

Principal Component Analysis (PCA) for Sparse High-Dimensional Data

Tapani Raiko

Helsinki University of Technology, Finland Adaptive Informatics Research Center

The Data Explosion

- We are facing an enormous challenge in the ever increasing amount of data in electronic form
- First wave: text, second wave: real-world data
- Basically, any information that may have value will be made available, e.g., through the Web
- We need "adaptive informatics" which adds intelligence at the access point.

Adaptive Informatics:

- A field of research where automated learning algorithms are used to discover informative concepts, components, and their mutual relations from large amounts of real-world data
- The goal is to understand the underlying phenomena, structures, and patterns buried in the large data sets, in order to make the information usable.

Retrieval of multimodel objects:

Proactive Information Retrieval

Eyeogle

Results 1–6

The Minimum Error Minimax Probability Machine

by Kaizhu Huang, Haiqin Yarg, Irwin King, Michael R. Lyu, Laiwan Chan Journal of Machine Learning Research Vol. 5, pp. 1253–1286, 2004 http://jmlr.csail.mit.edu/papers/v5/huang04a.html – Cached – Similar pages

Sphere-Packing Bounds for Convolutional Codes

by E.Roshes and O.Ytrehus IEEE Transactions on Information Theory Vol.59(11), pp. 2801–2809, 2004. ccc.usto.edu.cn/abstract/roshes.ps – Cached – Similar pages

Quantum State Transfer Between Matter and Light

by D. N. Matsokevich and A. Kuzmich Science vol. 306(5696), 2004. http://arxiv.org/abs/quant-ph/0410092 - Cached - Similar pages

PAC-Bayesian Stochastic Month Selection

by David A. McAllester Machine Learning Vol. 51(1), pp. 5–21, 2003. ttic.uchicago.edur~dmcallester/posterior01.ps – Cached – Similar pages

Pictorial and Conceptual Representation of Glimpsed Pictures

by Mary C. Potter, Adrian Staub, and Daniel H. O'Connor Journal of Experimental Psychology, Human Perception and Performance Vol. 30(3), 2004. cvcl.mit.edu/IAP05/pgtterstauboconnor2004.pdf - Cached - Similar pages

Blink and Shrink: The Effect of the Attentional Blink on Spatial Processing

by Christian and N. L. Olivers Journal of Experimental Psychology, Human Perception and Performance Vol. 30(3), 2004. http://content.apa.org/journals/xhp/30/3 – Cached – Similar pages

> E y e o o o o o o o o g l e Result page: 1 2 3 4 5 6 7 8 9 10 Next

Principal Component Analysis

- Data X consists of n d-dimensional vectors
- Matrix X is decomposed in to a product of smaller matrices such that the square reconstruction error is minimized

$$\mathbf{X} \approx \mathbf{AS},$$

 $C = \|\mathbf{X} - \mathbf{AS}\|_{F}^{2} = \sum_{i=1}^{d} \sum_{j=1}^{n} (x_{ij} - \sum_{k=1}^{c} a_{ik} s_{kj})^{2}$

Algorithms for PCA

- Eigenvalue decomposition (standard approach)
 - Compute the covariance matrix and its eigenvectors

Algorithms for PCA

- Eigenvalue decomposition (standard approach)
 - Compute the covariance matrix and its eigenvectors
- EM algorithm
 - Iterates between:

 $\mathbf{A} \leftarrow \mathbf{X} \mathbf{S}^{\mathrm{T}} (\mathbf{S} \mathbf{S}^{\mathrm{T}})^{-1}, \qquad \mathbf{S} \leftarrow (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{X}.$

Algorithms for PCA

- Eigenvalue decomposition (standard approach)
 - Compute the covariance matrix and its eigenvectors
- EM algorithm
 - Iterates between:

 $\mathbf{A} \leftarrow \mathbf{X} \mathbf{S}^{\mathrm{T}} (\mathbf{S} \mathbf{S}^{\mathrm{T}})^{-1} \,, \qquad \mathbf{S} \leftarrow (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{X} \,.$

• Minimization of cost C (Oja's subspace rule)

 $\mathbf{A} \leftarrow \mathbf{A} + \gamma (\mathbf{X} - \mathbf{AS}) \mathbf{S}^{\mathrm{T}}, \qquad \mathbf{S} \leftarrow \mathbf{S} + \gamma \mathbf{A}^{\mathrm{T}} (\mathbf{X} - \mathbf{AS}).$

PCA with Missing Values

 Red and blue data points are reconstructed based on only one of the two dimensions

Adapting the Algorithms for Missing Values

- Iterative imputation
 - Alternately 1) fill in missing values and
 2) solve normal PCA with the standard approach

Adapting the Algorithms for Missing Values

- Iterative imputation
 - Alternately 1) fill in missing values and
 2) solve normal PCA with the standard approach
- EM algorithm becomes computationally heavier

 $\begin{array}{c|c} \mathbf{S} & \mathbf{A} \\ \mathbf{s}_{:j} = (\mathbf{A}_{j}^{\mathrm{T}} \mathbf{A}_{j})^{-1} \mathbf{A}_{j}^{\mathrm{T}} \overset{\circ}{\mathbf{X}}_{:j} \\ j = 1, \dots, n \end{array} \quad \begin{array}{c} \mathbf{A}_{i:}^{\mathrm{T}} = \overset{\circ}{\mathbf{X}}_{i:}^{\mathrm{T}} \mathbf{S}_{i}^{\mathrm{T}} (\mathbf{S}_{i} \mathbf{S}_{i}^{\mathrm{T}})^{-1} \\ i = 1, \dots, d \end{array}$

Adapting the Algorithms for Missing Values

- Iterative imputation
 - Alternately 1) fill in missing values and
 2) solve normal PCA with the standard approach
- EM algorithm becomes computationally heavier

 $\begin{array}{c|c} \mathbf{S} & \mathbf{A} \\ \mathbf{s}_{:j} = (\mathbf{A}_{j}^{\mathrm{T}} \mathbf{A}_{j})^{-1} \mathbf{A}_{j}^{\mathrm{T}} \overset{\circ}{\mathbf{X}}_{:j} \\ j = 1, \dots, n \end{array} \quad \begin{array}{c} \mathbf{A}_{i:}^{\mathrm{T}} = \overset{\circ}{\mathbf{X}}_{i:}^{\mathrm{T}} \mathbf{S}_{i}^{\mathrm{T}} (\mathbf{S}_{i} \mathbf{S}_{i}^{\mathrm{T}})^{-1} \\ i = 1, \dots, d \end{array}$

- Minimization of cost C
 - Easy to adapt: Take error over observed values only

Speeding up Gradient Descent

- Newton's method is known to converge fast, but
 - It requires computing the Hessian matrix which is computationally too demanding in high-dimensional problems
- We propose using only the diagonal part of the Hessian
- We also include a control parameter to interpolate between standard gradient descent (0) and the diagonal Newton's method (1)

The cost function:

$$C = \sum_{(i,j)\in O} e_{ij}^2$$
, with $e_{ij} = x_{ij} - \sum_{k=1}^{N} a_{ik} s_{kj}$.

c

The cost function:

$$C = \sum_{(i,j)\in O} e_{ij}^2$$
, with $e_{ij} = x_{ij} - \sum_{k=1}^{n} a_{ik} s_{kj}$.

Its partial derivatives:

$$\frac{\partial C}{\partial a_{il}} = -2 \sum_{\substack{j \mid (i,j) \in O}} e_{ij} s_{lj} ,$$

$$\frac{\partial C}{\partial s_{lj}} = -2 \sum_{i|(i,j)\in O} e_{ij} a_{il} \,.$$

С

The cost function:

$$C = \sum_{(i,j)\in O} e_{ij}^2, \quad \text{with} \quad e_{ij} = x_{ij} - \sum_{k=1}^{n} a_{ik} s_{kj}.$$

С

Its partial derivatives:

$$\frac{\partial C}{\partial a_{il}} = -2\sum_{\substack{j|(i,j)\in O}} e_{ij}s_{lj}, \qquad \frac{\partial C}{\partial s_{lj}} = -2\sum_{\substack{i|(i,j)\in O}} e_{ij}a_{il}.$$

Update rules:

$$a_{il} \leftarrow a_{il} - \gamma' \left(\frac{\partial^2 C}{\partial a_{il}^2}\right)^{-\alpha} \frac{\partial C}{\partial a_{il}} = a_{il} + \gamma \frac{\sum_{j|(i,j)\in O} e_{ij} s_{lj}}{\left(\sum_{j|(i,j)\in O} s_{lj}^2\right)^{\alpha}},$$
$$s_{lj} \leftarrow s_{lj} - \gamma' \left(\frac{\partial^2 C}{\partial s_{lj}^2}\right)^{-\alpha} \frac{\partial C}{\partial s_{lj}} = s_{lj} + \gamma \frac{\sum_{i|(i,j)\in O} e_{ij} a_{il}}{\left(\sum_{i|(i,j)\in O} a_{il}^2\right)^{\alpha}}.$$

Overfitting in Case of Sparse Data

Overfitted solution

Regularized solution

Regularization against Overfitting

- Penalizing the use of large parameter values
- Estimating the distribution of unknown parameters (Variational Bayesian learning)

Experiments with Netflix Data www.netflixprize.com

- Collaborative filtering task: predict people's preferences based on other people's preferences
- d = 18 000 movies, n = 500 000 customers,
 N = 100 000 000 movie ratings from 1 to 5
- 98.8% of the values are missing
- Find c=15 principal components

Computational Performance

Method	Complexity	Seconds/Iter	Hours to $E_O = 0.85$
Gradient	O(Nc + nc)	58	1.9
Speed-up	O(Nc + nc)	110	0.22
Natural Grad.	$O(Nc + nc^2)$	75	3.5
Imputation	$O(nd^2)$	110000	$\gg 64$
EM	$O(Nc^2 + nc^3)$	45000	58

- N=100 000 000, # of ratings
- c=15, # of components

• n=500 000, # of people

Error on Training Data against computation time in hours

Error on Validation Data against computation time in hours

Variational Bayesian Learning

- The main issue in probabilistic machine learning models is to find the posterior distribution over the model parameters and latent variables
- Using a point estimate might overfit
- Sampling is prohibitively slow for large latent variable models
- Variational Bayesian (VB) learning is a good compromise

Overfitting

- An overfitted model explains the current data but does not generalize well to new data
- 6th order polynomial is fitted to 10 points by maximum likelihood and sampling

Posterior mass matters

- You want to make predictions about new data Y based on existing data X
- This is solved by fitting a model to the data and then predicting based on that

$$p(\mathbf{Y} \mid \mathbf{X}) = \int p(\mathbf{Y} \mid \mathbf{X}, \mathbf{Z}, \boldsymbol{\theta}) p(\mathbf{Z}, \boldsymbol{\theta} \mid \mathbf{X}) d\mathbf{Z} d\boldsymbol{\theta}$$

- Note how you need to integrate over the posterior p(Z, θ | X)
- If you need to select a single solution Z, θ, it should represent the posterior mass well

Why early stopping might help

Variational Bayes

 VB works by fitting a distribution q over the unknown variables to the true posterior by minimizing the KL divergence:

 $\operatorname{KL}\left(q(\mathbf{Z},\boldsymbol{\theta}) \parallel p(\mathbf{Z},\boldsymbol{\theta} \mid \mathbf{X})\right) = E_{q(\mathbf{Z},\boldsymbol{\theta})} \left\{ \ln \frac{q(\mathbf{Z},\boldsymbol{\theta})}{p(\mathbf{Z},\boldsymbol{\theta} \mid \mathbf{X})} \right\}$

- The form of q can be chosen such that the expectations are tractable
- For instance, $q(\mathbf{Z}, \boldsymbol{\theta}) = q(\mathbf{Z})q(\boldsymbol{\theta})$ is assumed almost always, allowing the VB-EM algorithm
- KL divergence can also be used for model comparison

VB-EM algorithm

- The VB-EM algorithm alternates between updates for the latent variables and parameters
- Steps are symmetric and they resemble the E-step of the EM algorithm
- VB-E step:

 $q(\mathbf{Z}) \leftarrow \underset{q(\mathbf{Z})}{\operatorname{argmin}} E_{q(\boldsymbol{\theta})} \left\{ \operatorname{KL} \left(q(\mathbf{Z}) \parallel p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) \right) \right\}$

• VB-M step:

 $q(\boldsymbol{\theta}) \leftarrow \underset{q(\boldsymbol{\theta})}{\operatorname{argmin}} E_{q(\mathbf{Z})} \left\{ \operatorname{KL} \left(q(\boldsymbol{\theta}) \parallel p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{Z}) \right) \right\}$

Example 2

model $p(z) = \mathcal{N}(z; y, \exp(-x))$ prior $p(x) = \mathcal{N}(x; -1, 5)$ $p(y) = \mathcal{N}(y; 0, 5).$ data

z=2

Pros and cons of VB

- + Robust against overfitting
- + Fast (compared to sampling)
- + Applicable to a large family of models
- Intensive formulae (lots of integrals)
- Prone to bad but locally optimal solutions (lot of work with arranging good initializations and other tricks to avoid them)

Bayes Blocks Software Package

- Bayes Block by Valpola et al.
 - concentrates on continuous values
 - fully factorial posterior approximation
 - includes nonlinearities
 - allows for variance modelling
 - algorithm: message passing with line searches for speed-up