation algorithm. The computational complexity
is O(Nc2 + nc3) per iteration, where N is the number of observed values, as-
suming näıve matrix multiplications and inversions but exploiting sparsity. This
is quite a bit heavier than EM with complete data, whose complexity is O(ndc)
[7] per iteration.

Adapting the Subspace Learning Algorithm The subspace learning algo-
rithm works in a straightforward manner also in the presence of missing values.
We just take the sum over only those indices i and j for which the data entry
xij (the ijth element of X) is observed, in short (i, j) ∈ O. The cost function is

C =
∑

(i,j)∈O

e2
ij , with eij = xij −

c∑

k=1

aikskj . (10)

1 It could be filled by finding a value that maximizes the determinant of the covariance
matrix (and thus the entropy of the underlying Gaussian distribution).

The cost function:

Its partial derivatives:

Update rules:

Overfitting in Case of Sparse Data

Principal Component Analysis
for Large Scale Problems with Lots of Missing Values

Tapani.Raiko, Alexander.Ilin, Juha.Karhunen @hut.fi

Helsinki University of Technology, Adaptive Informatics Research Center, Finland

Abstract Principal component analysis (PCA) is a well-known classical data analysis technique. There are a number of algorithms
for solving the problem, some scaling better than others to problems with high dimensionality. They also differ in their ability to handle
missing values in the data. We study a case where the data are high-dimensional and a majority of the values are missing. In case of very
sparse data, overfitting becomes a severe problem even in simple linear models such as PCA. We propose an algorithm based on speeding up
a simple principal subspace rule, and extend it to use regularization and variational Bayesian (VB) learning. The experiments with Netflix
data confirm that the proposed algorithm is much faster than any of the compared methods, and that VB-PCA method provides more
accurate predictions for new data than traditional PCA or regularized PCA.

1. PCA with Missing Values

• Model: X
d×n

≈ A
d×c

S
c×n

, c ≤ d ≤ n

• Minimized cost function:

Ce =
∑

(i,j)∈O

(
xij−

c∑

k=1

aikskj

)2

• Reconstruction:

x̂ij =
c∑

k=1

aikskj , (i, j) /∈ O

2. Algorithms

• Imputation algorithm: 1) Replace missing values with zeros, 2) Com-
pute PCA, 3) Update mising values with AS, 4) Go to step 2).

• EM-like learning:

A ← arg max
A

Ce , S ← arg max
S

Ce

• Subspace Learning (Oja’s subspace rule):

A ← A − γ
∂Ce

∂A
, S ← S − γ

∂Ce

∂S
.

3. Regularized PCA
• Model: X = AS + noise

• Gaussian model for A, S, noise
(Bayesian regularization)

• Minimized cost function:

Cbr = v−1
x Ce + ‖A‖2

F

+
c∑

k=1

v−1
sk ‖Sk:‖2

F +C(vx, vsk)

• Point (MAP) estimates for A and S

4. Variational Bayesian (VB) PCA

•A and S are modeled a posteriori using simple distributions
q(aik) = N (aik; aik, ãik), q(skj) = N

(
skj; skj, s̃kj

)

•Minimized cost function

Cvb = Eq

{
ln

q(A,S)

p(X,A,S)

}
= Cbr + C(ãik, s̃kj)

• Extra term C(ãik, s̃kj) accounts for posterior uncertainty

• aik, ãik, skj, s̃kj are found by minimizing Cvb

5. Overfitting in Sparse Problems

Left: Unregularized PCA solution is based on the only pair of fully
observed vectors. Right: In regularized solution, the correlations are
not trusted that much

6. Fast Learning for Sparse Large-Scale Data

•Most existing implementations of PCA are inefficient

•We propose a gradient-based implementation which does not recon-
struct the missing values during learning (memory efficient)

• Faster convergence can be achieved using proposed approxiate New-
ton’s iteration

∆θi ∝ −
(

∂2C

∂θ2
i

)−α
∂C

∂θi

• α = 0: gradient descent, α = 1: Newton’s method

•The update rules are modifications of Oja’s subspace rule

7. Experiments with Netflix data (http://www.netflixprize.com/)

•Collaborative filtering task: predict people’s preferences based
on other people preferences

• d = 1.8 · 103 movies, n = 5 · 105 customers, given N = 108

movie ratings from 1 to 5, 98.8% of the values are missing

• Left fig.: Training rms error against computation time in hours

•The learning speed of the proposed optimization scheme is
demonstrated using unregularized PCA with α = 0 (gradient)
and with α = 5/8 (speed-up)

•Right fig.: The rms errors on test data against computation
time in hours

•Regularization helps avoid severe overfitting ! " # $ % "& '# &$
!()&

!(%

!(%$

!(%%

!(*#

!(*&

"

+

+

,-./0123

4511/!65

07563.3082

9:

! " # $ % "& '#

!(*#

!(*$

!(*&

!(*%

"

"(!#

"(!$

"(!&

"(!%

"("

+

+
,-./0123

4511/!65

-1,6;.-0<1/

=>"

=>#

Principal Component Analysis
for Large Scale Problems with Lots of Missing Values

Tapani.Raiko, Alexander.Ilin, Juha.Karhunen @hut.fi

Helsinki University of Technology, Adaptive Informatics Research Center, Finland

Abstract Principal component analysis (PCA) is a well-known classical data analysis technique. There are a number of algorithms
for solving the problem, some scaling better than others to problems with high dimensionality. They also differ in their ability to handle
missing values in the data. We study a case where the data are high-dimensional and a majority of the values are missing. In case of very
sparse data, overfitting becomes a severe problem even in simple linear models such as PCA. We propose an algorithm based on speeding up
a simple principal subspace rule, and extend it to use regularization and variational Bayesian (VB) learning. The experiments with Netflix
data confirm that the proposed algorithm is much faster than any of the compared methods, and that VB-PCA method provides more
accurate predictions for new data than traditional PCA or regularized PCA.

1. PCA with Missing Values

• Model: X
d×n

≈ A
d×c

S
c×n

, c ≤ d ≤ n

• Minimized cost function:

Ce =
∑

(i,j)∈O

(
xij−

c∑

k=1

aikskj

)2

• Reconstruction:

x̂ij =
c∑

k=1

aikskj , (i, j) /∈ O

2. Algorithms

• Imputation algorithm: 1) Replace missing values with zeros, 2) Com-
pute PCA, 3) Update mising values with AS, 4) Go to step 2).

• EM-like learning:

A ← arg max
A

Ce , S ← arg max
S

Ce

• Subspace Learning (Oja’s subspace rule):

A ← A − γ
∂Ce

∂A
, S ← S − γ

∂Ce

∂S
.

3. Regularized PCA
• Model: X = AS + noise

• Gaussian model for A, S, noise
(Bayesian regularization)

• Minimized cost function:

Cbr = v−1
x Ce + ‖A‖2

F

+
c∑

k=1

v−1
sk ‖Sk:‖2

F +C(vx, vsk)

• Point (MAP) estimates for A and S

4. Variational Bayesian (VB) PCA

•A and S are modeled a posteriori using simple distributions
q(aik) = N (aik; aik, ãik), q(skj) = N

(
skj; skj, s̃kj

)

•Minimized cost function

Cvb = Eq

{
ln

q(A,S)

p(X,A,S)

}
= Cbr + C(ãik, s̃kj)

• Extra term C(ãik, s̃kj) accounts for posterior uncertainty

• aik, ãik, skj, s̃kj are found by minimizing Cvb

5. Overfitting in Sparse Problems

Left: Unregularized PCA solution is based on the only pair of fully
observed vectors. Right: In regularized solution, the correlations are
not trusted that much

6. Fast Learning for Sparse Large-Scale Data

•Most existing implementations of PCA are inefficient

•We propose a gradient-based implementation which does not recon-
struct the missing values during learning (memory efficient)

• Faster convergence can be achieved using proposed approxiate New-
ton’s iteration

∆θi ∝ −
(

∂2C

∂θ2
i

)−α
∂C

∂θi

• α = 0: gradient descent, α = 1: Newton’s method

•The update rules are modifications of Oja’s subspace rule

7. Experiments with Netflix data (http://www.netflixprize.com/)

•Collaborative filtering task: predict people’s preferences based
on other people preferences

• d = 1.8 · 103 movies, n = 5 · 105 customers, given N = 108

movie ratings from 1 to 5, 98.8% of the values are missing

• Left fig.: Training rms error against computation time in hours

•The learning speed of the proposed optimization scheme is
demonstrated using unregularized PCA with α = 0 (gradient)
and with α = 5/8 (speed-up)

•Right fig.: The rms errors on test data against computation
time in hours

•Regularization helps avoid severe overfitting ! " # $ % "& '# &$
!()&

!(%

!(%$

!(%%

!(*#

!(*&

"

+

+

,-./0123

4511/!65

07563.3082

9:

! " # $ % "& '#

!(*#

!(*$

!(*&

!(*%

"

"(!#

"(!$

"(!&

"(!%

"("

+

+
,-./0123

4511/!65

-1,6;.-0<1/

=>"

=>#

Overfitted solution Regularized solution

Regularization against Overfitting

• Penalizing the use of large parameter values

• Estimating the distribution of unknown parameters
(Variational Bayesian learning)

Principal Component Analysis
for Large Scale Problems with Lots of Missing Values

Tapani.Raiko, Alexander.Ilin, Juha.Karhunen @hut.fi

Helsinki University of Technology, Adaptive Informatics Research Center, Finland

Abstract Principal component analysis (PCA) is a well-known classical data analysis technique. There are a number of algorithms
for solving the problem, some scaling better than others to problems with high dimensionality. They also differ in their ability to handle
missing values in the data. We study a case where the data are high-dimensional and a majority of the values are missing. In case of very
sparse data, overfitting becomes a severe problem even in simple linear models such as PCA. We propose an algorithm based on speeding up
a simple principal subspace rule, and extend it to use regularization and variational Bayesian (VB) learning. The experiments with Netflix
data confirm that the proposed algorithm is much faster than any of the compared methods, and that VB-PCA method provides more
accurate predictions for new data than traditional PCA or regularized PCA.

1. PCA with Missing Values

• Model: X
d×n

≈ A
d×c

S
c×n

, c ≤ d ≤ n

• Minimized cost function:

Ce =
∑

(i,j)∈O

(
xij−

c∑

k=1

aikskj

)2

• Reconstruction:

x̂ij =
c∑

k=1

aikskj , (i, j) /∈ O

2. Algorithms

• Imputation algorithm: 1) Replace missing values with zeros, 2) Com-
pute PCA, 3) Update mising values with AS, 4) Go to step 2).

• EM-like learning:

A ← arg max
A

Ce , S ← arg max
S

Ce

• Subspace Learning (Oja’s subspace rule):

A ← A − γ
∂Ce

∂A
, S ← S − γ

∂Ce

∂S
.

3. Regularized PCA
• Model: X = AS + noise

• Gaussian model for A, S, noise
(Bayesian regularization)

• Minimized cost function:

Cbr = v−1
x Ce + ‖A‖2

F

+
c∑

k=1

v−1
sk ‖Sk:‖2

F +C(vx, vsk)

• Point (MAP) estimates for A and S

4. Variational Bayesian (VB) PCA

•A and S are modeled a posteriori using simple distributions
q(aik) = N (aik; aik, ãik), q(skj) = N

(
skj; skj, s̃kj

)

•Minimized cost function

Cvb = Eq

{
ln

q(A,S)

p(X,A,S)

}
= Cbr + C(ãik, s̃kj)

• Extra term C(ãik, s̃kj) accounts for posterior uncertainty

• aik, ãik, skj, s̃kj are found by minimizing Cvb

5. Overfitting in Sparse Problems

Left: Unregularized PCA solution is based on the only pair of fully
observed vectors. Right: In regularized solution, the correlations are
not trusted that much

6. Fast Learning for Sparse Large-Scale Data

•Most existing implementations of PCA are inefficient

•We propose a gradient-based implementation which does not recon-
struct the missing values during learning (memory efficient)

• Faster convergence can be achieved using proposed approxiate New-
ton’s iteration

∆θi ∝ −
(

∂2C

∂θ2
i

)−α
∂C

∂θi

• α = 0: gradient descent, α = 1: Newton’s method

•The update rules are modifications of Oja’s subspace rule

7. Experiments with Netflix data (http://www.netflixprize.com/)

•Collaborative filtering task: predict people’s preferences based
on other people preferences

• d = 1.8 · 103 movies, n = 5 · 105 customers, given N = 108

movie ratings from 1 to 5, 98.8% of the values are missing

• Left fig.: Training rms error against computation time in hours

•The learning speed of the proposed optimization scheme is
demonstrated using unregularized PCA with α = 0 (gradient)
and with α = 5/8 (speed-up)

•Right fig.: The rms errors on test data against computation
time in hours

•Regularization helps avoid severe overfitting ! " # $ % "& '# &$
!()&

!(%

!(%$

!(%%

!(*#

!(*&

"

+

+

,-./0123

4511/!65

07563.3082

9:

! " # $ % "& '#

!(*#

!(*$

!(*&

!(*%

"

"(!#

"(!$

"(!&

"(!%

"("

+

+
,-./0123

4511/!65

-1,6;.-0<1/

=>"

=>#

Experiments with Netflix Data
www.netflixprize.com

• Collaborative filtering task: predict people’s
preferences based on other people’s preferences

• d = 18 000 movies, n = 500 000 customers,
N = 100 000 000 movie ratings from 1 to 5

• 98.8% of the values are missing

• Find c=15 principal components

http://www.netflixprize.com
http://www.netflixprize.com

Computational Performance
Principal Component Analysis for Sparse High-Dimensional Data 9

Method Complexity Seconds/Iter Hours to EO = 0.85
Gradient O(Nc + nc) 58 1.9
Speed-up O(Nc + nc) 110 0.22
Natural Grad. O(Nc + nc

2) 75 3.5
Imputation O(nd

2) 110000 ! 64
EM O(Nc

2 + nc
3) 45000 58

Table 1. Summary of the computational performance of different methods on the Net-
flix problem. Computational complexities (per iteration) assume näıve computation of
products and inverses of matrices and ignores the computation of SVD in the impu-
tation algorithm. While the proposed speed-up makes each iteration slower than the
basic gradient update, the time to reach the error level 0.85 is greatly diminished.

adapting them (marked as VB2). We initialized regularized PCA and VB1 using
normal PCA learned with α = 0.625 and orthogonalized A, and VB2 using VB1.
The parameter α was set to 2/3.

Fig. 1 (right) shows the results. The performance of basic PCA starts to de-
grade during learning, especially using the proposed speed-up. Natural gradient
diminishes this phenomenon known as overlearning, but it is even more effective
to use regularization. The best results were obtained using VB2: The final vali-
dation error EV was 0.9180 and the training rms error EO was 0.7826 which is
naturally larger than the unregularized EO = 0.7657.

6 Discussion

We studied a number of different methods for PCA with sparse data and it turned
out that a simple gradient descent approach worked best due to its minimal
computational complexity per iteration. We also gave it a more than tenfold
speed-up by using an approximated Newton’s method. We found out empirically
that setting the parameter α = 2/3 seems to work well for our problem. It is left
for future work to find out whether this generalizes to other problem settings.
There are also many other ways to speed-up the gradient descent algorithm. The
natural gradient did not help here, but we expect that the conjugate gradient
method would. The modification to the gradient proposed in this paper, could be
used together with the conjugate gradient speed-up. This will be another future
research topic.

There are also other benefits in solving the PCA problem by gradient descent.
Algorithms that minimize an explicit cost function are rather easy to extend. The
case of variational Bayesian learning applied to PCA was considered in Section
4, but there are many other extensions of PCA, such as using non-Gaussianity,
non-linearity, mixture models, and dynamics.

The developed algorithms can prove useful in many applications such as
bioinformatics, speech processing, and meteorology, in which large-scale datasets
with missing values are very common. The required computational burden is lin-
early proportional to the number of measured values. Note also that the proposed
techniques provide an analogue of confidence regions showing the reliability of

• N=100 000 000,
of ratings

• c=15, # of components

• n=500 000, # of people

• d=18 000, # of movies

Error on Training Data
against computation time in hours8 Tapani Raiko et al.

0 1 2 4 8 16 32 64
0.76

0.8

0.84

0.88

0.92

0.96

1

1.04

Gradient

Speed!up

Natural Grad.

Imputation

EM

0 1 2 4 8 16 32

0.95

1

1.05

1.1

Gradient

Speed!up

Natural Grad.

Regularized

VB1

VB2

Fig. 1. Left: Learning curves for unregularized PCA (Section 3) applied to the Netflix
data: Root mean-square error on the training data EO is plotted against computation
time in hours. Right: The root mean square error on the validation data EV from the
Netflix problem during runs of several algorithms: basic PCA (Section 3), regularized
PCA (Section 4) and VB (Section 4). VB1 fixes variances vsk to large values while VB2
updates all the parameters. The time scales are linear below 1 and logarithmic above
1.

the observed part of the data led to problems as explained in Section 3. The
covariance matrix had both missing values and values out of range.

Using the EM algorithm by [12], the E-step (updating S) takes 7 hours and
the M-step (updating A) takes 18 hours. (There is some room for optimization
since we used a straightforward Matlab implementation.) Each iteration gives a
much larger improvement compared to the imputation algorithm, but starting
from a random initialization, EM could not reach a good solution in reasonable
time.

We also tested the subspace learning algorithm described in Section 3 with
and without the proposed speed-up. Each run of the algorithm with different val-
ues of the speed-up parameter α was initialized in the same starting point (gen-
erated randomly from a normal distribution). The learning rate γ was adapted
such that if an update decreased the cost function, γ was multiplied by 1.1. Each
time an update would increase the cost, the update was canceled and γ was di-
vided by 2. Figure 1 (left) shows the learning curves for basic gradient descent,
natural gradient descent, and the proposed speed-up with the best found pa-
rameter value α = 0.625. The proposed speed-up gave about a tenfold speed-up
compared to the gradient descent algorithm even if each iteration took longer.
Natural gradient was slower than the basic gradient. Table 1 gives a summary
of the computational complexities.

Overfitting We compared PCA (Section 3), regularized PCA (Section 4) and
VB-PCA (Section 4) by computing the rms reconstruction error for the vali-
dation set V , that is, testing how the models generalize to new data: EV =
√

1
|V |

∑

(i,j)∈V e2
ij . We tested VB-PCA by firstly fixing some of the parameter

values (this run is marked as VB1 in Fig. 1, see [13] for details) and secondly by

Error on Validation Data
against computation time in hours8 Tapani Raiko et al.

0 1 2 4 8 16 32 64
0.76

0.8

0.84

0.88

0.92

0.96

1

1.04

Gradient

Speed!up

Natural Grad.

Imputation

EM

0 1 2 4 8 16 32

0.95

1

1.05

1.1

Gradient

Speed!up

Natural Grad.

Regularized

VB1

VB2

Fig. 1. Left: Learning curves for unregularized PCA (Section 3) applied to the Netflix
data: Root mean-square error on the training data EO is plotted against computation
time in hours. Right: The root mean square error on the validation data EV from the
Netflix problem during runs of several algorithms: basic PCA (Section 3), regularized
PCA (Section 4) and VB (Section 4). VB1 fixes variances vsk to large values while VB2
updates all the parameters. The time scales are linear below 1 and logarithmic above
1.

the observed part of the data led to problems as explained in Section 3. The
covariance matrix had both missing values and values out of range.

Using the EM algorithm by [12], the E-step (updating S) takes 7 hours and
the M-step (updating A) takes 18 hours. (There is some room for optimization
since we used a straightforward Matlab implementation.) Each iteration gives a
much larger improvement compared to the imputation algorithm, but starting
from a random initialization, EM could not reach a good solution in reasonable
time.

We also tested the subspace learning algorithm described in Section 3 with
and without the proposed speed-up. Each run of the algorithm with different val-
ues of the speed-up parameter α was initialized in the same starting point (gen-
erated randomly from a normal distribution). The learning rate γ was adapted
such that if an update decreased the cost function, γ was multiplied by 1.1. Each
time an update would increase the cost, the update was canceled and γ was di-
vided by 2. Figure 1 (left) shows the learning curves for basic gradient descent,
natural gradient descent, and the proposed speed-up with the best found pa-
rameter value α = 0.625. The proposed speed-up gave about a tenfold speed-up
compared to the gradient descent algorithm even if each iteration took longer.
Natural gradient was slower than the basic gradient. Table 1 gives a summary
of the computational complexities.

Overfitting We compared PCA (Section 3), regularized PCA (Section 4) and
VB-PCA (Section 4) by computing the rms reconstruction error for the vali-
dation set V , that is, testing how the models generalize to new data: EV =
√

1
|V |

∑

(i,j)∈V e2
ij . We tested VB-PCA by firstly fixing some of the parameter

values (this run is marked as VB1 in Fig. 1, see [13] for details) and secondly by

Variational Bayesian
Learning

• The main issue in probabilistic machine learning
models is to find the posterior distribution over
the model parameters and latent variables

• Using a point estimate might overfit

• Sampling is prohibitively slow for large latent
variable models

• Variational Bayesian (VB) learning is a good
compromise

Overfitting
• An overfitted model explains the current

data but does not generalize well to new
data

• 6th order polynomial is fitted to 10 points
by maximum likelihood and sampling

2.5. Approximations 27

Figure 2.2: A sixth order polynomial is fitted to 10 data points. Left: Maximum
likelihood solution. Right: Bayesian solution. The three curves present 5%, 50%
and 95% fractiles.

performance with unseen test data starts to get worse during the learning with
training data (Haykin, 1999; Bishop, 1995; Chen, 1990). The system starts to lose
its ability to generalise. The same can happen when increasing the complexity
of the model. The model is said to overfit to the data. In this case the model
becomes too complicated and concentrates on random fluctuations in the data.
The left subfigure of Figure 2.2 shows an example of overfitting.

When the model is too simple or the learning is stopped too early, the problem
is called underfitting or underlearning respectively. Balancing between over- and
underfitting has perhaps been the main difficulty in model building. There are
several ways to fight overfitting and overlearning (Haykin, 1999; Bishop, 1995;
Chen, 1990). A popular method is to select the best time to stop learning or the
best complexity of a model by cross-validation (Stone, 1974; Haykin, 1999). Part
of the training data is left for validation and the models are compared based on
their performance with the validation set.

The problems of overlearning and overfitting are mostly related to point estimates.
The example in Figure 2.2 is solved by using the whole posterior distribution in-
stead of a single solution. The use of a point estimate is to approximate integrals so
it should be sensitive to the probability mass rather than to the probability density.
Unfortunately, ML and MAP estimates are attracted to high but sometimes nar-
row peaks. Figure 2.3 shows a situation, where search for the MAP solution first
finds a good representative of the probability mass, but then moves to the highest
peak which is on the border. This type of situation seems to be very common and
the effect becomes stronger, when the dimensionality increases. Appendix D of

2.5. Approximations 27

Figure 2.2: A sixth order polynomial is fitted to 10 data points. Left: Maximum
likelihood solution. Right: Bayesian solution. The three curves present 5%, 50%
and 95% fractiles.

performance with unseen test data starts to get worse during the learning with
training data (Haykin, 1999; Bishop, 1995; Chen, 1990). The system starts to lose
its ability to generalise. The same can happen when increasing the complexity
of the model. The model is said to overfit to the data. In this case the model
becomes too complicated and concentrates on random fluctuations in the data.
The left subfigure of Figure 2.2 shows an example of overfitting.

When the model is too simple or the learning is stopped too early, the problem
is called underfitting or underlearning respectively. Balancing between over- and
underfitting has perhaps been the main difficulty in model building. There are
several ways to fight overfitting and overlearning (Haykin, 1999; Bishop, 1995;
Chen, 1990). A popular method is to select the best time to stop learning or the
best complexity of a model by cross-validation (Stone, 1974; Haykin, 1999). Part
of the training data is left for validation and the models are compared based on
their performance with the validation set.

The problems of overlearning and overfitting are mostly related to point estimates.
The example in Figure 2.2 is solved by using the whole posterior distribution in-
stead of a single solution. The use of a point estimate is to approximate integrals so
it should be sensitive to the probability mass rather than to the probability density.
Unfortunately, ML and MAP estimates are attracted to high but sometimes nar-
row peaks. Figure 2.3 shows a situation, where search for the MAP solution first
finds a good representative of the probability mass, but then moves to the highest
peak which is on the border. This type of situation seems to be very common and
the effect becomes stronger, when the dimensionality increases. Appendix D of

Posterior mass matters
• You want to make predictions about new

data Y based on existing data X

• This is solved by fitting a model to the data
and then predicting based on that

• Note how you need to integrate over the
posterior

• If you need to select a single solution , it
should represent the posterior mass well

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

p(Y | X) =
∫
p(Y | X,Z, θ)p(Z, θ | X)dZdθ

Z, θ

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{
ln
p(Z | X, θ)
q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{
ln

q(Z, θ)
p(X,Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X,Mi)) − ln p(X | Mi)
≥ − ln p(X | Mi)

p(sj) = N
(
sj; 0, I

)
, p(ε j) = N

(
εj; 0, vI

)
(1)

Fully observed data: The E-step estimates the conditional distribution of
the hidden variables given the data and the current values of the model

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

p(Y | X) =
∫
p(Y | X,Z, θ)p(Z, θ | X)dZdθ

Z, θ

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{
ln
p(Z | X, θ)
q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{
ln

q(Z, θ)
p(X,Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X,Mi)) − ln p(X | Mi)
≥ − ln p(X | Mi)

p(sj) = N
(
sj; 0, I

)
, p(ε j) = N

(
εj; 0, vI

)
(1)

Fully observed data: The E-step estimates the conditional distribution of
the hidden variables given the data and the current values of the model

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

p(Y | X) =
∫
p(Y | X,Z, θ)p(Z, θ | X)dZdθ

Z, θ

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{
ln
p(Z | X, θ)
q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{
ln

q(Z, θ)
p(X,Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X,Mi)) − ln p(X | Mi)
≥ − ln p(X | Mi)

p(sj) = N
(
sj; 0, I

)
, p(ε j) = N

(
εj; 0, vI

)
(1)

Fully observed data: The E-step estimates the conditional distribution of
the hidden variables given the data and the current values of the model

Why early stopping might help
28 2. Bayesian probability theory

Figure 2.3: A hypothetical posterior pdf. A point estimate could first find a good
representative of the probability mass, but then overfits to a narrow peak.

Publication I gives an example where point estimates fail completely.

2.5.2 The Laplace approximation

Compared to the point estimates, a more accurate way to approximate the inte-
grals in Equations (2.2), (2.3), and (2.4) is to use the Laplace approximation (see
Bishop, 1995; MacKay, 2003). The basic idea is to find the maximum of the func-
tion to be integrated and apply a second order Taylor series approximation for the
logarithm of that function. In case of computing an expectation over the poste-
rior distribution, the maximum is the MAP solution and the second order Taylor
series corresponds to a Gaussian distribution for which integrals can be computed
analytically. The Laplace approximation can be used to select the best solution
in case several local maxima have been found since a broad peak is preferred over
a high but narrow peak. Unfortunately the Laplace approximation does not help
in situations where a good representative of the probability mass is not a local

Variational Bayes

• VB works by fitting a distribution q over the
unknown variables to the true posterior by
minimizing the KL divergence:

• The form of q can be chosen such that the
expectations are tractable

• For instance, is assumed
almost always, allowing the VB-EM algorithm

• KL divergence can also be used for model
comparison

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

The EM algorithm is useful for latent variable models, where the model
defines P(X, Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ ← argmax
θ

EQ(Z) {ln P(X, Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

VB-stuff:

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{

ln
p(Z | X, θ)

q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X, Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{

ln
q(Z, θ)

p(X, Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X, Mi)) − ln p(X | Mi)

≥ − ln p(X | Mi)

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

p(Y | X) =
∫
p(Y | X,Z, θ)p(Z, θ | X)dZdθ

Z, θ

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{
ln

q(Z, θ)
p(Z, θ | X)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{
ln

q(Z, θ)
p(X,Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X,Mi)) − ln p(X | Mi)
≥ − ln p(X | Mi)

p(sj) = N
(
sj; 0, I

)
, p(ε j) = N

(
εj; 0, vI

)
(1)

Fully observed data: The E-step estimates the conditional distribution of
the hidden variables given the data and the current values of the model

VB-EM algorithm
• The VB-EM algorithm alternates between

updates for the latent variables and
parameters

• Steps are symmetric and they resemble the
E-step of the EM algorithm

• VB-E step:

• VB-M step:

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

The EM algorithm is useful for latent variable models, where themodel
defines P(X,Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ ← argmax
θ

EQ(Z) {ln P(X,Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

VB-EM algorithm:

Cost: KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ) ln
p(Z | X, θ)
q(Z, θ)

(3)

(4)

VBE-step: q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))} (5)

VBM-step: q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))} (6)

1. Given a Naı̈ve Bayes model with three binary variables defined by the
tables and data below, run an iteration of the EM algorithm.

P(C)
C=0 0.7
C=1 0.3
P(X1 | C) C=0 C=1
X1=0 0.5 0.8
X1=1 0.5 0.2

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

The EM algorithm is useful for latent variable models, where themodel
defines P(X,Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ ← argmax
θ

EQ(Z) {ln P(X,Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

VB-EM algorithm:

Cost: KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ) ln
p(Z | X, θ)
q(Z, θ)

(3)

(4)

VBE-step: q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))} (5)

VBM-step: q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))} (6)

1. Given a Naı̈ve Bayes model with three binary variables defined by the
tables and data below, run an iteration of the EM algorithm.

P(C)
C=0 0.7
C=1 0.3
P(X1 | C) C=0 C=1
X1=0 0.5 0.8
X1=1 0.5 0.2

Example 1
• model

• prior

• data

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

x

y

posterior

mass centre

VB
maximum

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

posterior

Example 2
• model

• prior

• data

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

26 2. Bayesian probability theory

!2 !1 0 1 2

!2

!1

0

1

2

!2 0 2 4 6 8

!4

!2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

y

x

VB

mass centre

maximum

posterior

• By restricting the form of ,
the inference (E-step) can be made faster

B
C

A

D
E

F

G

B
C

A

D
E

F

G

B
C

A

D
E

F

G

B
C

A

D
E

F

G

Completely factorized
Tree

Exact

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

p(Y | X) =
∫
p(Y | X,Z, θ)p(Z, θ | X)dZdθ

Z, θ

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{
ln
p(Z | X, θ)
q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{
ln

q(Z, θ)
p(X,Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X,Mi)) − ln p(X | Mi)
≥ − ln p(X | Mi)

p(sj) = N
(
sj; 0, I

)
, p(ε j) = N

(
εj; 0, vI

)
(1)

Fully observed data: The E-step estimates the conditional distribution of
the hidden variables given the data and the current values of the model

Pros and cons of VB

• + Robust against overfitting

• + Fast (compared to sampling)

• + Applicable to a large family of models

• - Intensive formulae (lots of integrals)

• - Prone to bad but locally optimal solutions
(lot of work with arranging good
initializations and other tricks to avoid them)

Bayes Blocks Software Package

• Bayes Block by Valpola et al.

• concentrates on continuous values

• fully factorial posterior approximation

• includes nonlinearities

• allows for variance modelling

• algorithm: message passing with line
searches for speed-up

