Helsinki University of Technology
Dissertations in Computer and Information Science
Espoo 2006 Report D18

Bayesian Inference in Nonlinear and Relational
Latent Variable Models

Tapani Raiko

Dissertation for the degree of Doctor of Science in Technology to be presented with due
permission of the Department of Computer Science and Engineering for public examina-
tion and debate in Auditorium T1 at Helsinki University of Technology (Espoo, Finland)
on the 1st of December, 2006, at 12 o’clock noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Computer and Information Science

Distribution:

Helsinki University of Technology

Laboratory of Computer and Information Science
P.O. Box 5400

FI-02015 TKK

FINLAND

Tel. +358-9-451 3272

Fax +358-9-451 3277

http://www.cis.hut.fi

Available in PDF format at http://lib.tkk.fi/Diss/2006/isbn951228510X /
(© Tapani Raiko

Printed version:

ISBN-13 978-951-22-8509-9

ISBN-10 951-22-8509-6

Electronic version:

ISBN-13 978-951-22-8510-5

ISBN-10 951-22-8510-X

ISSN 1459-7020

Otamedia Oy
Espoo 2006

Raiko, T. (2006): Bayesian Inference in Nonlinear and Relational Latent
Variable Models. Doctoral thesis, Helsinki University of Technology, Disserta-
tions in Computer and Information Science, Report D18, Espoo, Finland.

Keywords: machine learning, graphical models, probabilistic reasoning, non-
linear models, variational methods, state-space models, hidden Markov models,
inductive logic programming, first-order logic

ABSTRACT

Statistical data analysis is becoming more and more important when growing
amounts of data are collected in various fields of life. Automated learning al-
gorithms provide a way to discover relevant concepts and representations that can
be further used in analysis and decision making.

Graphical models are an important subclass of statistical machine learning that
have clear semantics and a sound theoretical foundation. A graphical model is a
graph whose nodes represent random variables and edges define the dependency
structure between them. Bayesian inference solves the probability distribution over
unknown variables given the data. Graphical models are modular, that is, complex
systems can be built by combining simple parts. Applying graphical models within
the limits used in the 1980s is straightforward, but relaxing the strict assumptions
is a challenging and an active field of research.

This thesis introduces, studies, and improves extensions of graphical models that
can be roughly divided into two categories. The first category involves nonlin-
ear models inspired by neural networks. Variational Bayesian learning is used to
counter overfitting and computational complexity. A framework where efficient
update rules are derived automatically for a model structure given by the user,
is introduced. Compared to similar existing systems, it provides new functional-
ity such as nonlinearities and variance modelling. Variational Bayesian methods
are applied to reconstructing corrupted data and to controlling a dynamic sys-
tem. A new algorithm is developed for efficient and reliable inference in nonlinear
state-space models.

The second category involves relational models. This means that observations
may have distinctive internal structure and they may be linked to each other.
A novel method called logical hidden Markov model is introduced for analysing
sequences of logical atoms, and applied to classifying protein secondary structures.
Algorithms for inference, parameter estimation, and structural learning are given.
Also, the first graphical model for analysing nonlinear dependencies in relational
data, is introduced in the thesis.

Raiko, T. (2006): Bayesildinen paittely epilineaarisissa ja rakenteisissa
piilomuuttujamalleissa. Tohtorin viitoskirja, Teknillinen korkeakoulu, Disser-
tations in Computer and Information Science, raportti D18, Espoo, Suomi.

Avainsanat: koneoppiminen, graafiset mallit, todennékoisyyslaskentaan perus-
tuva paattely, epalineaariset mallit, variaatiomenetelmaét, tila-avaruusmallit, piilo-
Markov -malli, induktiivinen logiikkaohjelmointi, ensimmaéisen kertaluvun logiikka

TIIVISTELMA

Tilastollisen tietojenkasittelyn merkitys on vahvassa kasvussa, sillé tietoaineistoa
kerdtadn yhd enemman lukuisilla eri aloilla. Automaattisilla oppivilla menetelmil-
14 voidaan 16ytaa merkityksellisia késitteita ja esitysmuotoja, joita voidaan edelleen
kayttad analysoinnissa ja paatoksenteossa.

Térked tilastollisen koneoppimisen menetelméaperhe, graafiset mallit, on selkeasti
tulkittavissa ja silla on hyva teoreettinen perusta. Graafinen malli koostuu
verkosta, jonka solmut kuvaavat satunnaismuuttujia ja linkit maérittelevit
niiden viliset riippuvuussuhteet. Bayesildinen paéttely ratkaisee tuntemattomien
muuttujien jakauman aineiston ehdolla. Graafiset mallit ovat modulaarisia, eli
monimutkaisia jarjestelmia voidaan rakentaa yhdistelemalld yksinkertaisia osia.
1980-luvun tiukkojen oletusten puitteissa graafisten mallien soveltaminen on
suoraviivaista, mutta néiden oletusten véljentdminen on haastava ja aktiivinen
tutkimuskohde.

Téassa viitostyossa esitelldan, tutkitaan ja parannellaan uusia graafisten mallien
laajennuksia, jotka voidaan karkeasti jakaa kahteen luokkaan. Ensimméiseen
luokkaan kuuluvat neuroverkkojen inspiroimat epélineaariset mallit, joissa
sovelletaan bayesildistd variaatio-oppimista ylioppimisen ja laskennallisen
vaativuuden valttdmiseen. Ty6 esittelee kehyksen, jossa kayttdjan antaman
mallin tehokkaat paivityssaannot ratkaistaan automaattisesti. Vastaaviin
jarjestelmiin verrattuna se tarjoaa uusia toimintoja, kuten epilineaarisuuksia ja
hajonnan mallinnusta. Bayesildisia variaatiomenetelmid kaytetadn viallisen
tietoaineiston rekonstruointiin ja dynaamisen systeemin sdatoon. Uusi algoritmi
hoitaa epélineaaristen tila-avaruusmallien paattelyn tehokkaasti ja luotettavasti.

Toinen laajennusten luokka késittelee relaatiomalleja, joissa havainnoilla voi olla
vaihteleva sisdinen rakenne ja viittauksia toisiinsa. Uusi menetelmé, looginen
piillo-Markov -malli, esitellidn loogisten atomien sarjojen analysointiin ja

sitd sovelletaan proteiinien sekundaérirakenteen luokitteluun. Menetelmaélle
esitetddn algoritmit padttelyyn, parametrien maéritykseen ja rakenteen
oppimiseen. Tyossd esitellddn my6s ensimméinen graafinen malli

relaatioaineistojen epélineaaristen riippuvuussuhteiden analysointiin.

Preface

This work has been carried out at the Laboratory of Computer and Informa-
tion Science in Helsinki University of Technology and at the Laboratory of Ma-
chine Learning and Natural Language Processing in University of Freiburg. Other
sources of funding were the Graduate School in Computational Methods of In-
formation Technology (ComMIT), the Finnish Centre of Excellence Programme
(2000-2005) under the project New Information Processing Principles, the Eu-
ropean Commission’s IST-funded projects BLISS (IST-1999-14190), the Euro-
pean Commission’s IST-funded Network of Excellence for Multimodal Interfaces
PASCAL (IST-2002-506778), the European Commission’s IST-funded evaluation
project APRIL (IST-2001-33053), the Finnish Cultural foundation, and the Nokia
Foundation.

I wish to thank my instructor Dr. Harri Valpola for inspiration and guidance,
especially in encouraging me to reach high. I also wish to thank my supervisor
Prof. Juha Karhunen for his dedication and support, especially for keeping my feet
on the ground. This experience has allowed me grow as a person.

I wish to express my gratitude to the co-authors of the publications of the thesis,
Dr. Kristian Kersting, Prof. Dr. Luc De Raedt, Matti Tornio, Dr. Antti Honkela,
Markus Harva, Tomas Ostman, and Prof. Dr. Stefan Kramer. I also wish to thank
my other coworkers in the laboratories, including Prof. Erkki Oja, Dr. Jaakko Pel-
tonen, Dr. Alexander Ilin, and Dr. Sampsa Laine for help and interesting discus-
sions as well as my pre-examiners Prof. Jouko Lampinen and Prof. Petri Myllymaki
for useful comments.

Last but not least, I thank Anna Hiironen for her support and help, as well as for

encouraging me to work abroad.

Espoo, November 2006

Tapani Raiko

Contents

Abstract

Tiivistelma

Preface

Publications of the thesis
List of abbreviations

List of symbols

1 Introduction
1.1 Background Lo
1.2 Contributions of the thesis
1.3 Contents of the publications and author’s contributions

2 Bayesian probability theory
2.1 Representations of data and belief
2.2 The Bayes rule and the marginalisation principle
2.3 Structure among unknown variables
2.4 Decision theory o
2.5 Approximations
2.5.1 Point estimates o oo
2.5.2 The Laplace approximation
2.5.3 Expectation-maximisation algorithm
2.5.4 Markov chain Monte Carlo methods
2.5.5 Variational approximations

3 Graphical models
3.1 Well-known graphical models

4

3.1.1 Bayesian networks oL
3.1.2 Markov networks L oo
3.1.3 Factor analysis and principal component analysis
3.1.4 Independent component analysis
3.1.5 Hidden Markov models,
3.1.6 State-space models
3.2 Tasks
3.2.1 Imference
3.2.2 Parameter learning L0000
3.2.3 Structural learning oo
3.2.4 Decision making oo

Variational learning of nonlinear graphical models

4.1 Variational Bayesian methods
4.1.1 Cost function Lo
4.1.2 Model selection L oo
4.1.3 Optimisation and local minima
4.1.4 Missing valueso
4.1.5 Partially observed values

4.2 Nonlinear factor analysis

4.3 Nonlinear state-space models
4.3.1 Stateinference o oL
4.3.2 Control

4.4 Bayes Blocks for nonlinear Bayesian networks
4.4.1 Variance modelling oL,
4.4.2 Hierarchical nonlinear factor analysis
4.4.3 Relational models oo

Inductive logic programming

5.1 Logic programming Lo

5.2 Inductive logic programming oL
5.2.1 Example on wine tasting oL
5.2.2 From propositional to relational learning
5.2.3 Applications oL

Statistical relational learning

6.1 Combination rules L

6.2 Logical hidden Markov models
6.2.1 Reachable states
6.2.2 Structural learning Lo
6.2.3 Applications oL

6.3 Nonlinear relational Markov networks

47
47
48
49
50
51
o1
53
54
55
o7
59
61
62
64

65
65
66
67
68
69

7 Discussion
7.1 Future work

References

Publications of the thesis

I

1T

11T

I\Y

VI

VII

VIII

IX

T. Raiko, H. Valpola, M. Harva, and J. Karhunen. Building Blocks for Vari-
ational Bayesian Learning of Latent Variable Models. Report E4 in the Elec-
tronic report series of CIS, April, 2006, accepted for publication conditioned
on minor revisions to the Journal of Machine Learning Research.

T. Raiko, H. Valpola, T. Ostman, and J. Karhunen. Missing Values in Hier-
archical Nonlinear Factor Analysis. In the Proceedings of the International
Conference on Artificial Neural Networks and Neural Information Processing
(ICANN/ICONIP 2003), pp. 185-189, Istanbul, Turkey, June 26-29, 2003.

T. Raiko. Partially Observed Values. In the Proceedings of the Interna-
tional Joint Conference on Neural Networks (IJCNN 2004), pp. 2825-2830,
Budapest, Hungary, July 25-29, 2004.

T. Raiko and M. Tornio. Learning Nonlinear State-Space Models for Control.
In the Proceedings of the International Joint Conference on Neural Networks
(IJCNN 2005), pp. 815-820, Montreal, Canada, July 31-August 4, 2005.

T. Raiko, M. Tornio, A. Honkela, and J. Karhunen. State Inference in Vari-
ational Bayesian Nonlinear State-Space Models. In the Proceedings of the
6th International Conference on Independent Component Analysis and Blind
Source Separation (ICA 2006), pp. 222-229, Charleston, South Carolina, USA,
March 5-8, 2006.

T. Raiko. Nonlinear Relational Markov Networks with an Application to the
Game of Go. In the Proceedings of the International Conference on Artificial
Neural Networks (ICANN 2005), pp. 989-996, Warsaw, Poland, September
11-15, 2005.

K. Kersting, L. De Raedt, and T. Raiko. Logical Hidden Markov Models. In
the Journal of Artificial Intelligence Research, Volume 25, pp. 425-456, April,
2006.

K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards Discovering
Structural Signatures of Protein Folds based on Logical Hidden Markov Mod-
els. In the Proceedings of the Pacific Symposium on Biocomputing (PSB-
2003), pp. 192-203, Kauai, Hawaii, January 3-7, 2003.

K. Kersting and T. Raiko. 'Say EM’ for Selecting Probabilistic Models for
Logical Sequences. In the Proceedings of the 21st Conference on Uncertainty
in Artificial Intelligence (UAI 2005), pp. 300-307, Edinburgh, Scotland, July
26-29, 2005.

List of abbreviations

Al

BIC
BLP
BP

EM

FA
HNFA
HMM
ICA
ILP
KL
LOHMM
MAP
ML
MCMC
MLP
NDFA
NMN
NRMN
NSSM
pdf
PoE
PCA
PRM
RMN
SRL
VB

Artificial intelligence

Bayesian information criterion
Bayesian logic program

Belief propagation (algorithm)
Expectation maximisation

Factor analysis

Hierarchical nonlinear factor analysis
Hidden Markov model
Independent component analysis
Inductive logic programming
Kullback-Leibler (divergence)
Logical Hidden Markov model
Maximum a posteriori (estimate)
Maximum likelihood (estimate)
Markov chain Monte Carlo
Multilayer perceptron (network)
Nonlinear dynamic factor analysis
Nonlinear Markov network
Nonlinear relational Markov network
Nonlinear state-space model
Probability density function
Product of experts

Principal component analysis
Probabilistic relational model
Relational Markov network
Statistical relational learning
Variational Bayesian

10

List of symbols

A, B,C
T, Y,z

P(A| B)
p(A| B)

ZRTWO 0N
E

And

Negation

Variables, events, or actions

Scalar variables

Probability of A given B

Probability density of A given B

Observations (or data)

Unknown variables ® = (0, .5)

Model parameters

Latent variables

Utility of A

Model structure and prior belief

Gaussian distribution of with a mean y and a variance z
Proportional to (or equals after normalisation)

Message sent away from root (belief propagation algorithm)
Message sent towards the root (belief propagation algorithm)
Potential in a Markov network

Approximation of the posterior distribution p(® | X)
Kullback-Leibler divergence between ¢ and p

Observation (or data) vector for (time) index ¢

Source (or factor) vector for (time) index ¢

Auxiliary vector (either for control or variance modelling)
Mapping from the source space to the observation space
Mapping for modelling dynamics in the source space
Matrices belonging to parameters

Mean of the parameter 6 in the approximating posterior dis-
tribution ¢

Variance of the parameter ¢ in the approximating posterior
distribution ¢

Expectation over the distribution ¢

Logical variables

Follows from (in logic programming)

Observed sequence of logical atoms

11

12

Chapter 1

Introduction

Statistical machine learning aims at discovering relevant concepts and represen-
tation of data collected in various fields of life. Learned models can be used to
analyse and summarise the data, to reconstruct missing information and predict
future data, to make decisions, plan and control. There has been huge research ac-
tivity covering various tasks in various applications leading to a diverse collection
of methods.

Let us consider an example of intensive care unit which is a hospital bed equipped
for medical care and observation to people in a critical or unstable condition. Han-
son and Marshall (2001) note that the intensive care environment is particularly
suited to the implementation of artificial intelligence tools because of the wealth of
available data and the inherent opportunities for increased efficiency in inpatient
care. There are about 250 variables online, daily laboratory data, and relational
background data including care history, nutrition, infections, relatives, and demo-
graphic data. In principle, there are machine learning methods that could be used
to learn from previous patients and applied to new patients. In practice, it is very
difficult to take the wealth of information into account because of the diversity of
data and applicable methods. Similar situation applies in other application areas
from robotics to economical modelling.

Graphical models (Pearl, 1988; Jensen et al., 1990; Cowell et al., 1999; Neapoli-
tan, 2004; Bishop, 2006) are an important subclass of statistical machine learning
methods that have clear semantics and a sound theoretical foundation. A graph-
ical model is a graph whose nodes represent random variables and edges define
the dependency structure between them. Bayesian inference solves the probability

13

14 1. Introduction

distribution over unknown variables given the data. Many methods in machine
learning that are not originally graphical models, can be reinterpreted or trans-
formed into the framework. This allows one to combine different methods in a
principled manner, as well as to reuse ideas and software between sometimes sur-
prisingly different applications.

Latent variable models aim at explaining the observed data by supplementing it
with unknown factors or a hidden state. The idea is that even if the regularities
in the data itself are difficult to find, the dependencies between latent variables
and observations are simpler, given that a proper representation is found. Model
parameters and latent variables can be solved at the same time in the framework
of graphical models.

Basic tasks in graphical models, such as inference and learning, have been solved for
decades, but relaxing the strict assumptions such as linearity of the dependencies
or that the data comes in uniform samples, is a challenging and an active field of
research. This thesis studies and introduces several extensions to the well-known
existing graphical models.

This thesis consists of an introductory part, whose structure is shown in Figure 1.1,
and nine publications described in Section 1.3.

1.1 Background

Expert systems (see for example the book by Giarratano and Riley, 1994) were
popular in the artificial intelligence (AI) community in the 70s. They consist of
simple rules of thumb in the form of if... then..., such as if burglar or earthquake
then alarm. A specialist in the field constructs a number of rules for a narrow
problem domain, and an inference engine could apply the rules to an initial set of
facts to obtain answers. The rules form a network where the output of a rule can
be used as an input for another rule. In the simplest case, the rules are restricted
to propositional calculus and truth values are binary, that is, simple statements
are either true or false. Many methods in the field of AT and machine learning can
be seen as extensions of expert systems in different directions.

In some cases the chain of reasoning from the initial facts to answers is very
long. If there is a constant number of options at each step, the size of the solution
space grows exponentially and the problem becomes intractable. Chess is a typical
example of such a problem. Searching (and planning) (see book by Russell and
Norvig, 1995) aims at finding the optimal solution as fast as possible, and finding

1.1. Background 15

Chapter 1
Introduction

/

Chapter 2
Bayesian probability theorny
/ Chapter 5
Inductive logic programming
Chapter 3

Graphical models

background

contribution

Chapter 4 Chapter 6

Variational learning of Statistical relational learning
nonlinear graphical models

N

Chapter 7
Discussion

Figure 1.1: Dependency structure of the chapters of the thesis.

a reasonable solution in case the problem is simply too large. In this thesis, the
reasoning chains are small enough so that the full structure can be always explored,
but search appears in the space of solution structures, that is, on a different level
of abstraction.

Fuzzy logic (see book by Klir and Yuan, 1995) extends the truth values of ex-
pert systems into a continuum between 0 and 1, for instance an apple might be
somewhat red or a person might be somewhat asleep. Fuzzy logic is an internally
consistent body of mathematical tools but fuzzy truth values should not be inter-
preted as measures of uncertainty (Dubois and Prade, 1993). For instance, assume
that the truth value of the event A, catching the bus, is 0.5, then the truth values
of ANA and A A —A are the same in fuzzy logic. One can imagine a person
being both somewhat asleep and somewhat awake at the same time, but some-
what catching a bus does not make sense. This simple example shows that fuzzy
logic alone is not enough in an uncertain world. Section 4.1.5 discusses how fuzzy

16 1. Introduction

concepts can, in some sense, be brought into the probabilistic framework instead.

Replacing truth values of expert systems with probabilistic variables leads to
graphical models (Pearl, 1988; Neapolitan, 2004; Bishop, 2006). Graphical models
can perform inferences such as “even though I heard an alarm, the probability of
a burglar entering the house is fairly small because I noticed an earthquake that
can also trigger the alarm.” Most expert systems would have problems using rules
in both directions like in this case. Graphical models combine graph theory with
probability theory. Both the structure of the graph and the parameters determin-
ing the probabilities can be learned from data. Graphical models form the basis
for this work so they will be described in Chapter 3.

Sometimes facts are viewed as states and rules are viewed as actions. In some
cases things do not change much, for example searching becomes planning with
exactly the same algorithms. Graphical models generalise to influence diagrams
(Pearl, 1988). The most important concern is to keep track of what information
is available to the decision maker at the time of decision. The goal of the decision
maker is to maximise wtility that it receives after the decisions. Decision theory is
reviewed in Section 2.4.

Perhaps the best known artificial neural network, the multi-layer perceptron
(MLP) network (Haykin, 1999), can be related to expert systems, too. MLP
network concentrates on a single if x then y rule where x and y are vectors of
real values. The task is to learn a nonlinear dependency based on data. An MLP
network can be constructed as a graphical model with nonlinear dependencies,
allowing for new functionality, as described in Chapter 4.

Latent variable models assume unknown source signals (also called factors, la-
tent or hidden variables, or hidden causes) to have generated the observed data
through an unknown mapping or process. The goal of learning is to identify both
the source signals and the unknown generative mapping (or process). The success
of a specific model depends on how well it captures the structure of the phenomena
underlying the observations. Various linear models have been popular (see Hyvéri-
nen et al., 2001), because their mathematical treatment is fairly easy. However, in
many realistic cases the observations have been generated by a nonlinear process.
Learning of a nonlinear latent variable model is a challenging task, because it is
computationally much more demanding and flexible models require also strong
regularisation. Variational Bayesian methods, described in Section 4.1, qualify for
both computational efficiency and regularisation.

Yet another direction to extend basic expert systems is to replace propositional
calculus by first-order logic. The results are still called expert systems or logic
programmes. One of the inference engines for first-order logic is Prolog (Sterling

1.2. Contributions of the thesis 17

and Shapiro, 1994). It is also possible to learn logic programmes from relational
data. This is called inductive logic programming (Lavrac and Dzeroski, 1994; De
Raedt, 2005). First-order logic allows for handling rich internal structure such
as samples with a varying internal structure or links between samples. Logic
programming and inductive logic programming are described in Chapter 5 and
further combined with graphical models in Chapter 6.

1.2 Contributions of the thesis

Graphical models provide a good framework for machine learning and artificial
intelligence. Graphical models are going to be extended, based on approximate
Bayesian inference, into a system that can plan, infer, and interact with its environ-
ment using both discrete and continuous variables as well as structured represen-
tations. The concrete steps that have been taken in this work can be summarised
as follows:

A novel framework where Bayesian networks may include nonlinear depen-
dencies and algorithms for variational Bayesian learning are automatically
derived.

e An extension of hidden Markov models to deal with sequences of structured
symbols rather than characters, with four relevant algorithms and an appli-
cations in the domain of bioinformatics.

e The first graphical model that can handle both nonlinear dependencies and
relations.

e An extension of a method for learning nonlinear state-space models to con-
trol.

e A novel algorithm for inference in nonlinear state-space models that is both
efficient and reliable.

e A study of methods for handling corrupted or inaccurate values in data.

e A study of some latent variable models based on their capability of recon-
structing missing values in data.

18 1. Introduction

Publication | Publication VI licati
Building blocks for Nonlinear relational Markov network s ,PUb |cat|op X P
variational Bayesian learning [df with an application to the game of G Say EM' for selecting probabilistit
latent variable models A models for logical sequences

Publication 11 Publication Il + ‘ [Publication VII } ‘
E

. Missing values in hierarchic: . X
Partially observed value: nonlinear factor analysis Logical hidden Markov model

Publication IV I_Dubhcatlorj \ Publication VIII
Learning nonlinear state—sp: State inference in Towards discovering structural
models for control variation Bayesian signatures of protein folds based
nonlinear state-space models logical hidden Markov models

Figure 1.2: Publications of the thesis. Journal articles have two frames and confer-
ence papers just one. Relationships are shown as edges that are undirected since
there is no clear causality.

1.3 Contents of the publications and author’s con-
tributions

The titles of the nine publications of this thesis and their relationships are shown
in Figure 1.2.

Publication I introduces a framework for creating graphical models from simple
building blocks. It is based on variational Bayesian learning, and unlike other
such frameworks, it can model nonlinearities and nonstationary variance. Once
the user defines the model structure, the algorithms for learning and inference are
automatically derived. The present author developed a part of the framework,
carried out a small part in the implementation, made two of the three experiments
and wrote a large part of the paper.

Well-founded handling of missing values is one of the advantages of Bayesian mod-
elling. Publication II studies the reconstruction of missing values in nonlinear fac-
tor analysis. The present author made the implementation, ran the experiments,
and wrote most of the paper under the guidance of Dr. Harri Valpola.

Values in the data are often either observed, or missing, but some cases fall in
between: Sometimes it is known that a measurement is inaccurate, or perhaps
there is only a lower bound. Publication IIT studies handling and reconstruction

1.3. Contents of the publications and author’s contributions 19

of such partially observed values in the variational Bayesian framework. It also
brings up a situation where the cost function of the variational Bayesian learning
can diverge to negative infinity. It can be solved using partially observed values
or by adding virtual noise in the data.

Publication IV applies a state-of-the-art method from machine learning to the
problem of nonlinear model-predictive control. Three different control schemes
are studied, one is based directly on the learned neural network, the second one
is the traditional nonlinear model-predictive control, and the third one is based
on Bayesian inference. The present author designed the novel control scheme and
wrote a large part of the paper.

The control application brought up a setting to which none of the tested inference
algorithms for nonlinear state-space models suited well. Publication V introduces
a novel algorithm that both converges reliably and is still fast. The present author
designed the algorithm and wrote a large part of the paper.

The last four publications involve relations. Publication VI gives the first extension
of graphical models to both nonlinear and relational direction at the same time.
The relations in the data define a structure for a graphical model where unknown
variables can then be inferred using variational Bayesian methods. The novel
method is applied to the analysis of the board game Go.

Hidden Markov models (HMMs) are very popular for analysing sequential data.
Logical hidden Markov models (LOHMMSs) extend traditional hidden Markov mod-
els to deal with sequences of structured symbols in the form of logical atoms, rather
than characters. Publication VII formally introduces LOHMMs and presents effi-
cient solutions to the three central inference problems for LOHMMs: evaluation,
most likely hidden state sequence and parameter estimation. The idea came from
Prof. Luc De Raedt whereas Dr. Kristian Kersting and the present author jointly
formalised and implemented the LOHMMSs. The present author’s contribution in
experimentation and writing were minor.

In Publication VIII, LOHMMs are applied to the domain of bioinformatics. The
task was to extract structural signatures of folds for classes of proteins according
to the classification scheme SCOP. The results indicate that LOHMMs possess
several advantages over other methods. The present author took part in the design,
implementation, experimentation, and writing.

The increase of descriptive power of LOHMMSs over HMMs comes at the expense
of a more complex model selection problem, since different abstraction levels need
to be explored. Publication IX presents a novel algorithm for choosing the model
structure. The effectiveness of the algorithm is confirmed both theoretically and

20 1. Introduction

by experimentation with real-world unix command sequence data. The work was
done jointly by Dr. K. Kersting and the present author.

Chapter 2

Bayesian probability theory

Bayesian probability theory (Jaynes, 2003; MacKay, 2003; Pearl, 1988) defines
probabilities to be subjective. Probabilities measure the credibility of an event so
they can depend on the subjects prior knowledge, and they are updated based on
observations. Say, you toss a coin and cover it with your hand without looking.
The probabilities of heads or tails are even. When you peek under your hand, only
the information available for you changes. For other people, the chances are still
even.

Bayesian probability theory gives a well-founded methodology for handling uncer-
tainty. Given a model that describes the mutual dependencies of random variables,
Bayesian probability theory can then be used to infer all the unknown variables.
This chapter gives an introduction to the theory and to practicalities of Bayesian
treatment of uncertainty from the machine-learning point of view.

2.1 Representations of data and belief

This thesis deals with three types of representational elements: discrete values,
continuous values, and relations. This applies to both internal beliefs of the sys-
tem and observations (or data). Other types of data should be possible to convert
to them in a more or less sensible manner. Anderberg (1973) discusses the repre-
sentations in detail, excluding relations.

For categorical variables, only a finite number of values is possible. For instance,

21

22 2. Bayesian probability theory

the blood type of a person is one of four possibilities. A coin toss has two possi-
bilities. The alphabet has 26 letters. Text is often processed by giving a discrete
label to each known word.

The measured sound pressure in a room is an example of a continuous value or
a real number. Most physical measurements come as continuous values, such as
measuring the time, weight, length, or temperature. Also the sensory systems
in living organisms and robots produce continuous values. Digital cameras and
scanners convert images into data where the image is divided into small square
pixels that have a constant colour. The colours are described by three numbers,
the red, green, and blue intensities. Sound waves can be represented as a sequence
of air pressure values, like in CDs. Note that even though values are always
represented with limited accuracy in computers, in theory they are handled as real
numbers.

Discrete numerical variables, such as the number of children, can be processed
as categorical data by making a finite number of categories such as 0,1,2,3,4,5+.
The other option is to reinterpret the ordinal value as a continuous value. This is
often done by people, too. We have no difficulties in understanding a statement
such as “Finnish women give birth to 1.7 children on average”. Section IV B
of Publication III studies and solves a problem originating from a conversion of
discrete to continuous values.

The third type of representation, relations, is rather different from the other two.
Relations are used to relate objects to one another. Codd (1970) wrote a significant
paper about general relational databases. The basic idea is that access to the data
is unaffected by the internal representation. This becomes important when more
and more different types of data are integrated together into a common databank.
Relational databases have become a standard. The universal model for data is
basically a set of tables where different columns are different attributes that can
be of varying type, and rows are objects. Values in the table may include identifiers
that point to other rows of the same or another table. For example, a molecule
can be represented as two tables, where the first one lists all atoms with their
identifiers and attributes, and the second table lists all bonds, with identifiers of
the involved atoms and the attributes of the bond. Similar representation applies
to web pages, where instead of bonds, the second table lists links.

As the biological senses never produce identifiers directly, they have to be created
by the mind. For example when a predator tries to catch its pray by wearing it
down, it is important for the chaser to stick to the same target even if it cannot
be recognised from the herd. Also, to know the structure of a molecule, one
has to know which atoms are connected with bonds even if the atoms as such

2.2. The Bayes rule and the marginalisation principle 23

are indistinguishable. Both cases can be solved by giving an implicit or explicit
identifier for the prey or atom. Pointers are the identifiers used in computer code
to refer to different parts of the memory, and thus to different objects.

In Bayesian analysis, the belief or uncertainty about variables is represented with
probabilities. The probability of an event A given prior knowledge B is written
as P(A | B). Similar notation can be used when A is a discrete variable: P(A |
B) denotes the probability distribution of A given B. Continuous probability
distribution can be represented with a probability density function (pdf) p(-). The
actual probability is an integral over the pdf. It is also called probability mass,
using an analogy from physics. For example the probability of an event A < 0
given B can be computed as P(A <0 | B) = fi,o p(A|B)dA.

The rest of the chapter is written for continuous values, but rewriting the integrals
as sums produces the corresponding formulas for discrete values. The treatment
of relations is left to Chapters 5 and 6.

2.2 The Bayes rule and the marginalisation prin-
ciple

The Bayes rule was formulated by reverend Thomas Bayes in the 18th century
(Bayes, 1958). It can be derived from very basic axioms (Cox, 1946). The Bayes
rule tells how to update ones beliefs when receiving new information. In the
following, H stands for the assumed model, X stands for observation (or data),
and © stands for unknown variables. p(® | H) is the prior distribution, or the
distribution of the unknown variables before making the observation. The posterior
distribution is

p(X | H,0)p(© | H)

PO =T X)

(2.1)

The term p(X | H, ©) is called the likelihood of the unknown variables given the
data and the term p(X | H) is called the evidence (or marginal likelihood) of the
model.

The marginalisation principle specifies how a learning system can predict or gen-
eralise. The probability of observing A with prior knowledge of X, H is

p(A| X, H) = /p(A 10, X, H)p(© | X, H)de. (2.2)

24 2. Bayesian probability theory

It means that the probability of observing A can be acquired by summing or
integrating over all different explanations ®. The term p(A | ©,X,H) is the
probability of A given a particular explanation ® and it is weighted with the
probability of the explanation p(© | X, H).

Using the marginalisation principle, the evidence term can be written as
p(X | H) = [p(X | ©.H)p(@ | H)dO. (23)

This emphasises the role of the evidence term as a normalisation coefficient. It is
an integral over the numerator of the Bayes rule (2.1). Sometimes it is impossible
to compute the integral exactly, but fortunately it is not always necessary. For ex-
ample, when comparing posterior probabilities of different instantiations of hidden
variables, the evidence cancels out.

2.3 Structure among unknown variables

For getting a model that is useful in new situations, i.e. having generalisation
ability, some structure among the unknown variables ® needs to be assumed. A
typical structure in machine learning is a division of unknown variables ® into
parameters @ and latent variables S, @ = (6, S). The distinction is that parame-
ters @ are shared among data samples, but there are separate latent variables for
each data sample. Thus, the number of latent variables grows linearly with data
size while the number of parameters stays the same. The latent variables can be
thought of as the internal state of a system. Sometimes computing the posterior
distribution over the parameters 6 is called Bayesian learning, leaving the term
Bayesian inference to only refer to computing the posterior distribution of latent
variables S.

Graphical models, described in Chapter 3, provide a formalism for defining the
exact structure of dependencies. The fundamental idea is that a complex system
can be built by combining simpler parts. A graphical model is a graph whose
nodes represent random variables and edges represent direct dependencies.

2.4 Decision theory

Decision theory (see book by Dean and Wellman, 1991) was first formulated by
Blaise Pascal in the 17th century. When faced with a number of actions A, each

2.5. Approximations 25

with possibly more than one possible outcome B with different probabilities P(B |
A), the rational choice is the action that gives the highest expected value U(A):

U(A) = /B U(A, B)P(B | A), (2.4)

where U(A, B) is the value of action A producing the outcome B. Daniel Bernoulli
refined the idea in the 18th century. In his solution, he defines a utility function
and computes expected utility rather than expected financial value. For example,
people tend to insure their property even though the expected financial value of
the decision is negative (after all, insurance business must be profitable for the
insurance companies). This is explained by the fact that in case of losing one’s
whole property, every euro is more important (has more utility).

Bayesian decision theory (see book by Bernardo and Smith, 2000) works in sit-
uations where the outcomes of actions are unknown but one still has to make
decisions. One simply chooses the action with highest expected utility over the
predictive distribution of outcomes. Bayesian decision theory does not just give a
way to make actions but it is actually the only coherent way of acting. This can
be shown using a so-called Dutch book argument (Resnik, 1987). A Dutch book is
a set of odds and bets which guarantees a profit, no matter what the outcome of
the gamble. A Dutch book can never be made against a Bayesian decision maker,
and if decisions are such that a Dutch book cannot be made against the decision
maker, the decisions can always be interpreted to be made by a Bayesian decision
maker.

Decision theory has a clear connection to control theory. (Dean and Wellman,
1991) The control that minimises a certain cost functional is called the optimal
control (see book by Kirk, 2004). When the control cost is used as the negative
utility —U(+), decision theory provides optimal control, even under uncertainty
(stochastic control). Section 4.3.2 and Publication IV apply Bayesian decision
theory for control in nonlinear state-space models.

2.5 Approximations

The Bayesian probability theory and decision theory sound too good to be true:
They solve learning, inference, and decision making optimally. Unfortunately, the
posterior probability distribution cannot be handled analytically except in the
simplest examples. To solve the integrals in Equations (2.2), (2.3), and (2.4), one
must resort to some kind of approximations. There are three common classes of
approximations: point estimates, sampling, and variational approximations.

26 2. Bayesian probability theory

6
2
4
1
2
0 O
0
_1 _2
_2 _4
-2 -1 0 1 2 -2 0 2 4 6 8

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; 2y, 0.02), obser-
vation z = 1, priors p(z) = N (2;0,1), p(y) = N (y;0,1). Right: model p(z) =
N (z;y,exp(—=z)), observation z = 2, priors p(z) = N (x; —1,5), p(y) = N (y;0,5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables © is the point in which the likelihood p(X | ©,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(® | X,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

2.5. Approximations 27

Figure 2.2: A sixth order polynomial is fitted to 10 data points. Left: Maximum
likelihood solution. Right: Bayesian solution. The three curves present 5%, 50%
and 95% fractiles.

performance with unseen test data starts to get worse during the learning with
training data (Haykin, 1999; Bishop, 1995; Chen, 1990). The system starts to lose
its ability to generalise. The same can happen when increasing the complexity
of the model. The model is said to overfit to the data. In this case the model
becomes too complicated and concentrates on random fluctuations in the data.
The left subfigure of Figure 2.2 shows an example of overfitting.

When the model is too simple or the learning is stopped too early, the problem
is called underfitting or underlearning respectively. Balancing between over- and
underfitting has perhaps been the main difficulty in model building. There are
several ways to fight overfitting and overlearning (Haykin, 1999; Bishop, 1995;
Chen, 1990). A popular method is to select the best time to stop learning or the
best complexity of a model by cross-validation (Stone, 1974; Haykin, 1999). Part
of the training data is left for validation and the models are compared based on
their performance with the validation set.

The problems of overlearning and overfitting are mostly related to point estimates.
The example in Figure 2.2 is solved by using the whole posterior distribution in-
stead of a single solution. The use of a point estimate is to approximate integrals so
it should be sensitive to the probability mass rather than to the probability density.
Unfortunately, ML and MAP estimates are attracted to high but sometimes nar-
row peaks. Figure 2.3 shows a situation, where search for the MAP solution first
finds a good representative of the probability mass, but then moves to the highest
peak which is on the border. This type of situation seems to be very common and
the effect becomes stronger, when the dimensionality increases. Appendix D of

28 2. Bayesian probability theory

Figure 2.3: A hypothetical posterior pdf. A point estimate could first find a good
representative of the probability mass, but then overfits to a narrow peak.

Publication I gives an example where point estimates fail completely.

2.5.2 The Laplace approximation

Compared to the point estimates, a more accurate way to approximate the inte-
grals in Equations (2.2), (2.3), and (2.4) is to use the Laplace approximation (see
Bishop, 1995; MacKay, 2003). The basic idea is to find the maximum of the func-
tion to be integrated and apply a second order Taylor series approximation for the
logarithm of that function. In case of computing an expectation over the poste-
rior distribution, the maximum is the MAP solution and the second order Taylor
series corresponds to a Gaussian distribution for which integrals can be computed
analytically. The Laplace approximation can be used to select the best solution
in case several local maxima have been found since a broad peak is preferred over
a high but narrow peak. Unfortunately the Laplace approximation does not help
in situations where a good representative of the probability mass is not a local

2.5. Approximations 29

maximum, like in Figure 2.3.

Laplace approximation can be used to compare different model structures suc-
cessfully. It can be further simplified by retaining only the terms that grow with
the number of data samples. This is known as the Bayesian information criterion
(BIC) by Schwarz (1978). Publication IX uses BIC in structural learning of logical
hidden Markov models.

2.5.3 Expectation-maximisation algorithm

The expectation-maximisation (EM) algorithm (Dempster et al., 1977; Neal and
Hinton, 1999; MacKay, 2003) can be seen as a hybrid of point estimates and
accurate Bayesian treatment. Recall the division of unknown variables ® into
parameters @ and latent variables S in Section 2.3. EM uses point estimates for
parameters € and distributions for latent variables S. The idea is that updating is
easy when these two are updated alternately. In the E-step, given certain values
for parameters 0, the posterior distribution of latent variables S can be solved.
In the M-step, the parameters @ are updated to maximise likelihood or posterior
density, given a fixed distribution over latent variables S.

Originally the EM algorithm was used for maximum likelihood estimation in the
presence of missing data. Later it was noted that latent variables can be seen as
missing data and priors can be included to get the MAP estimate.

Note that EM does not only yield a posterior approximation, but also gives practi-
cal rules for iterative updates. In a sense, EM is a recipe or meta-algorithm which
is used to devise particular algorithms using model-specific E and M steps.

EM is popular for its simplicity but speeding up the EM algorithm has been a topic
of interest since its formulation (Meng and van Dyk, 1995). Petersen et al. (2005)
analyse slowness in the limit of low noise (see also Raiko, 2001, Figure 6.1). It can
be more effective to update both S and 8 at the same time by for instance using
gradient-based algorithms (for comparison, see Kersting and Landwehr, 2004), hy-
brids of EM and gradient methods (Salakhutdinov et al., 2003), or complementing
alternative updates with line search (Honkela et al., 2003). Also, there are many
benefits from choosing a posterior approximation that is a distribution instead of a
single set of values, such as robustness against overfitting and well-founded model
selection.

The EM algorithm is adapted for parameter estimation of logical hidden Markov
models in Publication VII.

30 2. Bayesian probability theory

2.5.4 Markov chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods (Gelman et al., 1995; MacKay,
2003) approximate the posterior distribution by generating a sequence of random
samples from it. The integrals in Equations (2.2) and (2.4) are approximated by
summing over the samples. There are many algorithms for the actual sampling, the
best-known being Metropolis-Hastings algorithm and the Gibbs sampler (MacKay,
2003; Haykin, 1999). A popular method by Neal (2001) for approximating the
integral in Equation (2.3) is known as annealed importance sampling.

Gibbs sampling introduced by Geman and Geman (1984) is as follows. Known
variables are fixed to their values and unknown variables are given some initial
values. The value of some unknown variable is updated by sampling from its
conditional probability distribution assuming all the other variables fixed. This
is done repeatedly for all unknown variables. First samples are discarded but the
rest represent the posterior distribution, that is, expected values are estimated as
sample means and so on. Assuming that all states can be reached by this process,
the limiting distribution of the process is the true posterior distribution. Gibbs
sampling is used for instance in the BUGS project by Spiegelhalter et al. (1995)
and by Hofmann and Tresp (1996, 1998).

Sampling methods are very general and very accurate assuming enough computa-
tional resources. Unfortunately they are often computationally very demanding.
Also, it is difficult to say when the process has converged (MacKay, 2003). For
instance in the left subfigure of Figure 2.1, it is astronomically rare that the Gibbs
sampler would find its way from one solution mode to the other.

Expectation over the samples for the parameters is often used for interpretation
(including visualisation) purposes, or for fast application phase after learning. This
can be problematic when the posterior distribution is multi-modal. Latent variable
models often exhibit symmetries with respect to permuting the latent variables or
changing signs of pairs of variables as in the left subfigure of Figure 2.1. In this
case, the expected values are completely meaningless.

2.5.5 Variational approximations

Variational Bayesian (VB) methods fit a distribution of a simple form to the true
posterior density. VB is sensitive to probability mass rather than to probability
density. This gives it advantages over point estimates: it is robust against over-
fitting, and it provides a cost function suitable for learning model structures. If
the true posterior has more than one mode (or cluster), VB solution finds just

2.5. Approximations 31

one of them, as shown in the left subfigure of Figure 2.1. VB provides a criterion
for learning, but leaves the algorithm open. Variational Bayesian learning will be
described in more detail in Section 4.1.

Depending on the form of the approximating distribution, variational Bayesian
density estimates can be computationally almost as efficient as point estimates.
Roberts and Everson (2001) compared Laplace approximation, sample based, and
variational Bayesian learning in an independent component analysis problem on
music data. The sources were well recovered using VB learning and the approach
was considerably faster than the sample-based methods. Beal and Ghahramani
(2003) compared VB, BIC, and annealed importance sampling in scoring model
structures. VB gave a good compromise being a lot more accurate than BIC, and
about a hundred times faster than sampling with comparable accuracy.

Expectation propagation by Minka (2001) is closely related to VB. A parametric
distribution is fitted to the true posterior, but the measure of misfit is different. It
aims at a posterior approximation that contains the whole solution. VB approxi-
mation works the other way around: the whole approximation should be contained
within the solution. The difference is most apparent in cases where the posterior
is multi-modal, like in the left subfigure of Figure 2.1. An approximation that
contains both modes, also contains a lot of areas with low probability in between.
In such cases it is reasonable to select a single mode. Expectation propagation
is an algorithm whereas VB is a criterion. Unfortunately the convergence of the
expectation propagation algorithm cannot be guaranteed.

Chapter 3

Graphical models

Graphical models (Pearl, 1988; Jensen et al., 1990; Cowell et al., 1999; Neapolitan,
2004; Bishop, 2006; Murphy, 2001) provide a formalism for defining the structure
for a probabilistic model. A graphical model is a graph whose nodes represent
random variables and edges represent direct dependencies. The models presented
here vary mostly in whether they are static or dynamic and whether the variables
are discrete or continuous valued.

Graphical models have evolved from being a mere academic curiosity into a popular
field of research with a huge number of applications. The applications range from
network engineering to bioinformatics.

All the models and methods studied in this thesis can be seen as extensions of
these basic models, which are therefore introduced here.

3.1 Well-known graphical models

In the following, well-known graphical models are described. Most of them have
been invented before the general framework and thus, the graphical model frame-
work can be seen as a way to view all of these methods as instances of a common
formalism. Using the shared formalism, developments in one field are easier to
transfer to others (Jordan, 1999).

32

3.1. Well-known graphical models 33

earthquake

burglary

alarm

alarm
neighbour 2 calls

Figure 3.1: Top left: Bayesian network for the alarm example. Top right: A
Markov network formed by connecting all parents that share a common child
and removing edge directions. Bottom: The corresponding join tree whose nodes
correspond to cliques of the Markov network.

3.1.1 Bayesian networks

Let us study an example by Pearl (1988). Mr. Holmes receives a phone call from his
neighbour about an alarm in his house. As he is debating whether or not to rush
home, he remembers that the alarm might have been triggered by an earthquake.
If an earthquake had occurred, it might be on the news, so he turns on his radio.
The events are shown in Figure 3.1. Marking the events earthquake by E, burglary
by B and so on, the joint probability can be factored into

P(E,B,R,A,Ny,Ny) =
— P(E)P(B)P(R| E)P(A | E,B)P(N, | A)P(Ny | A). (3.1)

The first equation is just basic manipulation of probabilities and the second equa-
tion represents conditional independencies. For instance, the probability of an
earthquake report on the radio R does not depend on whether there is a bur-
glary B or not, given that we know whether there was an earthquake or not, so
P(R|E,B)=P(R|E).

34 3. Graphical models

‘ Ni=true N;=false
A=true 0.7 0.3
A=false 0.001 0.999

Table 3.1: The conditional probability table describing P(N; | A).

The graphical representation of the conditional probabilities depicted in the top
left subfigure of Figure 3.1 is intuitive: arrows point from causes to effects. Note
that the graph has to be acyclic, no occurrence can be its own cause. Loops, or
cycles when disregarding directions of the edges, are allowed. Assuming that the
variables are discrete, the conditional probabilities are described using a condi-
tional probability table that lists probabilities for all combinations of values for
the relevant variables. For instance, P(N; | A) is described in Table 3.1. Recalling
the notation from Section 2.3, the numbers in the conditional probability table are
parameters @ while unobserved variables in the nodes are S.

Inference in Bayesian networks solves questions such as “what is the probability
of burglary given that neighbour 1 calls about the alarm?” Approximate inference
methods such as sampling (see Section 2.5.4) can be used, but in relatively simple
cases, also exact inference can be done. For that purpose, we will form the join
tree of the Bayesian network. First, we connect parents of a node to each other,
and remove all directions of the edges, (see top right subfigure of Figure 3.1). This
is called a Markov network. Next, we find all cliques (fully connected subgraphs)
of the Markov network. Then we create a join tree' where nodes represent the
cliques in the Markov network and edges are set between nodes who share some
variables (see bottom subfigure of Figure 3.1).

We can rewrite the joint distribution in Equation 3.1 as

P(R, E)P(E, B, A)P(A, N1)P(A, N,)

P(E,B,R,A,Ni,Ny) = P(E)P(A)P(A) ’

(3.2)

where the numerator is a product of distributions of nodes in the join tree and the
denominator is the product of the distributions of the edges of the join tree. Then
the inference question “what is the probability of burglary given that neighbour
1 calls about the alarm?” is solved by substituting N; = true and marginalising

I'We assume for now that the join tree is really a tree.

3.1. Well-known graphical models 35

the uninteresting variables away:
P(B, N; = true)
P(N; = true)
x P(B, N1 = true)
= Z P(E,B,R, A, Ny = true, Ny)

P(B | Ny = true) =

E,R,A,Ny
S P(R,E)P(E, B, A)P(A, Ny = true)P(A, N»)
- P(E)P(A)P(A) ’
E,R,A,N>

(3.3)

where o¢ means “proportional to”. The constant P(N; = true) can be ignored if
the resulting distribution is normalised in the end. Summing over all the latent
variables is often prohibitively computationally expensive, so better means have
been found.

For efficient marginalisation in join trees, there is an algorithm called belief prop-
agation (Pearl, 1988) based on message passing. First, any one of the nodes in
the join tree is selected as a root. Messages 7 are sent away from the root and
messages A towards the root. The marginal posterior probability of a node X in
the join tree given observations e is decomposed into two parts:

P(X | e) X P(X | eanc(X))P(edcsc(X) | X)
= 7(X)A(X), (3.4)

where e,,¢(x) and €qesc(x) are the observations in the ancestor and descendant

nodes of X in the join tree accordingly. The messages can be computed recursively
by

m(X) =) _ P(X|Y)r(Y) (3.5)

AY) = M0 (3.6)

Ax(Y) =D AMX)P(X |Y) (3.7)
X

where Y is the parent of X in the join tree and j are its children, including
X. The message 7 for the root node is set to the prior probability of the node,
and the messages \ are set to uniform distribution for the unobserved leaf nodes.
The belief propagation algorithm extended for logical hidden Markov models in
Publication VII.

36 3. Graphical models

Returning to the example in Equation 3.2 and selecting node (E, B, A) as the root
of the join tree, the necessary messages are

7(E, B, A) = P(E, B, A) (3.8)
Arp)(E,B,A) = Z)\ P(R| E,B, A) (3.9)
Aany) (B, B, A) Z,\ (N\)P(N, | E, B, A) (3.10)
Aany) (B, B, A) Z/\ (N2)P(N, | E, B, A). (3.11)

Since A(R) and A(N3) are uniform (unobserved leaf nodes), it is easy to see that
Ar.g)(E,B,A) and A4 n,)(E, B, A) are also uniform and can thus be ignored.
We get

P(B| Ny =true) = » =(E,B,A)\(E,B,A)

20

P(E, B, A)A\any)(E, B, A)

&=
S

P(E,B,A)P(N; =true | E, B, A)

1]
hS

P(E)P(B)P(A| E,B)P(Ny = true | A). (3.12)

&=
B

For the inference to be exact, the join tree must not have loops (like the name
implies). Loopy belief propagation by Murphy et al. (1999) uses belief propagation
algorithm regardless of loops. Experiments show that in many cases it still works
fine. The messages are initialised uniformly and iteratively updated until the
process hopefully converges. It is also possible to find an exact solution by getting
rid of loops at the cost of increased computational complexity. This happens by
adding edges to the Markov network.

Bayesian networks can manage continuous valued variables, when three simplifying
assumptions are made (Pearl, 1988). All interactions between variables are linear,
the sources of uncertainty are normally distributed, and the causal network is singly
connected (no two nodes share both common descendants and common ancestors).
Instead of tables, the conditional probabilities are described with linear mappings.
Posterior probability is Gaussian.

Bayesian networks are static, that is, each data sample is independent from oth-
ers. The extension to dynamic (or temporal) Bayesian networks (see Ghahramani,

3.1. Well-known graphical models 37

1998) is straightforward. Assume that the data samples x, e.g. x = (E, B, R, A, N1, N»),
are indexed by time ¢. Each variable can have as parents variables of sample x(t—1)

in addition to the variables of the sample itself x(¢). Hidden Markov models (see
Section 3.1.5) are an important special case of dynamic Bayesian networks.

Linearity assumption can be relaxed when some approximations are made. Sec-
tion 4.4 and Publication I present such a framework based on variational Bayesian
learning. There are also other approaches. Hofmann and Tresp (1996) study
Bayesian networks with nonlinear conditional density estimators. Inference is
based on Gibbs sampling and learning is based on cross-validated maximum a
posteriori estimation.

3.1.2 Markov networks

Markov networks (Pearl, 1988), historically also known as Markov random fields,
are undirected graphical models. A Markov network does not commit on whether
A caused B, it is interested only whether there is a dependency or not. A popular
application is images where pixels are variables and edges are drawn between
neighbouring pixels.

Since inference in Bayesian networks was explained by first transforming it into a
Markov network, inference in Markov networks does not require much additional
attention. We just start directly from the undirected graph, like in the top right
subfigure of Figure 3.1. The joint density can be written directly as in Equa-
tion 3.2, but the standard way of writing the joint distribution is different. The
joint distribution is proportional to the product of potentials 1 over the cliques of
the network, for example:

P(E,B,R, A, N1, Na) x (R, E))(E, B, A)y(A, N1)p(A, Na). (3.13)

Like Bayesian networks, Markov networks can manage continuous values with
same simplifying assumptions that can be relaxed by resorting to approximations.
Hofmann and Tresp (1998) introduce nonlinear Markov networks. Each continuous
valued variable z; is modelled using all of its neighbours 5; in the network. The
modelled conditional densities p™ (x; | B;) can be directly used for Gibbs sampling.
The complete likelihood function involves some integrals which cannot be solved
in closed form but need to be approximated numerically. Taskar et al. (2002)
introduce relational Markov networks (RMN) where the structure of the Markov
network is defined by the relational data. Each variable might have a different
number of neighbours, but generalisation is possible due to shared clique potentials.

38 3. Graphical models

Figure 3.2: Graphical representations of factor analysis, principal component anal-
ysis, and independent component analysis are the same. Latent variables in the
top layer are fully connected to the observations in the bottom layer. In this case,
the vectors s(t) are two dimensional and x(¢) are three dimensional.

Section 6.3 and Publication VI extend these ideas into nonlinear relational Markov
networks.

3.1.3 Factor analysis and principal component analysis

Factor analysis (Harman, 1967; Kendall, 1975; Hyvérinen et al., 2001) (FA) can be
seen as a Bayesian network consisting of two layers, depicted in Figure 3.2. The
top layer contains latent variables s(¢) and the bottom layer contains observations
x(t). The two layers are fully connected, that is, each observation has all of the
latent variables as its parents. The index ¢ stands for the data case.

The mapping from factors to data is linear?

x(t) = As(t) + n(t), (3.14)
or componentwise

zi(t) = Z aijs;j(t) +n;(t), (3.15)

where n(t) is noise or reconstruction error vector. Typically the dimensionality
of the factors is smaller than that of the data. Factors and noise are assumed
to have a Gaussian distribution with an identity and diagonal covariance matrix,

2Note that the data is assumed to be zero mean here to simplify the equations.

3.1. Well-known graphical models 39

respectively. Recalling the notation from Section 2.3, parameters € include the
weight matrix A and noise covariance for n(t).

Equation (3.14) does not fix the matrix A, since there is a group of rotations that
yields identical observation distributions. Several criteria have been suggested for
determining the rotation. One is parsimony, which roughly means that most of
the values in A are close to zero. Another one leads to independent component
analysis described in Section 3.1.4. Sections 4.2 and 4.4.2 describe extensions of
factor analysis releasing from the linearity assumption of the dependency between
factors and observations.

Principal component analysis (PCA) (Jolliffe, 1986; Kendall, 1975; Hyvérinen
et al., 2001), equivalent to the Hotelling transform, the Karhunen-Loéve trans-
form, and the singular value decomposition, is a widely used method for finding
the most important directions in the data in the mean-square sense. It is the
solution of the FA problem under low noise (see Bishop, 2006) with orthogonal
principal components (the columns of the weight matrix A).

The first principal component a; corresponds to the line on which the projection
of the data has the greatest variance:

a; = arg max Z(ETX(L‘))2. (3.16)

T
=1
gl1=14

=1

The other components are found recursively by first removing the projections to
the previous principal components:

T k-1 2
aj = arg max [ﬁT <X(t) — Z am?x(t))} . (3.17)

=1
lgl=1 &

There are many other ways to formulate PCA, including probabilistic PCA (Bishop,
1999). In practice, the principal components are found by calculating the eigen-
vectors of the covariance matrix C of the data

C=E{x(t)x(t)"} (3.18)

The eigenvalues are positive and they correspond to the variances of the projections
of data on the eigenvectors. The weight matrix A is formed from the eigenvectors
and it is always orthogonal.

40 3. Graphical models

3.1.4 Independent component analysis

The mixing model of independent component analysis (ICA) is similar to that of
the FA (see Figure 3.2), but in the basic case with equal number of factors (or
components) as observations and without the noise term. The data is thought to
have been generated from independent components s(¢) through a square mixing
matrix A by

x(t) = As(t). (3.19)

The components s(t) are independent, that is,

p(s1, 82y, 8n) = p1(81)p2(52) - . . Pn(Sn), (3.20)

and the assumption of Gaussianity of the components is relaxed. Assuming that
at most one of the independent components is Gaussian, the model is identifiable
(Comon, 1994).

In the basic case, the number of components is the same as the number of ob-
servation and the components can be reconstructed from data given the mixing
matrix A by s(t) = A7'x(¢t). The independence of the reconstructed s(t) can
then be measured for instance by the non-Gaussianity of the components or by
mutual information (Hyvérinen et al., 2001). ICA can thus be done by iteratively
maximising such a measure. ICA has many fields of applications, such as brain
imaging (Vigdrio et al., 1998), telecommunications (Raju et al., 2006; Ristaniemi,
2000), speech separation, and so on (Hyvérinen et al., 2001).

ICA can be approached from different starting points. It can be viewed as a
Bayesian network when the one dimensional distributions for the components are
modelled with for example mixtures-of-Gaussians (Attias, 1999, 2001; Choudrey
et al., 2000; Miskin and MacKay, 2001). This is also known as independent fac-
tor analysis. Extensions to the basic ICA involve additive noise, convolutive or
nonlinear mixing, and the number of components might differ from the number of
observations (Hyvérinen et al., 2001).

Publication III studies the reconstruction of corrupted values in data by indepen-
dent factor analysis.

3.1.5 Hidden Markov models

Hidden Markov models (HMMs) (Rabiner and Juang, 1986) are dynamic Bayesian
networks with a certain structure. Observed data are assumed to be generated as
a function of an unobserved state which is evolving stochastically in time. The

3.1. Well-known graphical models 41

@ @ Qh 0.3:h

coin coin coinl
start—s ba< l\ < l\ ba<
omz/ 0|n2/ coin2

s(0) s(1) s(2) s(3)

Figure 3.3: Graphical representations of a hidden Markov model. Top left: The
corresponding Bayesian network. Top right: The transitions are represented with
an arrow and annotated with transition probabilities and possible observations.
Bottom: The trellis showing all the possible evolutions of states unrolled in time.

observations z(t) are conditioned on state s(t). The discrete state s(t) at time ¢
is a latent variable and the conditional probability for a state transition P(s(t) |
s(t—1)) does not depend on ¢. Here we will use a non-standard formulation where
the state transition is conditioned on the observation as well, that is, P(s(t) |
s(t —1),z(t — 1)). It is fairly easy to see that the two approaches are equivalent®
in representational capacity. Appendix B of Publication VII shows that the two
approaches are equivalent in a setting generalised to first-order logic.

Figure 3.3 shows an example of a HMM. There are two bent coins in a bag, one
gives more heads and the other more tails. A person draws a coin randomly from
the bag and tosses it until it lays tails up. At that point it is put back to the bag
and one of the coins is drawn and tossed again. At time 0, the system is always in
the start state (s(0) =start). Afterwards, it is always either in state coinl or coin2
possibly going through an auxiliary state bag. The state being hidden (or latent)
means that one does not know which coin is used, only the sequence of heads and
tails is observed.

3By either ignoring the conditioned z(t — 1) or including a copy of the observation to the
hidden state.

42 3. Graphical models

The instance of belief propagation algorithm for HMMs is called the forward-
backward algorithm. In the example, this would give the probabilities for which
coin was drawn from the bag at each stage. It is also possible to learn the param-
eters from observations, say, estimate how badly the coins are bent. That can be
done using the Baum-Welch algorithm, which is the instance of EM algorithm for
HMMs.

Hidden Markov models are very popular for analysing sequential data. Application
areas include computational biology (Koski, 2001), speech recognition (Rabiner
and Juang, 1986), natural language processing (Charniak, 1993), user modelling
(Lane, 1999), and robotics (Meila and Jordan, 1996).

There are several extensions of HMMs such as factorial HMMs by Ghahramani and
Jordan (1997), relational Markov models by Anderson et al. (2002), and extension
based on tree automata by Frasconi et al. (2002). Section 6.2 and Publication VII
introduce an extension of hidden Markov models to first-order logic, which gener-
alises all of the above.

3.1.6 State-space models

Linear state-space models (see textbook by Chen, 1999) share the same structure as
hidden Markov models but now the states s(¢) and observations x(t) are continuous
valued vectors. The conditional probabilities are represented as a linear mapping
with additive Gaussian noise:

s(t) = Bs(t — 1) + n4(t) (3.21)
x(t) = As(t) + n,(t) (3.22)

Note that Equation (3.22) is exactly the same as (3.14), that is, state-space models
can be seen as a dynamic extension of factor analysis. The dynamics in Equa-
tion (3.21) correspond to linear dynamical systems discretised in the time domain.

Again, the belief propagation algorithm has another name, and it was originally
derived from a different starting point probably by a Danish statistician T.N.
Thiele in 1880 and later popularised by Kalman (1960) (see also the textbook by
Anderson and Moore, 1979). In the context of state-space models, belief prop-
agation is known as the Kalman smoother. It is popular in many applications
fields, including econometrics (Engle and Watson, 1987), radar tracking (Chui and
Chen, 1991), control systems (Maybeck, 1979), signal processing, navigation, and
robotics.

In control systems, dynamics can be affected by control inputs u(¢). Equation

3.2. Tasks 43

(3.21) for dynamics is replaced by
s(t) = Bs(t — 1) + Cu(t) + n,(t). (3.23)

Note that the control inputs u(t) are coming from outside the generative model.
One possibility is to use feedback control (see textbook by Doyle et al., 1992),

u(t) = —~Kx(t — 1) +r(t), (3.24)

but note that K and r(t) should be chosen so as to accomplish the control goal,
not by inference or learning.

Section 4.3 studies an extension to nonlinear state-space models where the linear
mappings A and B are replaced by multi-layer perceptron networks. Section 4.3.2
and Publication IV study control in nonlinear state-space models.

3.2 Tasks

This thesis studies four tasks that can be done with graphical models: inferring
the distributions for latent variables, estimating (or learning) parameters of the
model, learning the structure of the model, and making decisions. Each of them
is described in turn.

3.2.1 Inference

Inference is the task of computing the posterior probability over the latent vari-
ables S given a fixed set of parameters 6, the data X and the model structure H,
according to the Bayes rule (Equation 2.1). The distribution is often very high di-
mensional and for all practical purposes it is represented as marginal distributions
(see Eq. 2.2) over groups of variables. The computations are not straightforward
and therefore one needs to use algorithms such as belief propagation, described in
Section 3.1.1.

One of the advantages of graphical models is that handling of missing values in data
is straightforward and consistent. Instead of belonging to data X, missing values
belong to latent variables S and their reconstructions (or posterior distributions)
are inferred as any other latent variables. Reconstruction of missing values in
linear and nonlinear models is studied in Section 4.1.4 and Publication II.

Exact inference by belief propagation has exponential computational complexity
with respect to the size of the largest clique in the Markov network (see Figure 3.1),

44 3. Graphical models

so often one needs to settle for approximated inference. In some extensions such
as nonlinear state-space models described in Section 4.3, there is no analytical
solution at all. Different kinds of approximate methods are described in Section 2.5.

3.2.2 Parameter learning

The task of learning the parameters of a model means that given a set of data cases
or observations X and a model structure H, one can infer the distribution over
the model parameters 8, found for instance in the conditional probability table
in Table 3.1, in the clique potentials ¢ in Equation (3.13), in the mapping A in
Equation (3.14), or the transition probabilities in Figure 3.3. Parameter learning
does not differ from inference in Bayesian probability theory, so the reasons for
studying them separately are mostly practical. For instance in the EM algorithm,
the updates of parameters and latent variables are done separately and in different
ways. Also, local update rules work efficiently in parameter learning, whereas
explicit propagation of information is important in state inference of dynamic
systems (see Publication V).

Parameter learning can be really simple. Consider learning the values in the con-
ditional probability table for neighbour 1 calling about the alarm in case there is
an alarm or not, P(N; | A) in Table 3.1. Given data samples where we observe
whether there was an alarm and whether the neighbour called or not, let us settle
for a point estimate: the most likely set of parameters. The ML solution is simply
to count how many times each of the four cases appear in the data and turn them
into probabilities by normalising each row to sum to one.

3.2.3 Structural learning

Also the structure of the model can be learned from data. This includes adding
edges between nodes and possibly new nodes. A straightforward way of learning
the structure is to try out different structures H and select the one with the largest
marginal likelihood P(X | H) (see Equation 2.3). Depending on the approxima-
tions, sometimes more complex models need to be explicitly penalised (MacKay,
1995b).

Just like parameter learning includes inference as a subproblem, structural learn-
ing includes parameter learning as a subproblem. To measure the model evidence
for a structure, parameters need to be learned. A standard way of searching is
to generate candidate structures by making minimal changes in the current hy-

3.2. Tasks 45

pothesis, such as adding, deleting, or reversing an edge. Parameters of the current
hypothesis can be used as a good first guess for the parameters of the candidates.
In a greedy search, the best candidate is selected as the next hypothesis. Getting
stuck in a local minimum can be avoided for instance by using simulated annealing
by Kirkpatrick et al. (1983) (Haykin, 1999).

Structural EM by Friedman (1998) speeds up structural search. The posterior
distribution over the latent variables is inferred for the current hypothesis and
fixed. Then, candidate hypotheses are evaluated using this distribution, that is,
only the parameters are updated. As before, one of the candidates is selected
as the next current hypothesis and the inference is done again. Now, instead
of running EM algorithm for each candidate structure, only a single M-step of
the EM algorithm is needed. Candidate evaluation is not as accurate as before,
but this is easily compensated by the large speed-up. The structural learning
algorithm for logical hidden Markov models, introduced in Publication IX, is based
on generalised structural EM.

There is a second broad class of algorithms for structural learning besides per-
forming a search. These are known as independence-based or constraint-based
algorithms. For example, Bromberg et al. (2006) discover structures of Markov
networks using independence tests.

3.2.4 Decision making

The fourth task, decision making, differs a lot from the other three. The task is
to select actions that maximise expected utility, as explained in Section 2.4. The
actions or controls appear as external inputs in the graphical model, such as the
control inputs u(t) in Section 3.1.6.

Utility, like random variables, can also be decomposed into nodes. The global
utility is a sum of local utilities. A utility node has as parents all the actions and
random variables on which it depends. Now, the values for action nodes can be
selected to maximise expected utility (Cowell et al., 1999). The resulting graph is
called an influence diagram (Pearl, 1988).

In model-predictive control (e.g. Eduardo Fernandez Camacho, 2004), actions can
be selected as follows. First, some initial guess for the actions is made. Latent
variables and utilities are inferred for a given sequence of actions. The gradient of
total expected utility with respect to each random variable and action is propa-
gated backwards to each action. Actions are updated in the direction of increasing
utility, and the process is iterated. Application of this to control in nonlinear

46 3. Graphical models

state-space models is described in Section 4.3.2 and Publication IV.

Chapter 4

Variational learning of
nonlinear graphical models

This chapter describes extensions of graphical models with continuous values to
the case where the linearity assumption is relaxed. These are known as nonlinear
graphical models. For reasons explained in Section 2.5, nonlinear graphical model
suit well to be handled using variational Bayesian methods.

Section 4.1 describes variational Bayesian methods in general and the rest of the
chapter describes some particular models.

4.1 Variational Bayesian methods

Variational Bayesian (VB) learning (Barber and Bishop, 1998; Hinton and van
Camp, 1993; Lappalainen and Miskin, 2000; MacKay, 1995a, 2003; Jordan et al.,
1999; Lappalainen and Honkela, 2000) is a fairly recently introduced (Wallace,
1990; Hinton and van Camp, 1993) approximate fully Bayesian method, which has
become popular because of its good properties. Its key idea is to approximate
the exact posterior distribution p(® | X,H) by another distribution ¢(®) that is
computationally easier to handle.

Typically, the misfit of the approximation is measured by the Kullback-Leibler
(KL) divergence between two probability distributions ¢(v) and p(v). The KL

47

48 4. Variational learning of nonlinear graphical models

divergence is defined by

= v nM)
D) | () = [a(e)1n G800 > 0 (11)

which measures the difference in the probability mass between the densities ¢(v)
and p(v). Its minimum value 0 is achieved when the densities ¢(v) and p(v) are
the same.

The VB method works by iteratively minimising the misfit between the actual
posterior pdf and its parametric approximation using the KL divergence. Note
that VB learning defines the goal and a performance measure, but leaves the
actual algorithm open. The approximating distribution ¢(@®) is usually chosen to
be a product of several independent distributions, one for each parameter or a
set of similar parameters. Even a crude approximation of a diagonal multivariate
Gaussian density is adequate for finding the region where the mass of the actual
posterior density is concentrated. The mean values of the Gaussian approximation
provide reasonably good point estimates of the unknown parameters, and the
respective variances measure the reliability of these estimates. An example is
given in Figure 2.1.

A main motivation of using VB is that it avoids overfitting which would be a
difficult problem if ML or MAP estimates were used (see Section 2.5). VB method
allows one to select a model having appropriate complexity, making often possible
to infer the correct number of sources or latent variables.

Variational Bayes is closely related to information theoretic approaches which min-
imise the description length of the data, because the description length is defined
to be the negative logarithm of the probability. Minimal description length thus
means maximal probability. The information theoretic view provides insights to
many aspects of learning and helps explain several common problems (Honkela
and Valpola, 2004; Hinton and van Camp, 1993).

4.1.1 Cost function

The basic idea in variational Bayesian learning is to minimise the misfit between
the exact posterior pdf p(® | X,H) and its parametric approximation ¢(®). The

4.1. Variational Bayesian methods 49

misfit is measured here with the Kullback-Leibler (KL) divergence

Crr = Dla(®) | 90| X.7) = (L) (4.2

_)
- o e e

where the operator (-) denotes an expectation over the distribution ¢(®). The
marginal likelihood p(X | H) is hard to evaluate and therefore the cost function
C that is actually used is

_ 4(®) _
C= <ln m> =Ckr —Inp(X | H). (4.3)

A typical choice of posterior approximations ¢(®) is Gaussian with limited co-
variance matrix, that is, all or most of the off-diagonal elements are fixed to zero.
Often the posterior approximation is assumed to be a product of independent
factors. The factorial approximation, combined with the factorisation of the joint
probability like in Equation (3.1), leads to the division of the cost function in Equa-
tion (4.3) into a sum of simple terms, and thus to a relatively low computational
complexity.

Miskin and MacKay (2001) used VB learning for ICA (See Section 3.1.4). They
compared two approximations of the posterior: The first was a Gaussian with
full covariance matrix, and the second was a Gaussian with a diagonal covariance
matrix. They noticed that the factorial approximation is computationally more
efficient and still gives a bound on the evidence and does not suffer from overfitting.
On the other hand, Ilin and Valpola (2005) showed that the factorial approximation
favours a solution that has an orthogonal mixing matrix, which can deteriorate the
performance.

4.1.2 Model selection

VB learning offers another important benefit. Comparison of different models is

straightforward. The Bayes rule can be applied again to get the probability of a

model given the data

p(X | Hi)p(H,)
p(X)

where p(H;) is the prior probability of the model H; and p(X) is a constant that
can be ignored. A lower bound on the evidence term p(X | H;) is obtained from

p(Hi | X) = (4.4)

50 4. Variational learning of nonlinear graphical models

Equation (4.3) and it is

p(X | Hi) = exp(Cxr — C) > exp(—C). (4.5)

Multiple models can be used as a mixture-of-experts model (Haykin, 1999). The
experts can be weighted with their probabilities p(H; | X) given in equation
(4.4). Lappalainen and Miskin (2000) show that the optimal weights in the sense
of variational Bayesian approximation are in fact p(H;)exp(—C). If the models
have equal prior probabilities p(H;), the weights simplify further to exp(—C). In
practice, the costs C tend to differ in the order of hundreds or thousands, which
makes the model with the lowest cost C dominant. Therefore it is reasonable to
concentrate on model selection rather than weighting.

4.1.3 Optimisation and local minima

Using nonlinear models leads to an optimisation problem with many local minima.
This makes the method sensitive to initialisation. Typically initialisation is based
on linear PCA (see Section 3.1.3). This can lead to suboptimal results if the mixing
is strongly nonlinear. Honkela et al. (2004) significantly improve performance by
using a nonlinear model (kernel PCA) for initialisation instead.?

Learning and inference are based on minimising the cost function in Equation (4.3)
by iterative updates. There are two essentially different approaches for that. In
the first approach, updates are local, that is, only some variables are updated while
assuming that the posterior distribution over other variables stays constant. The
second option is to update all variables at once. Benefits of local updating include
biological motivation (all interaction in brains is local), modularity, parallelisabil-
ity, and easily guaranteed convergence. Global updates, on the other hand, are
often faster. Both approaches are used in this work. Honkela et al. (2003) show
how local updates can be transformed into global ones.

Some parts of a latent variable model might be effectively turned off during learn-
ing. This happens when a latent variable has no effect on any of the other latent
variables or observations. Such a set of parameter values is a local minimum of the
cost function. In such cases, it is reasonable to either change the model structure
accordingly, or reinitialise those parts. Publication I discusses these issues and
measures against suboptimal local minima in detail.

IThe use of nonlinear models is nontrivial, like choosing a good kernel in kernel PCA.

4.1. Variational Bayesian methods 51

4.1.4 Missing values

Handling missing values in data is an important point in statistical analysis (Little
and D.B.Rubin, 1987). Generative models can usually easily deal with missing
observations, and can also be used to fill in the missing values. In supervised
learning, the data is split into two parts: inputs and desired outputs. Learning
data includes both, but in the end, the model is used for predicting outputs based
only on the test inputs. By ignoring the splitting and creating a model for the
whole data, unsupervised learning can be used for a similar task as supervised
learning. Both the inputs and desired outputs of the learning data are treated
equally. When a generative model for the combined data is learned, it can be
used to reconstruct the missing outputs for the test data. The scheme used in
unsupervised learning is more flexible because any part of the data can act as the
cue which is used to complete the rest of the data. In supervised learning, the
inputs always act as the cue.

The quality of the reconstructions provides insight to the properties of different
unsupervised models. Self-organising maps by Kohonen (2001), factor analysis,
and its nonlinear extensions were studied in Publication II by reconstructing the
missing values of various data sets. Experiments were conducted using four differ-
ent scenarios for the missing values. This way, different aspects of the algorithms
could be studied. These included accuracy in high-dimensional data, high non-
linearity, memorisation, and generalisation. The performance of several models
varied a lot according to the different settings.

One of the experiments in both Publications II and V involves missing values
in speech spectrograms. Spectrograms represent energy of the frequency content
in a short time window for a number of time points and frequencies. Speech
spectrogram is a standard representation in speech recognition. Paloméki et al.
(2004) apply the missing-data framework to recognise reverberant speech. The
algorithm seeks strong speech onsets not contaminated by reverberation and speech
recognition is based on only the values that are observed. This approach increases
the recognition accuracy substantially.

4.1.5 Partially observed values

A single value in the data can be somewhere between being observed and missing.
So-called coarse data means that we only know that a data point belongs to a
certain subset of all possibilities. So-called soft or fuzzy data generalises this
further by giving weights to the possibilities. Pearl (1988) handles the issue with

52 4. Variational learning of nonlinear graphical models

Figure 4.1: Some x-values of the data are observed only partially. They are marked
with dotted lines representing their confidence intervals. Top: A simple data set
for a factor analysis problem. Bottom left: In a compared approach, where a
distribution is fixed over the values, the model (a Gaussian shown as the ellipse)
needs to adjust to cover the distributions. Bottom right: In the virtual evidence
approach, the partially observed values are reconstructed based on the model.

so called virtual evidence. The partially observed node itself is set as missing, but
a new node is added as a child for it. Observing the new node produces a wanted
likelihood term for the partially observed node.

In Publication III, different ways of handling partially observed values are stud-
ied in context of variational Bayesian learning. A simple example comparing two
different approaches is given in Figure 4.1. The virtual evidence approach is rec-
ommended based on both theory and experimentation in which independent factor
analysis (see Section 3.1.4) was applied to real image data.

Green et al. (2001) and Seltzer et al. (2004) study missing and unreliable values
framework to improve speech recognition in noisy environment. The recognition
accuracy is greatly improved in noisy environments by first identifying components
in the spectrographic representation that are corrupt.

4.2. Nonlinear factor analysis 53

4.2 Nonlinear factor analysis

Recall factor analysis described in Section 3.1.3, in which the conditional density in
Equation (3.14) is restricted to be linear. In nonlinear FA, the generative mapping
from factors (or latent variables or sources) to data is no longer restricted to be
linear. The general form of the model is

x(t) = £(s(t),0;) + n(t) . (4.6)

This can be viewed as a model about how the observations were generated from
the sources. The vectors x(t) are observations at time ¢, s(t) are the sources, and
n(t) are noise. The function f(-) is a mapping from source space to observation
space parametrised by 0.

Lappalainen and Honkela (2000) use a multi-layer perceptron (MLP) network (see
Haykin, 1999) with tanh-nonlinearities to model the mapping f:

f(s;A,B,a,b) = Btanh(As+a) + b, (4.7)

where the tanh nonlinearity operates on each component of the input vector sep-
arately. The mapping f is thus parameterised by the matrices A and B and bias
vectors a and b. MLP networks are well suited for nonlinear FA. First, they are
universal function approximators (see Hornik et al., 1989, for proof) which means
that any type of nonlinearity can be modelled by them in principle. Second, it is
easy to model smooth, nearly linear mappings with them. This makes it possible
to learn high dimensional nonlinear representations in practice.

The traditional use of MLP networks differs a lot from the use in nonlinear FA.
Traditionally MLP networks are used in a supervised manner, mapping known
inputs s(t) to desired outputs x(t). During training of the network, both s(t) and
x(t) are observed, whereas in nonlinear FA, s(t) is always latent. The traditional
learning problem is much easier and can be reasonably solved by using just point
estimates.

The used posterior approximation is a fully factorial Gaussian:
1(©) = [Ja®) = [V (0::0:.6:) . (48)

where the unknown variables ©; include the factors s, the matrices A and B,
and other parameters. Thus for each unknown variable 6;, there are two parame-
ters, the posterior mean ©; and the posterior variance ©,. The distribution that
propagates through the nonlinear mapping f has to be approximated. Honkela

54 4. Variational learning of nonlinear graphical models

and Valpola (2005) suggest to do this by linearising the tanh-nonlinearities using
a Gauss-Hermite quadrature. This works better than a Taylor approximation or
using a Gauss-Hermite quadrature on the whole mapping f.

Using linear independent component analysis (ICA, see Section 3.1.4) on sources
s(t) found by nonlinear factor analysis is a solution to the nonlinear ICA prob-
lem, that is, finding independent components that have been nonlinearly mixed
to form the observations. A variety of approaches for nonlinear ICA are reviewed
by Jutten and Karhunen (2004). Often, a special case known as post-nonlinear
ICA is considered. In post-nonlinear ICA, the sources are linearly mixed with the
mapping A followed by component-wise nonlinear functions:

f(s;05) = ¢(As + a), (4.9)

where the nonlinearity ¢ again operates on each element of its argument vector
separately. Ilin and Honkela (2004) consider post-nonlinear ICA by variational
Bayesian learning.

4.3 Nonlinear state-space models

In many cases, measurements originate from a dynamical system and form time
series. In such cases, it is often useful to model the dynamics in addition to the
instantaneous observations. Valpola and Karhunen (2002) extend the nonlinear
factor analysis model by adding a nonlinear model for the dynamics of the sources
s(t). This results in a state-space model where the sources can be interpreted
as the internal state of the underlying generative process. On the other hand,
nonlinear state-space models are a direct extension of linear state-space models
(see Section 3.1.6) where the linearity assumption is relaxed.

The nonlinear static model of Equation (4.6) is extended by adding another non-
linear mapping g to model the dynamics. This leads to source model

s(t) =s(t—1)+g(s(t—1),04) +ny(t), (4.10)
g(s;C,D,c,d) = Dtanh(Cs +¢) +d, (4.11)

where s(t) are the sources (states), ns(t) is the Gaussian noise, and the dynamics
mapping g(+) is modelled by an MLP network.

In case the dynamic system is changing slowly, there are high correlations between
consecutive states. This is taken into account by giving up the fully factorial
posterior approximation used in nonlinear FA. The posterior distribution of each

4.3. Nonlinear state-space models 55

component i of the state vector s(t) is conditioned on the same component i of the
state vector s(t — 1). The approximate density q(s;(t) | s;(t — 1)) is parameterised
by the mean, linear dependence, and variance (see Valpola and Karhunen, 2002,
for details).

Considering the sequence of consecutive mappings g in the system dynamics, where
each mapping g consists of a linear mapping, component-wise nonlinearities, and
a second linear mapping, one might think that one of the two linear mappings
before and after the states is redundant since two consecutive linear mappings can
always be combined into one. The second mapping allows the model to select
a representation where the variational approximation is most accurate. It also
allows the dimensionality of the state-space to be different from the number of
used nonlinearities, thus decreasing computational complexity in some cases.

An important advantage of the VB method is its ability to learn a high-dimensional
latent source space. Computational and over-fitting problems have been major
obstacles in developing this kind of unsupervised methods thus far. Potential
applications for the method include prediction and process monitoring, control,
and speech enhancement for recognition. Is process monitoring, Ilin et al. (2004)
show that VB learning is able to find a model which is capable of detecting an
abrupt change in the underlying dynamics of a fairly complex nonlinear process.

4.3.1 State inference

In linear state space models, the sequence of states or sources s(1),...,s(7) can
be exactly inferred from data with an algorithm called the Kalman smoothing
by Kalman (1960) (see also Anderson and Moore, 1979). Ghahramani and Beal
(2001) show how belief propagation and the junction tree algorithms can be used
in the inference in the variational Bayesian setting. As an example they perform
inference in linear state-space models. Exact inference is accomplished using a
single forward and backward sweep. Unfortunately these results do not apply to
nonlinear state space models.

The idea behind iterated extended Kalman smoother (see Anderson and Moore,
1979) is to linearise the mappings f and g around the current state estimates S(t)
using the first terms of the Taylor series expansion. The algorithm alternates be-
tween updating the states by Kalman smoothing and renewing the linearisation.
When the system is highly nonlinear or the initial estimate is poor, the iterated ex-
tended Kalman smoother may diverge. The iterative unscented Kalman smoother
by Julier and Uhlmann (1997) replaces the local linearisation by a deterministic
sampling technique. The sampled points are propagated through the nonlineari-

56 4. Variational learning of nonlinear graphical models

ties, and a Gaussian distribution is fitted to them. The use of non-local informa-
tion improves convergence and accuracy at the cost of doubling the computational
complexity, but still there is no guarantee of convergence.

Particle filtering (Doucet et al., 2001) is an increasingly popular method for state
inference. It generates random samples from the posterior distribution. The basic
version requires a large number of particles or samples to provide a reasonable ac-
curacy. If the state space is high dimensional, the sufficient number of samples can
become prohibitively large. There are many improvements for the basic algorithm
to improve efficiency. One of them, Rao-Blackwellisation (see e.g. Ristic et al.,
2004), uses analytical solutions to some of the filtering equations instead of pure
sampling.

Variational Bayesian inference in nonlinear state-space models is based on updating
the posterior approximation of states for minimising the cost function C. Recall
that C is a sum of simple terms. Terms that involve a certain state s(t) at time
t are independent of all the other states except the closest neighbours s(t — 1)
and s(t + 1). Most optimisation algorithms would thus only consider information
from the closest neighbours for each update. Information spreads around slowly
because the states of different time slices affect each other only between updates.
It is possible to predict this interaction by a suitable approximation.

Publication V introduces an update algorithm for the posterior mean of the states
s(t) by approximating total derivatives

iC <~ aC o5(r)

ds(t) ~ <= ds(r) 0s(t)"

(4.12)

Once we can approximate ag(i(f)l) and 025@1) by linearising the mappings f and
g, the total derivatives are computed efficiently using the chain rule and dynamic
programming. To summarise, the novel algorithm is based on minimising a varia-
tional Bayesian cost function and the novelty is in propagating the gradient agi(cr)

through the state sequence.

When an algorithm is based on minimising a cost function, it is fairly easy to guar-
antee convergence. While the Kalman filter is clearly the best choice for inference
in linear Gaussian models, the problem with many of the nonlinear generalisation
is that they cannot guarantee convergence. Even when the algorithms converge,
convergence can be slow. Another recent fix for convergence by Psiaki (2005)
comes with a large computational cost.

Publication V compares the proposed algorithm to some of the existing methods
using two experimental setups: Simulated double inverted pendulum and real-

4.3. Nonlinear state-space models 57

world speech spectra. The results were better than any of the comparison methods
in all cases. The comparison to particle filtering was not conclusive because the
particle filter was not Rao-Blackwellisised.

4.3.2 Control

Model predictive control (see Morari and Lee, 1999, for a survey) aims at control-
ling a dynamical system by using a predictive model. Control inputs u(¢) are added
to the nonlinear state-space model. In publication IV this is done by modifying
the system dynamics in Equation (4.10) by

u(t) | u(t—1)
90] ([200].0,) i 12
Compared to Equation (3.23), the control signals u(t) are not coming from out-
side the model, but they are modelled as well. Whereas feedback control in Equa-
tion (3.24) models control inputs as a fixed function of the observations, Equa-

tion (4.13) only gives a distribution for the control inputs and leaves the exact
selection open.

Publication IV studies three different control schemes in this setting. Direct control
is based on using the internal forward model directly by selecting the mean of the
probability distribution given by Equation (4.13). Direct control is fast to use, but
the learning of the mapping g is hard to do well.

The second control scheme is nonlinear model-predictive control (see e.g. Eduardo
Fernandez Camacho, 2004), which is based on optimising control signals based on
maximising a utility function. First, an initial guess for the control signals u(t) is
made. The posterior distribution of the future states are inferred. The gradient
of total expected utility with respect to states and control signals is propagated
backwards in time. Control signals are then updated in the direction of increasing
utility. This process is iterated as long as there is time before the next control
signal needs to be selected. Nonlinear model-predictive control can be seen as
applying decision theory (see Sections 2.4 and 3.2.4).

Optimistic inference control, introduced in Publication IV, is the third studied
control scheme. It is based on Bayesian inference answering the question: “As-
suming success in the end, what will happen in near future?” Control signal is
inferred given the history of observations and assuming wanted observations af-
ter a gap of missing values. Inference combines the internal forward model with
the evidence propagating backwards from the desired future. Optimistic infer-
ence control lacks in flexibility and theoretical foundation compared to nonlinear

58 4. Variational learning of nonlinear graphical models

X

Figure 4.2: The cart-pole system. The goal is to swing the pole to an upward
position and stabilise it without hitting the walls. The cart can be controlled by
applying a force to it.

model-predictive control, but it provides a link between two problems: inference
and control. It gave the inspiration for the inference algorithm introduced in Pub-
lication V. Tornio and Raiko (2006) apply the algorithm back in control. Attias
(2003) independently discovered the idea behind optimistic inference control, call-
ing it planning by probabilistic inference. His example, finding a goal in a grid
world, is quite different from control, but the underlying idea is still the same.

The proposed control methods were tested with a cart-pole swing-up task in Fig-
ure 4.2. Figure 4.3 illustrates the model predictive control in action. The experi-
mental results in Publication IV confirm that selecting actions based on a state-
space model instead of the observation directly has many benefits: First, it is more
resistant to noise because it implicitly involves filtering. Second, the observations
(without history) do not always carry enough information about the system state.
Third, when nonlinear dynamics are modelled by a function approximator such as
an MLP network, a state-space model can find such a representation of the state
that it is more suitable for the approximation and thus more predictable.

Model development is by far the most critical and time-consuming step in imple-
menting a model predictive controller (Morari and Lee, 1999). The analysis in
Publication IV is of course very shallow compared to the huge mass of control
literature but there seems to be need for sophisticated model learners (or system
identifiers). For instance, Rosenqvist and Karlstrom (2005) also learn a nonlinear
state-space model for control. The nonlinearities are modelled using piecewise lin-
ear mappings. Parameters are estimated using the prediction error method, which
is equivalent to the maximum likelihood estimation in the Bayesian framework.

4.4. Bayes Blocks for nonlinear Bayesian networks 59

hidden state

70 80 90 100

dx
—0
—doe
—F

observed state

70 80 90 100

time steps

Figure 4.3: Top: The pole is successfully swung up by moving first to the left
and then right. Predictions are plotted with grey. Bottom: The hidden states,
observations, and the control signal in the same situation. The current time ¢t = 16
is marked with a vertical dash line. The prediction horizon is 40 steps.

4.4 Bayes Blocks for nonlinear Bayesian networks

Nonlinear factor analysis and nonlinear state-space models can be seen as spe-
cial cases of Bayesian networks where the linearity assumption is relaxed. Aside
from these two, there are lots of possibilities to build the model structure that
defines the dependencies between the parameters and the data. To be able to
manage the variety, a modular software package using C++/Python called the
Bayes Blocks (Valpola et al., 2003a) has been created. It is introduced in Publi-
cation I and in an earlier conference paper by Valpola et al. (2001).

60 4. Variational learning of nonlinear graphical models

m is C?
Va

-1

v [T}42 Z

l As+a l) s(t-1) s(t)

Figure 4.4: First subfigure from the left: The circle represents a Gaussian node cor-
responding to the latent variable s conditioned by mean m and variance exp(—v).
Second subfigure: Addition and multiplication nodes are used to form an affine
mapping from s to As + a. Third subfigure: A nonlinearity f is applied immedi-
ately after a Gaussian variable. The rightmost subfigure: Delay operator delays a
time-dependent signal by one time unit.

The design principles for Bayes Blocks have been the following. Firstly, we use
standardised building blocks that can be connected rather freely and can be learned
with local learning rules, i.e. each block only needs to communicate with its neigh-
bours. Secondly, the system should work with very large scale models. Com-
putational complexity is linear with respect to the number of data samples and
connections in the model.

The building blocks include Gaussian variables, summation, multiplication, and
nonlinearity. The framework does not make much difference in parameters 8 and
latent variables S, the former are represented with scalars and the latter as vec-
tors. Variational Bayesian learning provides a cost function which can be used for
updating the variables as well as optimising the model structure. The derivation
of the cost function, as well as learning and inference rules, is automatic which
means that the user only needs to define the connections between the blocks.

The Gaussian node is a variable node and the basic element in building hierarchi-
cal models. Figure 4.4 (leftmost subfigure) shows the schematic diagram of the
Gaussian node. Its output is the value of a Gaussian random variable s, which
is conditioned by the inputs m and v. Denote generally by A (Jc;mm,ag) the
probability density function of a Gaussian random variable z having the mean m,
and variance 02. Then the conditional probability function of the variable s is
p(s | m,v) = N (s;m,exp(—v)). As a generative model, the Gaussian node takes
its mean input m and adds to it Gaussian noise (or innovation) with variance

exp(—v).

4.4. Bayes Blocks for nonlinear Bayesian networks 61

The addition and multiplication nodes are used for summing and multiplying vari-
ables. These standard mathematical operations are typically used to construct
linear mappings between the variables. A mnonlinear computation node can be
used for constructing nonlinear mappings between the variable nodes. The de-
lay operation can be used to model dynamics. Harva et al. (2005) implements
several new blocks including mixture-of-Gaussians and rectified Gaussians. Harva
and Kaban (2005) use the rectified Gaussian node to create a factor model with
non-negativity constraints and Nolan et al. (2006) applies Bayes Blocks in an as-
tronomical problem.

Nodes propagate certain expectations about their state to their neighbours in
the network. For variable nodes in a network, update rules for the posterior
approximation ¢ that minimise the cost function C given that ¢ of all the other
variables stays constant, have been derived. The updates are very simple since
the posterior approximation ¢ is of a very simple form: It is a Gaussian with a
diagonal covariance matrix.

Winn and Bishop (2005) introduce an algorithm called variational message passing
with close similarities with Bayes Blocks. It does not allow for nonlinearities or
variance modelling (see the following section), but on the other hand, it handles
discrete variables more freely. It also allows for a posterior approximation fac-
torised such that disjoint groups of variables are independent, but dependencies
within the group are modelled. Variational message passing updates the poste-
rior approximation of one factor at a time using VB learning. Note that the best
properties of Bayes Blocks and variational message passing could be combined.

Similar models can be studied also with rather different posterior approximations.
Spiegelhalter et al. (1995) introduce the BUGS software package that uses Gibbs
sampling (see Section 2.5.4) for Bayesian inference. The package supports mixture
models, nonlinearities, and non-stationary variance. A thorough experimental
comparison to Bayes Blocks would be very valuable.

4.4.1 Variance modelling

In many models, variances are assumed to have constant values although this as-
sumption is often unrealistic in practice. Joint modelling of means and variances
is difficult in many learning approaches, because it can give rise to infinite proba-
bility densities. In Bayesian methods where sampling is employed, the difficulties
with infinite probability densities are avoided, but these methods are not efficient
enough for very large models. The Bayes Blocks allow to build hierarchical or
dynamical models for the variance.

62 4. Variational learning of nonlinear graphical models

The Bayes Blocks framework was used by Valpola et al. (2004) to jointly model
both variances and means in biomedical MEG data. The same approach can be
used to translate any model for a mean to a model for a variance, so a large number
of models in the literature could be explored as models for variance as well.

The left subfigure of Figure 4.5 shows how linear state-space model (see Sec-
tion 3.1.6) is built using Bayes Blocks. It can be extended into a model for
both means and variances as depicted graphically in the right subfigure of Fig-
ure 4.5. The variance sources u(t) characterise the innovation process of s(t), in
effect telling how much the signal differs from the predicted one but not in which
direction it is changing. Both regular sources s(¢) and variance sources u(t) are
modelled dynamically by using one-step recursive prediction model for them. The
model equations are:

) = As(t) + a+n,(t) ()
)=Bs(t— 1)+ b+ ny(t) (4.15)
) =N (nsi(t); 0, exp [—u;(1)]) (4.16)
)=Cu(t—1)+c+mn,(t), (4.17)

where the variance of n;(t), the ith component of the noise vector n;(t), is deter-
mined by the variance source u;(t).

4.4.2 Hierarchical nonlinear factor analysis

In hierarchical nonlinear factor analysis (HNFA) (Raiko, 2001; Valpola et al.,
2003b), there are a number of layers of Gaussian variables, the bottom-most layer
corresponding to the data. There is a linear mixture mapping from each layer to
all the layers below it. The middle layer variables are immediately followed by a
nonlinearity. The model structure for a three-layer network using Bayes Blocks is
depicted in the left subfigure of Figure 4.6. Model equations are

h(t) = As(t) + a + ny (1) (4.18)
x(t) = B@[h(t)] + Cs(t) + b + n,(t), (4.19)

where ny(t) and n,(t) are Gaussian noise terms and the nonlinearity ¢(§) =
exp(—&2) operates on each element of its argument vector separately. This activa-
tion function has the universal approximation property as well (see Stinchcombe
and White, 1989, for proof). Note that the short-cut mapping C from sources
to observations means that hidden nodes only need to model the deviations from
linearity.

4.4. Bayes Blocks for nonlinear Bayesian networks 63

Figure 4.5: Model structures represented using the blocks in Figure 4.4. Observed

variables are shaded. Left: A linear Gaussian state-space model. Right: A dynamic
model for the variances of the sources which also have a recurrent dynamic model.

HNFA has latent variables h(¢) in the middle layer, whereas in nonlinear FA, the
middle layer is purely computational. This results in some differences. Firstly, the
cost function C in HNFA is evaluated without resorting to approximation, since
the required integrals can be solved analytically. Secondly, the computational
complexity of HNFA is linear with respect to the number of sources, whereas the
computational complexity of nonlinear FA is quadratic. HNFA is thus applicable
to larger problems, and it is feasible to use even more layers than three. Also, the
efficient pruning facilities of Bayes Blocks allow determining whether the nonlinear-
ity is really needed and pruning it out when the mixing is linear, as demonstrated
by Honkela et al. (2005).

The good properties of HNFA come with a cost. The simplifying assumption of
diagonal covariance of the posterior approximation, made both in nonlinear FA
and HNFA, is much stronger in HNFA because it applies also in the middle layer
variables h(t). Publication II compares the two methods in reconstructing missing
values in speech spectrograms. As seen in the right subfigure of Figure 4.6, HNFA is
able to reconstruct the spectrogram reasonably well, but quantitative comparison
reveals that the models learned in HNFA are more linear (and thus in some cases

64 4. Variational learning of nonlinear graphical models

iy
.

Data with missing values
L Bl 1

S9SN

C

i
HNFA reconstruction

-

-

Figure 4.6: Left: The model structure for hierarchical nonlinear factor analysis
(HNFA). Right: Some speech data with and without missing values (Setting 1)
and the reconstruction given by HNFA.

worse) compared to the ones learned in nonlinear FA.

4.4.3 Relational models

So far, the models have been divided into two categories: static and dynamic. In
static modelling, each observation or data sample is independent of the others. In
dynamic models, the relations between consecutive observations are modelled. The
generalisation of both is that the relations are described in the data itself, that
is, each observation might have a different model structure. The following two
chapters concentrate on relational models. One of the models, nonlinear relational
Markov network (see Section 6.3), is implemented using Bayes Blocks.

Chapter 5

Inductive logic programming

Often the structure that relates objects or variables in machine learning tasks is
assumed to be constant, for example, the data comes in samples of fixed size as in
all of the models presented in Section 3.1. Sometimes the samples are structured,
like molecules, or related to each other in an individual manner, like web pages.
First-order logic, or equivalently, relational modelling is needed to represent such
structured data. Inductive logic programming aims at learning logic programmes
from data by combining machine learning and first-order logic, but let us first
discuss logic programming in general.

5.1 Logic programming

The main idea of logic programming is that deduction can be viewed as a form of
computation (Sterling and Shapiro, 1994). The declarative statement

H < By A By A By (5.1)
can be interpreted procedurally as “to solve H, solve By and By and B3”, or shortly
H «— By, By, Bs. A logic programme is thus a set of logical axioms and it is run by
querying for a proof of some goal statement. The closed world assumption (Reiter,

1978) is used, that is, everything that cannot be proven to be true, is assumed to
be false.

Normally the statements in a logic programme are restricted to be of the form
H «— By,...,B,, that is, they are so-called Horn clauses. This ensures that the

65

66 5. Inductive logic programming

proof for the goal statement has a simple tree structure. Atom H is called the head
of the clause and the atoms By, ..., B, form the body of the clause. Statements
with n = 0 are called facts because the proof of the head does not require solving
any more statements.

Logic programming uses first-order logic. This means that an atom can be struc-
tured as a predicate followed by a number of arguments in brackets. Some of the
arguments can be variables.! An example of a rule (or clause) that uses first-order
logic is son(X,Y’) « parent(Y, X), male(X), that is, X is the son of Y if Y is the
parent of X and X is male. X and Y are logical variables that can represent any
object (people in this case). Variables are written in upper case to avoid confusion.
Atoms that do not contain any variables are called ground. Completeness theo-
rem by Godel (1929) states that in first-order predicate calculus every logically
valid formula is provable. Second-order logic allows variables as predicates, but
completeness does not hold anymore.

A logic programme that contains the rule son(X,Y") <« parent(Y, X'), male(X) and
some ground facts such as parent(mary, robert) and male(robert), can answer a
query son(X, mary). The solver finds the rule and tries to solve the body of the
rule, that is parent(mary, X) and male(X). The only solution is X = robert which
is returned as the output of the programme.

Prolog is the best-known logic programming language. Sterling and Shapiro (1994)
wrote a good book on logic programming and Prolog in specific. Logic program-
ming differs somewhat from traditional procedural programming. The clearest
difference is that the values of variables are fixed once set. Where procedural
programmes tend to have for-loops, logic programmes use recursion instead. The
strong areas of logic programming include handling structured data, symbolic ma-
nipulation, and self-changing programmes. In inductive logic programming, rules
in logic programmes are learned from examples.

5.2 Inductive logic programming

Inductive logic programming (ILP) provides tools for relational data mining, that
is, mining from data stored in multiple tables. It works with the powerful lan-
guage of logic programmes, both as prior domain knowledge and as describing
the discovered patterns. A good introduction to the theory, implementation, and

1 Atoms may in general be nested. For example knows(X, mother(X,Y)) + mother(X,Y)
means that every person X knows that she is the mother of Y if that really is the case. Nested
atoms are out of the scope of this thesis.

5.2. Inductive logic programming 67

More b
general /\
Wines
a b ¢ fat {o} {c}

john 1 1 0 / ><><\
mary 1 1 O fab} - {ac} {b,c}
robert 0 1 1 More
inda 0 0 1 specific {ab.c}

Figure 5.1: Left: Wine tasting data where 1 means that the person liked the wine.
Right: The hypothesis space includes all combinations of items (wines) ordered in
a trellis where the edges represent minimal generalisation (upwards) or minimal
specialisations (downwards). The dashed curve represents the border between
frequent and infrequent itemsets, assuming 30% frequency threshold.

applications of ILP is written by Muggleton and De Raedt (1994). Another in-
troduction to ILP that also relates logic programming terminology to database
terminology, is given by Dzeroski and Lavrac (2001). Books that address ILP
have been written by De Raedt (2005, 1996); Lloyd (2003), and Furukawa et al.
(1999).

The basic data mining task of ILP is as follows: Given positive (and possibly neg-
ative) examples, a concept description language, and possibly background knowl-
edge, find a set of association rules that covers most of the positive examples but
only few of the negative examples.

5.2.1 Example on wine tasting

Let us first study a simple example of propositional data mining in the domain
of wine tasting. The task is to recommend wines based on the list of other wines
that a person likes. Let us assume that we have a large database with information
of whether or not some people like a particular wine. This can be represented as
a table with wines as columns and people as rows. Each cell contains a 1 if the
person likes the wine and 0 if not. Such a table is shown in Figure 5.1.

First, we will find interesting sets of wines. We measure how often all the wines

68 5. Inductive logic programming

of the set are liked by the same people. A frequent itemset is a set of columns for
which the number of rows that has only 1s in the corresponding cells is greater
than some threshold. Let us say that a group of wines is a frequent itemset if at
least 30% of the people like all of them. In this case, the frequent itemsets are

{},{a},{b}, {c}, and {a,b}.

The hypothesis space for different itemsets (or patterns) is depicted in Figure 5.1.
The different hypotheses have a partial order for generality and specificity. If
an itemset is frequent, all itemsets that are generalisations of it, are also. If an
itemset is not frequent, all itemsets that are specialisations of it, are infrequent
as well. This property is essential for pruning the hypothesis space during search.
For instance, if we know that {a,c} is not frequent, we also know that {a,b,c}
is not frequent without testing. The size of the hypothesis space is exponential
with respect to the number of items, so pruning is essential to achieve a reasonable
computational complexity.

An association rule tells that if a person likes a certain set of wines, he or she will
like some other wine. A frequent itemset can be transformed into an association
rule by choosing one of the wines to be the one to be predicted based on the
others. Now we can test whether the rule applies to all the people in the database,
or is statistically significant. The found rules are the logic programme that were
inferred from the data inductively. In the example, we can find the rule b «— a
that applies to all cases, that is, everyone who likes wine a also likes wine b.

5.2.2 From propositional to relational learning

The wine tasting example is simple: The data consist of a single table and each row
had only one index (the name of the person). This case is called attribute-value
learning or propositional learning. The case with relational data in multiple tables
and with multiple indices is more complex. In the wine example, first we need to
reformulate b < a as likes(X, b) « likes(X, a), that is, every person X who likes a,
also likes b. Then, we could also have knowledge of marriages between people, that
is, husband(X,Y) is true iff X is the husband of Y. Now the hypotheses include
clauses such as likes(X,Y") < husband(X, Z),likes(Z,Y), that is, every husband
X likes all the wines Y that his wife Z likes. We could also know the grape and
origin of each wine and make a hypothesis that anyone who likes a wine that is
made of Pinot Noir likes all wines from the same origin. The hypothesis space
becomes more complex, but the trellis defined by the generality relationships is
still present as is.

For traversing the hypothesis space, refinement operators are used. One is the

5.2. Inductive logic programming 69

most general specialisation, mgs(-), that corresponds to an edge downwards in the
lattice of Figure 5.1. Let us define that D > C means that D is more specific than
C. Hypothesis D € mgs(C) iff D > C and there is no hypothesis E such that
D > E > C. For example, hypothesis {a, b} is more specific than hypothesis {a}
since everyone who likes both wines a and b trivially like wine a. The hypothesis
{a, b} is also a most general specialisation of {a} since there is no other hypothesis
that would fit between these two. Note that a hypothesis may have more than one
most general specialisation. The least general generalisation, lgg(-), is the inverse
of mgs(+). It corresponds to an edge upwards in the hypothesis lattice. D € lgg(C')
iff D < C and there is no E such that D < F < C.

One can generate all (possibly infinite) hypotheses in the hypothesis space if one
applies the most general specialisation operation to the null hypothesis repeatedly.
Two of such systems include FOIL by Quinlan (1990) and PROGOL by Muggleton
(1995). Some ILP systems, such as GOLEM by Muggleton and Feng (1992) and
Aleph by Srinivasan (2005), start from the most specific hypotheses and work their
way upwards using the least general generalisation, and some ILP systems use both
types of refinement operators. There are dozens of ILP systems listed on the web
page? of Network of Excellence in Inductive Logic Programming ILPnet2.

5.2.3 Applications

ILP is often applied to data mining tasks. The goal is not always just concept
learning, as presented above. It is also possible to perform classification, distance
based learning, clustering, descriptive learning, kernel based learning, reinforce-
ment learning, and so on. Here are two example applications.

Toxicological databases list molecules and their effects to living organisms. It is
possible to use ILP to predict this activity based on the structure of the molecule.
The structure can be represented as relational tables containing atoms and bonds.
Itemsets are the frequent substructures in the molecules that should be useful
in classification. Figure 5.2 shows an example. Helma et al. (2000) test several
different ILP systems on predictive toxicology. Graph based molecular data mining
(see overview by Fischer and Meinl, 2004) is an active research topic with lots of
unsolved questions.

Intrusion detection systems are used to monitor computer systems for signs of
security violations. Normally the alerts are presented to the human analyst, but
Pietraszek and Tanner (2005) present an application of ILP for automatic classifi-

2http://www.cs.bris.ac.uk/~ILPnet2/

70 5. Inductive logic programming

Figure 5.2: Two molecules share a substructure in the bottom left arms. Sub-
structures are useful in classifying molecules.

cation of alerts to decrease the number of false alerts. The data contain the time
of day and week, source and destination ports and IP addresses of the connection,
as well as the amount of traffic for each alert. There is also some background
knowledge such as the network topology. Other alerts related to the current one
are essential in some cases such as password guessing and port scanning. The
induced rules were comprehensible and could decrease the number of false alarms
considerably.

Chapter 6

Statistical relational learning

Chapters 3 and 4 study machine learning from data containing discrete and con-
tinuous values. Statistical relational learning or probabilistic logic learning adds
another element: References are used to describe relationships between objects.
For example, the contents of a web page can be described by a number of at-
tributes, but the links between pages are important as well. Taskar et al. (2002)
show that using relational information in classification of web pages makes the
task much easier.

First-order logic is one way of handling references (or relations). Statistical rela-
tional learning can also be seen as an extension of inductive logic programming
(ILP) described in Chapter 5. The motivation of upgrading ILP to incorporate
probabilities is that the data often contain noise or errors, which calls for a prob-
abilistic approach.

There is a large body of work concerning statistical relational learning in many
different frameworks. See (De Raedt and Kersting, 2003) for an overview and
references. Two of these frameworks will be briefly reviewed in the following.

The formalism of probabilistic relational models (PRMs) by Koller (1999); Getoor
et al. (2001) provides an elegant graphical representation of objects, attributes,
and references (see Figure 6.1). Perhaps its close analogy with relational databases
and object oriented programming has made the formalism quite popular. A PRM
consists of two parts: the relational schema for the domain and the probabilistic
component. Given a database, the relational schema defines a structure for a
Bayesian network over the attributes in the data. The probabilistic component

71

72 6. Statistical relational learning

husband(john,mary)

opinion(john,a) opinion(mary,b)

lPerson’ opinions

opinion(john,b)

Figure 6.1: Left: The graphical representation of a probabilistic relational model.
Right: The parents of opinion(john,b) in a Bayesian network created by a
Bayesian logic programme when applying rules opinion(X, b) « opinion(X, a) and
opinion(X,Y’) « husband(X, Z), opinion(Z,Y"). The full network is not shown.

describes dependencies among attributes, both within the same object and between
attributes of related objects. The conceptual simplicity comes with a cost in
generality. For instance probabilistic dependencies between links are harder to
represent and require special treatment (Getoor et al., 2002). PRMs have been
applied for instance to gene expression data by Segal et al. (2001).

Kersting and De Raedt (2001, 2006) introduced the framework of Bayesian logic
programmes (BLPs). BLPs generalise Bayesian networks, logic programming, and
probabilistic relational models. Each atom has a random variable associated to it.
For each clause, there is the conditional distribution of the head given the body.
The proofs of all statements form a (possibly infinite) Bayesian network where
atoms are nodes and the head atom of each clause is a child node of the nodes in
the body of the clause. Again, given the logical part of the data, a BLP forms
a Bayesian network over the attributes of the data. Bayesian networks must be
acyclic so the same applies to both PRMs and BLPs.

Let us continue the wine tasting example in Chapter 5 and discuss it from a
BLP point of view. Instead of likes(X,Y’) atoms we use opinion(X,Y’) and as-
sociate a variable (attribute) to the atom that actually tells what the opinion
is. Then the rule opinion(X,b) < opinion(X,a) means that the opinion on wine

6.1. Combination rules 73

b depends on the same person’s opinion on wine a. The rule opinion(X,Y) «
husband (X, Z), opinion(Z,Y’) tells that the opinion about a wine depends on the
wife’s opinion on the same wine. The actual probabilistic dependencies are placed
in conditional probability distributions associated to each rule. Note that whereas
a rule in ILP can only make the atom likes(X,Y") true but never false, a rule in
BLP can change the opinion to good or bad.

6.1 Combination rules

There is one non-trivial point in forming a Bayesian network from a PRM or a BLP.
It is when there are one-to-many or many-to-many relationships or equivalently
multiple proofs for a single atom. The child node in the Bayesian network would get
many sets of parents where each set defines a conditional probability distribution
for the child. The number of parents varies from sample to sample. This is solved
by combination rules (or combining rules or aggregate dependencies or aggregate
functions) which combine many probability distributions into one.

Figure 6.1 shows a situation where two rules apply to opinion(john,b). Each rule
gives a conditional probability for John’s opinion about wine b and they must be
combined using a combination rule. Note that the number of rules that apply,
varies from sample to sample.

The most typical combination rule is the noisy-or (see Pearl, 1988) for binary
variables. The probability of the binary variable x being false given its binary
parents y = (y1,...,yn) is P(x =0]y) = Hi|yi=1 ¢;, that is, x is false iff all its
possible causes y; are independently inhibited by noise with probability ¢; each.
For example, each disease y; has a probability 1 — ¢; to cause fever x and the
patient gets the fever if any one of the diseases cause it.

Noisy-or is asymmetric with respect to the binary variables it deals with. If zeros
and ones are mutually exchanged, the rule becomes noisy-and. Publication VI
studies two combination rules that are symmetric and can be applied to discrete
and continuous values as well. The first is Naive Bayes (or maximum entropy)
combination rule which corresponds to having a Markov network where the dif-
ferent sets of parents are not connected to each other. The second is product of
experts, where the probability density is a function of the product of probability
densities proposed by the different experts (or sets of parents). Other combination
rules include sigmoid (Neal, 1992), noisy maximum and minimum (Diez, 1993),
mixture of experts, and any aggregate functions such as sum, average, median,
mode, and count (Getoor, 2001; Kersting and De Raedt, 2006).

74 6. Statistical relational learning

6.2 Logical hidden Markov models

Logical hidden Markov models (LOHMMs) introduced in Publication VII, deal
with sequences of structured symbols in the form of logical atoms, rather than
flat characters. They can be seen as a special case of statistical relational learning
or as an extended version of hidden Markov models (HMMs, see Section 3.1.5).
LOHMMs try to retain as much of the expressiveness of first-order logic as possible
while still having as efficient algorithms for learning as HMMs. States and obser-
vations are logical atoms and transitions can involve variable bindings. LOHMMs
have been implemented in Prolog.

Many real world sequences such as protein secondary structures or UNIX shell logs
exhibit a rich internal structure. Traditional probabilistic models of sequences,
however, consider sequences of unstructured symbols only. For instance, con-
sider a sequence of UNIX commands, which may have parameters such as “emacs
lohmms.tex, Is, latex lohmms.tex”. Commands are essentially structured. Ap-
plying HMMs requires either 1) ignoring the structure of the commands (i.e., the
parameters), or 2) taking all possible parameters explicitly into account. The
former approach results in a serious information loss and the latter leads to a com-
binatorial explosion in the number of symbols and parameters of the HMM and as
a consequence inhibits generalisation. Using logical atoms, the above UNIX com-
mand sequence can be represented as “emacs(lohmms.tex), 1s, latex(lohmms.tex)”.
There are two important motivations for using logical atoms at the symbol level.
Firstly, variables in the atoms allow one to make abstraction of specific symbols.
For example, the logical atom emacs(X) represents all files X edited using emacs.
Secondly, unification allows one to share information among states. For example,
the sequence emacs(X), latex(X') denotes that the same file is used as an argument
for both emacs and latex.

Let us return to the coin example in Section 3.1.5 to help define a LOHMM as a
generative model. Figure 6.2 shows the HMM and the corresponding LOHMM.
Transitions are divided into two steps (compared to just one in HMMs). To gen-
erate data, first, a rule (or an abstract transition) is selected according to the
(abstract) transition probabilities to find out the resulting abstract state (an atom
such as coin(X)). Only the rules with most specific bodies are applied, for instance
in the state coin(2), the rules for coin(X) are not used. Second, the remaining vari-
ables in the atom are instantiated using so called selection probabilities. The scope
of variables is restricted to single transitions, that is, abstract states coin(X) and
coin(Y') are equivalent after variable bindings in that transition are taken into
account. Note that also the observations (h and t¢) can be structured atoms in
general.

6.2. Logical hidden Markov models 75

0.7:h 1.0

1.0:coin(X)-— start
h
0.7:coin(X)~ coin(X) coin()

0.3:coin(Y)L coin(X) 0_5/ \0_5

0.3:coin(2)D coin(2) 1oz

0.7:coin(X)L coin(2)

Figure 6.2: Left: A graphical representation of a hidden Markov model repeated
from Figure 3.3. Right:The corresponding logical hidden Markov model. Bottom:
The logical hidden Markov model written as a logic programme. Solid arrows
are abstract transitions, dashed arrows denote special cases, and dotted edges are
needed because of the scope of variables. White-headed arrows in the bottom right
show the selection probabilities.

The rules of a LOHMM form a logic programme where the only fact is the start
state. The proof network for the observation sequence forms a structure of the
corresponding graphical model. Figure 6.3 depicts a graph formed by unfolding
a tiny LOHMM in the UNIX command sequence modelling. Using the graph
it is possible to see how to generalise inference algorithms of HMMs. As for
HMNMSs, three inference problems are of interest. Let H be a LOHMM and let
X =x1,%2,...,x7, T'> 0, be a finite sequence of ground observations:

Evaluation: Determine the probability P(X | H) that sequence X was generated

76 6. Statistical relational learning

by the model H.

Most likely state sequence: Determine the hidden state sequence that has most
likely produced the observation sequence X.

Parameter estimation: Given a set {Xi,...,X;} of observation sequences, de-
termine the most likely parameters for the abstract transitions and the se-
lection distributions of H.

Publication VII addresses each of these problems in turn by extending the existing
solutions for HMMs. Belief propagation (see Section 3.1.1), also known as the
forward-backward algorithm in the context of HMMs, is used to compute the
probability of a particular abstract and ground transition at a particular time,
given parameters. Belief propagation, as well as evaluation and finding the most
likely hidden state sequence have the computational complexity of O(Ts?) where
T is the data size and s is the number of possible states.

Probabilities found by belief propagation can be further used for parameter up-
dating by summing over time to get expected counts for both abstract transitions
and selections. Raiko et al. (2002) explain how this ML parameter estimation
is transformed into a more Bayesian solution. The computational complexity is
O(I(Ts?+d)) where I is the number of iterations and d is the number of parameters
in the model. Experiments (see Section 6.2.3) demonstrate that LOHMMs possess
several advantages over traditional HMMs for applications involving structured
sequences.

6.2.1 Reachable states

An important point for computational efficiency in the parameter learning algo-
rithm is the pruning of unreachable states. Before any probabilistic parameters
are even considered, the algorithm finds all the reachable hidden states at each
time step, given the whole observation sequence. The algorithm works as follows.

The only reachable state at time 0 is the start state. Then for each time ¢ from
0 to T — 1, all the transitions from .S; that agree with the current observation x;
are used to produce the set of reachable states S;y1. At this stage, the states are
reachable given the observation sequence so far. Finally for each time ¢ back from
T — 1 to 0, those states in Sy whose transitions lead outside Sy;1, are removed.
This takes into account the whole observation sequence.

Note that this procedure resembles the forward-backward algorithm for HMMs.
As a by-product, it can be used to check whether an observation sequence could

6.2. Logical hidden Markov models 7

abstract selection abstract selection abstraselection
transition transition transition

| |
Is(o s(o\ [

Is(o
Is(U’< 'S(t>>< Is(t)
Is(t

Is(t
/! s U ...
star
\ em(f1,0) em(f2,
7

em(F’, em(F”,U)

em(F,U
)\Qem(fl, em(F’, em(f2, em(F”,0)

latex(f1,ty= latex(f1,t) latex(f2,t)

sO sl s2

Figure 6.3: A logical hidden Markov model is unfolded in time to form a trellis.
Transitions are factorised into two steps, abstract transitions (rules) and selection
(variable instantiation). The example represents user modelling where the states
include commands 1ls, emacs, and latex, and the user type (t or o) is included as
part of the hidden state. Filenames f1 and {2 are the other arguments of emacs
and latex. See Publication VII for details.

have been generated with the LOHMM. If not, the sets of reachable states are
empty.

6.2.2 Structural learning

The increase in expressiveness of LOHMMSs over traditional HMMs comes at the
expense of a more complex model selection problem. Indeed, different abstraction
levels have to be explored. Publication IX proposes a novel method for selecting
logical hidden Markov models from data. The proposed method adapts structural
expectation maximisation (EM) by Friedman (1997). It combines a generalised
expectation maximisation algorithm, which optimises parameters, with structure
search for model selection using inductive-logic-programming (ILP) refinement op-
erators. Structural learning of traditional HMMs has not been very popular, only
recently Won et al. (2006) applied genetic algorithms for that.

78 6. Statistical relational learning

Given a set {Xi,...,Xg} of observation sequences, a (possibly infinite) set of
LOHMMs structures, and a scoring function, find the model structure that max-
imises the score.

Selecting a structure of a LOHMM is a significant problem for many reasons.
Firstly, extracting structures from experts can be a laborious and expensive pro-
cess. Secondly, HMMs are commonly learned by estimating the maximum like-
lihood parameters of a fixed, fully connected model. Such an approach is not
feasible for LOHMMs as different abstraction levels have to be explored. Finally,
the parameter estimation of a LOHMM is a costly nonlinear optimisation problem,
so the naive search is infeasible.

The idea behind structural EM is to first infer the distribution over the hidden
states and collect sufficient statistics about it. In the case of LOHMMSs the suf-
ficient statistics are the expected counts of how many times a ground transition
is used. Then different model structures are evaluated based on those statistics.
Evaluating new structures is thus made independent of the number and length of
the data cases — a feature which is important for scaling up.

6.2.3 Applications

LOHMMSs have been applied to several different problems. Publication VIII ad-
dresses the application to protein-fold recognition. The number of determined
protein structures is growing rapidly and there are different classification schemes
for them. There is a need for computer methods that can automatically extract
structural signatures for classes of proteins. The secondary structure of a pro-
tein is represented as a sequence of structured symbols, so applying LOHMMs is
very natural. The results on the database and classification scheme SCOP (Struc-
tural Classification Of Proteins from Murzin et al. (1995)) indicate that LOHMMs
possess several advantages over other approaches.

Another application of LOHMMs in the biological domain is the mRNA signal
structure detection presented in Publication VII. mRNA molecules fold to form a
secondary structure which can be described with concepts such as stacking regions,
hairpin loops, and interior loops. The secondary structure of an mRNA forms a
tree which makes it more challenging than that of a protein. A LOHMM was used
to parse a tree in in-order (the node itself between its children) while the tree
structure is essentially stored in the arguments of the hidden state. Classification
accuracy was higher than with the comparison method by Horvath et al. (2001).

UNIX command sequences have been studied with LOHMMSs in Publication IX.

6.3. Nonlinear relational Markov networks 79

Figure 6.4: A small protein fold represented emphasising the secondary structure
with helices (blue) and strands (green).

Tasks that have been considered for UNIX command sequences include the pre-
diction of the next command in the sequence by Davison and Hirsh (1998), the
classification of a command sequence in a user category by Korvemaker and Greiner
(2000); Jacobs and Blockeel (2001), and anomaly detection by Lane (1999). LOHMMSs
could be applied to all of these tasks and Publication IX reports experiments in
the classification task with results comparable to other methods.

Landwehr et al. (2006) use a custom implementation of LOHMMs for haplotype
reconstruction from genotype data. The proposed method offers a competitive
trade-off between accuracy and computational complexity compared to other state-
of-the-art systems developed for the task.

6.3 Nonlinear relational Markov networks

Bayesian networks assume acyclicity of the network structure. The directed edges
in the graph can be interpreted as causal dependencies and nothing can cause
itself. The same assumption is inherited by BLPs and PRMs.! In some cases it is
difficult or irrelevant to try to model the direction of the dependency. Say, whether
the husband adopts opinions from his wife, or vice versa, or whether people with
certain combinations of opinions are more likely to marry. Using directed edges
for describing friendship would definitely lead into cycles with a group of friends.
Markov networks (see Section 3.1.2) model dependencies with undirected edges so

'LOHMMs are acyclic by definition since all directed edges point from past to future.

80 6. Statistical relational learning

that it only tells that there is a dependency but not what causes what.

Relational Markov networks (RMN) by Taskar et al. (2002) are to Markov networks
what BLPs are to Bayes networks. A RMN is specified by a set of clique templates
(the logical part) and a potential for each clique template (the probabilistic part).
For instance, the probabilistic part of the template (opinion(X,Y'), husband (X, Z),
opinion(Z,Y")) could describe how the opinions of the husband X and wife Z about
the wine Y are related. Given a relational database, the RMN produces an unrolled
Markov network over all the attributes in the data. The cliques instantiated by
a certain template share the same clique potential. Note that an RMN does not
require explicit combination rules.

The general inference task in RMNs is to compute the posterior distribution over
all the attributes. The network induced by data can be very large and densely
connected, so exact inference is often intractable. The loopy belief propagation
algorithm by Murphy et al. (1999) (see Section 3.1.1) is used as an approximation.
The learning task, or the estimation of the clique potentials, requires alternat-
ing between updating the parameters of the potentials and running the inference
algorithm on the unrolled Markov network.

Nonlinear relational Markov networks (NRMN), introduced in Publication VI,
combine the ideas of relational Markov networks by Taskar et al. (2002) and non-
linear Markov networks (NMN) by Hofmann and Tresp (1998) (see Section 3.1.2).
The combination is not very straightforward because the models are quite differ-
ent: RMN specifies potentials over cliques of the network whereas NMN specifies
a distribution of each variable given its neighbours in the network. In NRMN, the
first approach is chosen.

Recall Figure 3.1 that shows a Markov network and its join tree. A node in the
join tree corresponds to a clique in a Markov network. NRMN defines a proba-
bility distribution over the attributes in each clique template. The distributions
are provided by HNFA described in Section 4.4.2. The maximum entropy com-
bination rule requires marginalisation of probability distributions. In nonlinear
models, this cannot usually be done exactly and therefore another combination
rule was selected. In the product-of-experts (PoE) combination rule, the probabil-
ity density is the average of the incoming probability densities on the logarithmic
scale. A characteristic of PoE is that implicit weighting happens in some sense
automatically. When one of the experts gives a distribution with high entropy
(little information) and another one with low entropy (much information), the
combination is close to the latter one.

NRMNs extend graphical models in both nonlinear and relational directions at the
same time. Convergence is guaranteed regardless of loops, unlike in the loopy BP

6.3. Nonlinear relational Markov networks 81

algorithm. There is a lot of room for improvement, though. The current version of
NRMN includes many simplifying assumptions, such as diagonality of the posterior
covariance matrix in HNFA | and separate learning of experts. Experiments with
the game of Go (see Figure 6.5) give promise for NRMNs.

82 6. Statistical relational learning

|
v
o
|
-
\
5
\

Figure 6.5: Top left: The board of a Go game in progress. Two players alternately
place stones on empty points trying to surround area and opponent stones. Top
right: The expected owner of each point is visualised with the shade of grey. For
instance, the two white stones in the upper right corner are very likely to be
captured. Bottom left: The strings of stones with their expected owner as the
colour of the square. Pairs of related strings are connected with a blue line if
the blocks have same colours and with a red line when the blocks have opposing
colours. The lines also represent the structure of the implied Markov network.
Bottom right: The covariance between owning a point and scoring high can be
used to determine which parts of the board are important (red). The study of this
kind of data is left as future work.

Chapter 7

Discussion

Extending graphical models to different directions provides a framework where
an ever increasing number of machine learning methods fit. Some people oppose
general solutions in principle, as problem-specific solutions are often more efficient
in practice. A general framework, on the other hand, gives many benefits. Let us
think of a speech recognition system consisting of three modules: the first converts
an audio stream to phonemes, the second stacks phonemes into words, and the
third stacks words into sentences. The communication of uncertainty between
modules becomes an important point. If all the modules are built as graphical
models, this interaction is straightforward and well founded. Secondly, the same
methods can be used to analyse DNA sequences as well as phoneme sequences.
A general framework, such as the one introduced in Publication I, allows reuse of
ideas and software between sometimes surprisingly different applications.

Sometimes it is also reasonable to step back from generality and study useful spe-
cial cases. For instance in statistical relational learning, most attention has been
devoted to highly expressive formalisms. Logical hidden Markov models, intro-
duced in Publication VII, can be seen as an attempt towards downgrading such
highly expressive frameworks. They retain most of the essential logical features
but are easier to understand, adapt, and learn. For the same reasons, simple sta-
tistical techniques (such as logistic regression or naive Bayes) have been combined
with ILP refinement operators for traversing the search space (see e.g. Popescul
et al., 2003; Landwehr et al., 2005). In nonlinear modelling, special cases such
as nonlinear state-space models, allow for specialised algorithms for initialisation,
visualisation, and inference. Publication V presented an algorithm to speed up
inference in nonlinear state-space models.

83

84 7. Discussion

Computational complexity plays an important part in the methods presented in
this work. Whereas the time complexity of some methods scale exponentially w.r.t.
the size of the problem, the methods studied here scale linearly or quadratically.
This allows for tackling relatively large problems. For instance, the dimensionality
was hundreds in Publication I and the number of possible states was again hundreds
in Publication VIII. In small problems, where even exponential computational
complexity is not prohibitive, the methods studied here do not probably give the
most accurate results.

The learning and inference algorithms presented in this work concentrate on a
single solution candidate with its neighbourhood. This approach is good for its
computational efficiency but it is prone to bad local optima. In many problems
such as tracking (Sarkka et al., 2006), it is very important to explore many different
solutions. It is possible to keep track of several solution candidates at the same
time and during adaptation, to move bad candidates to the vicinity of a better
ones. This same idea is used in beam search, particle filters (Doucet et al., 2001),
and genetic algorithms.

Studying machine learning can also help in understanding how the human mind
works. In the brain, most of the interaction is local, in the sense that the brain
cells directly affect only those cells with which they are in contact. Some machine
learning methods like the belief propagation and the Bayes Blocks framework,
share this notion, while others, such as line search in an optimisation of a global
cost function, do not. Some people would thus prefer the former. It is of course true
that machine learning does not have to work by the same principles as biological
brains, but local algorithms have the benefit of being parallelisable.

7.1 Future work

Perhaps the most important suggestion for future work is to bring lessons learned
from the special cases of nonlinear state-space models and logical hidden Markov
models back to the more general frameworks. Both have good algorithms for
learning and inference that could be generalised.! The method for nonlinear state-
space models includes properties such as posterior dependencies and control, that
have not been implemented in the otherwise more flexible Bayes Blocks framework.

The visualisation of the learning process could help understanding the methods
better, as well as help to find better initialisations, model structures, or means to
avoid local minima. This is especially important for new users who do not know

I The algorithmic improvements in nonlinear state-space models are ongoing.

7.1. Future work 85

the methods well. Also general usability in most methods needs improvement so
that potential users become users at all.

The number of node types in the Bayes Blocks framework could be increased. Fea-
sible blocks not presented here include discrete variables, the error function non-
linearity (see Frey and Hinton, 1999), the absolute value, the maximum function
(adapt Harva and Kabén, 2005), and MLP networks. The posterior dependencies
of Gaussian variables could be handled relatively easily if the clique size of the join
tree (see Figure 3.1) stays reasonable. If the clique size is too large, it is possible to
use dummy random variables that have posterior correlations with other variables
but no other role in modelling. The framework could also allow parallel processing.
The assumption that vectorised nodes have the same length and they all have the
same parents restrict their use in relational models, whereas scalar nodes have a
lot of overhead and are thus inefficient when used to emulate more flexible vector
nodes.

In some applications, the components of the data have coordinates, like the pixels
of an image in computer vision. A latent variable could refer to the coordinates, as
is done for instance by Winn and Joijic (2005). In another example, changing the
pitch of a voice moves it vertically in the spectrogram. It would be quite reasonable
to model the place of an object or a pitch of a voice with latent variables, but MLP
networks would not be well suited to model the mapping to observations. It would
be important to be able to model these rather different kinds of nonlinear mappings
compared to the ones used in this thesis.

All the learning methods in this thesis aim at unsupervised learning where all the
data is modelled with equal interest. When it is known beforehand how the model
is going to be used, one could concentrate the learning efforts to the task at hand.
This related to attention in cognitive modelling, and discriminative learning (see
Taskar et al., 2002, for an example) in machine learning. Even better, Lasserre
et al. (2006) introduce a principled hybrid of generative and discriminative models.

More applications are needed to show the full potential of the studied methods.
Nonlinear state-space models could easily be used as feature extraction in speech
recognition. An interesting application for relational models would be to study
library data including title, contents, lending history, classification, and keywords
for the material. The found model could be then applied to find structure in web
pages. The application to the game of Go could also be continued. An experimental
comparison of Bayes Blocks and BUGS software libraries would reveal strengths
and weaknesses of different posterior approximations.

In control or decision making, sometimes the best decision is to first gather more
information to be able to make better decisions later. This is known as probing

86 7. Discussion

or exploration, depending on whether information is gathered about the state of
the world or the model of the world. It would be interesting to continue work
by Bar-Shalom (1981) studying probing in control and by Thrun (1992) studying
exploration in control.

There are many ways to combine neural (nonlinear) and logical (relational) meth-
ods. In the models presented here, the logical part defines the structure where the
neural part then operates. It would be possible to let the neural part decide which
logical structures to study. Such a system would be able to use computational
resources more efficiently. For instance in the game of Go, a neural pattern recog-
nition system could decide with which settings a search for local move sequences
should be performed.

Bibliography

Anderberg, M. (1973). Cluster Analysis for Applications. Academic Press, New
York, NY.

Anderson, B. and Moore, J. (1979). Optimal Filtering. Prentice-Hall, Englewood
Cliffs, NJ.

Anderson, C., Domingos, P., and Weld, D. (2002). Relational Markov models and
their application to adaptive web navigation. In Hand, D., Keim, D., Zaine, O.,
and Goebel, R., editors, Proceedings of the Eighth International Conference on
Knowledge Discovery and Data Mining (KDD-02), pages 143-152, Edmonton,
Canada. ACM Press.

Attias, H. (1999). Independent factor analysis. Neural Computation, 11(4):803—
851.

Attias, H. (2001). ICA, graphical models and variational methods. In Roberts,
S. and Everson, R., editors, Independent Component Analysis: Principles and
Practice, pages 95-112. Cambridge University Press.

Attias, H. (2003). Planning by probabilistic inference. In Bishop, C. M. and Frey,
B. J., editors, Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics (AISTATS 2003), Key West, Florida.

Bar-Shalom, Y. (1981). Stochastic dynamic programming: Caution and probing.
IEEE Transactions on Automatic Control, 26(5):1184-1195.

Barber, D. and Bishop, C. M. (1998). Ensemble learning in Bayesian neural net-
works. In Bishop, C. M., editor, Neural Networks and Machine Learning, pages
215-237. Springer, Berlin.

Bayes, T. (1763/1958). Studies in the history of probability and statistics: IX.
Thomas Bayes’s essay towards solving a problem in the doctrine of chances.
Biometrika, 45:296-315.

87

88 BIBLIOGRAPHY

Beal, M. and Ghahramani, Z. (2003). The variational Bayesian EM algorithm
for incomplete data: with application to scoring graphical model structures.
Bayesian Statistics 7, 7:453-464.

Bernardo, J. M. and Smith, A. F. M. (2000). Bayesian Theory. J. Wiley.
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press.

Bishop, C. M. (1999). Latent variable models. In Jordan, M., editor, Learning in
Graphical Models, pages 371-403. The MIT Press, Cambridge, MA, USA.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bromberg, F., Margaritis, D., and Honavar, V. (2006). Efficient Markov net-
work structure discovery from independence tests. In STAM Data Mining 2006
(SDMO06). To appear.

Charniak, E. (1993). Statistical Language Learning. MIT Press, Cambridge, Mas-
sachusetts.

Chen, C., editor (1990). Neural Networks For Pattern Recognition And Their
Applications. World Scientific Publishing, Singapore.

Chen, C. (1999). Linear System Theory and Design. Oxford University Press,
Oxford. 3rd Edition.

Choudrey, R., Penny, W., and Roberts, S. (2000). An ensemble learning approach
to independent component analysis. In Proc. of the IEEE Workshop on Neural
Networks for Signal Processing, Sydney, Australia, December 2000, pages 435—
444. IEEE Press.

Chui, C. and Chen, G. (1991). Kalman Filtering: With Real-Time Applications.
Springer.

Codd, E. (1970). A relational model of data for large shared data banks. Commu-
nications of the Association of Computing Machinery, 13(6):377-387.

Comon, P. (1994). Independent component analysis — a new concept? Signal
Processing, 36:287-314.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999).
Probabilistic Networks and Expert Systems. Springer-Verlag, New York.

Cox, R. T. (1946). Probability, frequency and reasonable expectation. American
Journal of Physics, 14(1):1-13.

BIBLIOGRAPHY 89

Davison, B. and Hirsh, H. (1998). Predicting sequences of user actions. In Pre-
dicting the Future: AI Approaches to Time-Series Analysis, pages 5-12. AAAI
Press. Proceedings of AAAI-98/ICML-98 Workshop, published as Technical
Report WS-98-07.

De Raedt, L., editor (1996). Advances in Inductive Logic Programming. 10S Press.

De Raedt, L. (2005). From Inductive Logic Programming to Multi-Relational Data
Mining. Cognitive Technologies. Springer-Verlag.

De Raedt, L. and Kersting, K. (2003). Probabilistic Logic Learning. ACM-
SIGKDD Ezxplorations: Special issue on Multi-Relational Data Mining, 5(1):31—
48.

Dean, T. L. and Wellman, M. P. (1991). Planning and Control. Morgan Kaufmann.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. .J. of the Royal Statistical Society,
Series B (Methodological), 39(1):1-38.

Diez, F. (1993). Parameter adjustment in Bayes networks: The generalized noisy
or-gate. In Proceedings of the Ninth Conference on Uncertainty in Artificial
Intelligence (UAI ’93), pages 99-105, San Francisco, CA. Morgan Kaufmann.

Doucet, A., de Freitas, N., and Gordon, N. J. (2001). Sequential Monte Carlo
Methods in Practice. Springer Verlag.

Doyle, J. C., Francis, B. A., and Tannenbaum, A. R. (1992). Feedback control
theory. MacMillan, New York.

Dubois, D. and Prade, H. (1993). Fuzzy sets and probability: misunderstandings,
bridges and gaps. In Proceedings of the Second IEEE Conference on Fuzzy
Systems, pages 1059-1068.

Dzeroski, S. and Lavrac, N. (2001). Introduction to inductive logic programming.
In Dzeroski, S. and Lavrac, N., editors, Relational Data Mining, pages 48-73.
Springer-Verlag.

Eduardo Ferndndez Camacho, C. B. (2004). Model Predictive Control. Springer.

Engle, R. F. and Watson, M. W. (1987). The Kalman filter: applications to
forecasting and rational-expectations models. In Bewley, T. F., editor, Advances
in Econometrics Fifth World Congress. Cambridge University Press.

Fischer, I. and Meinl, T. (2004). Graph based molecular data mining—an overview.
In Thissen, W., Wieringa, P., Pantic, M., and Ludema, M., editors, IEEE SMC
2004 Conference Proceedings, pages 4578-4582, Den Haag, The Netherlands.

90 BIBLIOGRAPHY

Frasconi, P., Soda, G., and Vullo, A. (2002). Hidden Markov models for text cate-
gorization in multi-page documents. Journal of Intelligent Information Systems,
18(2/3):195 217.

Frey, B. J. and Hinton, G. E. (1999). Variational learning in nonlinear Gaussian
belief networks. Neural Computation, 11(1):193-214.

Friedman, N. (1997). Learning belief networks in the presence of missing val-
ues and hidden variables. In Fisher, D.; editor, Proceedings of the Fourteenth
International Conference on Machine Learning (ICML-1997), pages 125-133,
Nashville, Tennessee, USA. Morgan Kaufmann.

Friedman, N. (1998). The Bayesian structural EM algorithm. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI’98), pages 129-138.

Furukawa, K., Michie, D., and Muggleton, S. (1999). Machine Intelligence 15:
Machine intelligence and inductive learning. Oxford University Press.

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (1995). Bayesian Data Analysis.
Chapman & Hall/CRC Press, Boca Raton, Florida.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721-741.

Getoor, L. (2001). Learning Statistical Models from Relational Data. PhD thesis,
Stanford University.

Getoor, L., Friedman, N., Koller, D., and Pfeffer, A. (2001). Learning probabilistic
relational models. In Dzeroski, S. and Lavra¢, N., editors, Relational Data
Mining, pages 307-333. Springer-Verlag.

Getoor, L., Friedman, N., Koller, D., and Taskar, B. (2002). Learning probabilistic
models of link structure. Journal of Machine Learning Research, 3:679-707.

Ghahramani, Z. (1998). Learning dynamic Bayesian networks. In Giles, C. and
Gori, M., editors, Adaptive Processing of Sequences and Data Structures, Lecture
Notes in Computer Science, pages 168-197. Springer-Verlag, Berlin.

Ghahramani, Z. and Beal, M. (2001). Propagation algorithms for variational
Bayesian learning. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances
in Neural Information Processing Systems 13, pages 507-513. The MIT Press,
Cambridge, MA, USA.

Ghahramani, Z. and Jordan, M. (1997). Factorial hidden Markov models. Machine
Learning, 29:245-273.

BIBLIOGRAPHY 91

Giarratano, J. and Riley, G. (1994). Expert Systems, Principles and Programming.
PWS Publishing Company, Boston.

Godel, K. (1929). Uber die Vollstindigkeit des Logikkalkiils. PhD thesis, University
Of Vienna.

Green, P., Barker, J., Cooke, M., and Josifovski, L. (2001). Handling missing and
unreliable information in speech recognition. In Proceedings of the Fighth In-
ternational Workshop on Artificial Intelligence and Statistics (AISTATS 2001),
pages 49-56, Key West, Florida, USA.

Hanson, C. W. and Marshall, B. (2001). Artificial intelligence applications in the
intensive care unit. Critical Care Medicine, 29(2):427-435.

Harman, H. (1967). Modern Factor Analysis. University of Chicago Press, 2nd
edition.

Harva, M. and Kabdn, A. (2005). A variational Bayesian method for rectified
factor analysis. In Proc. Int. Joint Conf. on Neural Networks (IJCNN’05),
pages 185-190, Montreal, Canada.

Harva, M., Raiko, T., Honkela, A., Valpola, H., and Karhunen, J. (2005). Bayes
Blocks: An implementation of the variational Bayesian building blocks frame-
work. In Proceedings of the 21st Conference on Uncertainty in Artificial Intel-
ligence (UAI 2005), pages 259-266, Edinburgh, Scotland.

Haykin, S. (1999). Neural Networks — A Comprehensive Foundation, 2nd ed.
Prentice-Hall.

Helma, C., Gottmann, E., and Kramer, S. (2000). Knowledge discovery and data
mining in toxicology. Statistical Methods in Medical Research, 9:329-358. Special
issue on Data Mining in Medicine.

Hinton, G. E. and van Camp, D. (1993). Keeping neural networks simple by
minimizing the description length of the weights. In Proc. of the 6th Ann. ACM
Conf. on Computational Learning Theory, pages 5-13, Santa Cruz, CA, USA.

Hofmann, R. and Tresp, V. (1996). Discovering structure in continuous variables
using Bayesian networks. In Touretzky, D. S., Mozer, M. C., and Hasselmo,
M. E., editors, Advances in Neural Information Processing Systems, volume 8,
pages 500-506. The MIT Press.

Hofmann, R. and Tresp, V. (1998). Nonlinear Markov networks for continuous
variables. In Jordan, M. I., Kearns, M. J., and Solla, S. A., editors, Advances
in Neural Information Processing Systems, volume 10, pages 521-529. The MIT
Press.

92 BIBLIOGRAPHY

Honkela, A., Harmeling, S., Lundqvist, L., and Valpola, H. (2004). Using kernel
PCA for initialisation of variational Bayesian nonlinear blind source separation
method. In Puntonet, C. G. and Prieto, A., editors, Proc. of the Fifth In-
ternational Conference on Independent Component Analysis and Blind Signal
Separation (ICA 2004), volume 3195 of Lecture Notes in Computer Science,
pages 790-797, Granada, Spain. Springer-Verlag, Berlin.

Honkela, A., Ostman, T., and Vigério, R. (2005). Empirical evidence of the lin-
ear nature of magnetoencephalograms. In Proc. 13th European Symposium on
Artificial Neural Networks (ESANN 2005), pages 285-290, Bruges, Belgium.

Honkela, A. and Valpola, H. (2004). Variational learning and bits-back coding: an
information-theoretic view to Bayesian learning. IEEE Transactions on Neural
Networks, 15(4):800-810.

Honkela, A. and Valpola, H. (2005). Unsupervised variational Bayesian learning
of nonlinear models. In Saul, L., Weiss, Y., and Bottou, L., editors, Advances
in Neural Information Processing Systems 17, pages 593-600. MIT Press, Cam-
bridge, MA, USA.

Honkela, A., Valpola, H., and Karhunen, J. (2003). Accelerating cyclic update
algorithms for parameter estimation by pattern searches. Neural Processing
Letters, 17(2):191-203.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359-366.

Horvéath, T., Wrobel, S., and Bohnebeck, U. (2001). Relational instance-based
learning with lists and terms. Machine Learning, 43:53-80.

Hyvérinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Anal-
ysis. J. Wiley.

Ilin, A. and Honkela, A. (2004). Postnonlinear independent component analysis by
variational Bayesian learning. In Puntonet, C. G. and Prieto, A., editors, Proc.
of the Fifth International Conference on Independent Component Analysis and
Blind Signal Separation (ICA 2004), volume 3195 of Lecture Notes in Computer
Science, pages 766—773, Granada, Spain. Springer-Verlag, Berlin.

Ilin, A. and Valpola, H. (2005). On the effect of the form of the posterior ap-
proximation in variational learning of ICA models. Neural Processing Letters,
22(2):183-204.

Ilin, A., Valpola, H., and Oja, E. (2004). Nonlinear dynamical factor analysis for
state change detection. IEEE Transactions on Neural Networks, 15(3):559-575.

BIBLIOGRAPHY 93

Jacobs, N. and Blockeel, H. (2001). The learning shell: Automated macro con-
struction. In User Modeling 2001, pages 34-43.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge Uni-
versity Press, Cambridge, UK.

Jensen, F., Lauritzen, S. L., and Olesen, K. G. (1990). Bayesian updating in
causal probabilistic networks by local computations. Computational Statistics
Quarterly, 4:269-282.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag.

Jordan, M., editor (1999). Learning in Graphical Models. The MIT Press, Cam-
bridge, MA, USA.

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction
to variational methods for graphical models. In Jordan, M., editor, Learning in
Graphical Models, pages 105-161. The MIT Press, Cambridge, MA, USA.

Julier, S. and Uhlmann, J. (1997). A new extension of the Kalman filter to non-
linear systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and Controls.

Jutten, C. and Karhunen, J. (2004). Advances in blind source separation (BSS) and
independent component analysis (ICA) for nonlinear mixtures. International
Journal of Neural Systems, 14(5):267-292.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME-Journal of Basic Engineering, 82(Series D):35-45.

Kendall, M. (1975). Multivariate Analysis. Charles Griffin & Co.

Kersting, K. and De Raedt, L. (2001). Bayesian logic programs. Technical Report
151, Institute for Computer Science, University of Freiburg, Germany.

Kersting, K. and De Raedt, L. (2006). Bayesian Logic Programming: Theory
and tool. In Getoor, L. and Taskar, B., editors, An Introduction to Statistical
Relational Learning. MIT Press. To appear.

Kersting, K. and Landwehr, N. (2004). Scaled conjugate gradients for maximum
likelihood: An empirical comparison with the EM algorithm. In J. A. Gamez,
S. M. and Salmerén, A., editors, ”Advances in Bayesian Networks”, Series:
Studies in Fuzziness and Soft Computing, volume 146, pages 235-254. Springer.

Kirk, D. E. (2004). Optimal Control Theory. Courier Dover Publications.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598):671-680.

94 BIBLIOGRAPHY

Klir, G. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions. Prentice-Hall Inc.

Kohonen, T. (2001). Self-Organizing Maps. Springer, 3rd, extended edition.

Koller, D. (1999). Probabilistic relational models. In Dzeroski, S. and Flach, P.,
editors, Proceedings of Ninth International Workshop on Inductive Logic Pro-
gramming (ILP-99), volume 1634 of LNAI, pages 3-13, Bled, Slovenia. Springer.

Korvemaker, B. and Greiner, R. (2000). Predicting UNIX command files: Adjust-
ing to user patterns. In Adaptive User Interfaces: Papers from the 2000 AAAI
Spring Symposium, pages 59—64.

Koski, T. (2001). Hidden Markov Models for Bioinformatics. Kluwer Academic
Publishers.

Landwehr, N., Kersting, K., and De Raedt, L. (2005). nFOIL: Integrating Naive
Bayes and Foil. In Veloso, M. and Kambhampat, S., editors, Proceedings of
the Twentieth National Conference on Artificial Intelligence (AAAI-05), pages
275-282, Pittsburgh, Pennsylvania, USA. AAAT Press.

Landwehr, N., Mielikdinen, T., Eronen, L., Toivonen, H., and Mannila, H. (2006).
Constrained hidden markov models for population-based haplotyping. In Rouso,
J., Kaski, S., and Ukkonen, E., editors, Proceedings of the Workshop on Prob-
abilistic Modeling and Machine Learning in Structural and Systems Biology
(PMSB), Tuusula, Finland.

Lane, T. (1999). Hidden Markov models for human/computer interface modeling.
In Rudstrom, A., editor, Proceedings of the IJCAI-99 Workshop on Learning
about Users, pages 3544, Stockholm, Sweden.

Lappalainen, H. and Honkela, A. (2000). Bayesian nonlinear independent compo-
nent analysis by multi-layer perceptrons. In Girolami, M., editor, Advances in
Independent Component Analysis, pages 93—121. Springer-Verlag, Berlin.

Lappalainen, H. and Miskin, J. (2000). Ensemble learning. In Girolami, M., editor,
Advances in Independent Component Analysis, pages 75-92. Springer-Verlag,
Berlin.

Lasserre, J., Bishop, C. M., and Minka, T. (2006). Principled hybrids of generative
and discriminative models. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, New York.

Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, New York.

BIBLIOGRAPHY 95

Little, R. and D.B.Rubin (1987). Statistical Analysis with Missing Data. J. Wiley
& Sons.

Lloyd, J. (2003). Logic for Learning: Learning Comprehensible Theories from
Structured Data. Springer-Verlag.

MacKay, D. J. C. (1995a). Developments in probabilistic modelling with neural
networks — ensemble learning. In Neural Networks: Artificial Intelligence and
Industrial Applications. Proc. of the 3rd Annual Symposium on Neural Networks,
pages 191-198.

MacKay, D. J. C. (1995b). Probable networks and plausible predictions—a re-
view of practical Bayesian methods for supervised neural networks. Network:
Computation in Neural Systems, 6:469-505.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press.

Maybeck, P. S. (1979). Stochastic models, estimation, and control, volume 141 of
Mathematics in Science and Engineering. Academic Press.

Meila, M. and Jordan, M. I. (1996). Learning fine motion by markov mixtures of
experts. In Touretzky, D., Mozer, M. C., and Hasselmo, M., editors, Advances
in Neural Information Processing Systems 8. MIT Press.

Meng, X. L. and van Dyk, D. A. (1995). Augmenting data wisely to speed up
the em algorithm. In Proceedings of the Statistical Computing Section of the
American Statistical Association, pages 160-165.

Minka, T. (2001). Expectation propagation for approximate Bayesian inference.
In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,
UAI 2001, pages 362-369.

Miskin, J. and MacKay, D. J. C. (2001). Ensemble learning for blind source
separation. In Roberts, S. and Everson, R., editors, Independent Component
Analysis: Principles and Practice, pages 209-233. Cambridge University Press.

Morari, M. and Lee, J. (1999). Model predictive control: Past, present and future.
Computers and Chemical Engineering, pages 667-682.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing
Journal, 13:245-286.

Muggleton, S. and De Raedt, L. (1994). Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19/20:629-679.

96 BIBLIOGRAPHY

Muggleton, S. and Feng, C. (1992). Efficient induction in logic programs. In
Muggleton, S., editor, Inductive Logic Programming, pages 281-298. Academic
Press.

Murphy, K. P. (2001). An introduction to graphical models. Technical report,
Intel Research.

Murphy, K. P., Weiss, Y., and Jordan, M. I. (1999). Loopy belief propagation for
approximate inference: An empirical study. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI’99), pages 467-475.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995). SCOP: a
structural classification of proteins database for the investigation of sequences
and structures. Journal of Molecular Biology, 247:536-540.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelli-
gence, 56:71-113.

Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing,
11(2):125-139.

Neal, R. M. and Hinton, G. E. (1999). A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Jordan, M. L., editor, Learning in
Graphical Models, pages 355-368. The MIT Press, Cambridge, MA, USA.

Neapolitan, R. E. (2004). Learning Bayesian Networks. Pearson Prentice Hall,
Upper Saddle River, NJ.

Nolan, L., Harva, M., Kabdn, A., and Raychaudhury, S. (2006). A data-driven
Bayesian approach for finding young stellar populations in early-type galaxies
from their UV-optical spectra. Monthly Notices of the Royal Astronomical So-
ciety, 366(1):321-338.

Palomaiki, K. J., Brown, G. J., and Barker, J. (2004). Techniques for handling con-
volutional distortion with ”missing data” automatic speech recognition. Speech
Communication, 43:123-142.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufman, San Francisco.

Petersen, K. B., Winther, O., and Hansen, L. K. (2005). On the slow convergence
of EM and VBEM in low noise linear mixtures. Neural Computation, 17(9):1921—
1926.

BIBLIOGRAPHY 97

Pietraszek, T. and Tanner, A. (2005). Data mining and machine learning—towards
reducing false positives in intrusion detection. Information Security Technical
Report Journal, 10(3):169-183.

Popescul, A., Ungar, L., Lawrence, S., and Pennock, D. (2003). Statistical rela-
tional learning for document mining. In Proceedings of the IEEFE International
Conference on Data Mining (ICDM-03), pages 275-282.

Psiaki, M. (2005). Backward-smoothing extended Kalman filter. Journal of Guid-
ance, Control, and Dynamics, 28(5).

Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning,
5(3):239-266.

Rabiner, L. R. and Juang, B. H. (1986). An introduction to hidden Markov models.
IEEE Acoustics, Speech, and Signal Processing Magazine, 3(1):4-15.

Raiko, T. (2001). Hierarchical nonlinear factor analysis. Master’s thesis, Helsinki
University of Technology, Espoo.

Raiko, T., Kersting, K., Karhunen, J., and De Raedt, L. (2002). Bayesian learn-
ing of logical hidden markov models. In Proceedings of the Finnish Artificial
Intelligence Conference (STeP 2002), pages 6471, Oulu, Finland.

Raju, K., Ristaniemi, T., Karhunen, J., and Oja, E. (2006). Jammer suppression
in DS-CDMA arrays using independent component analysis. IEEE Trans. on
Wireless Communications, 5(1):77-82.

Reiter, R. (1978). On closed world data bases. In Logic and Data Bases, pages
119-140. Plenum Publ. Co., New York.

Resnik, M. (1987). Choices: An Introduction to Decision Theory. University of
Minnesota Press, Minneapolis, Minnesota.

Ristaniemi, T. (2000). Synchronization and Blind Signal Processing in CDMA
Systems. PhD thesis, University of Jyvéiskyld, Jyvéskyld, Finland.

Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter.
Artech House.

Roberts, S. and Everson, R. (2001). Introduction. In Roberts, S. and Everson, R.,
editors, Independent Component Analysis: Principles and Practice, pages 1-70.
Cambridge University Press.

Rosenqvist, F. and Karlstrom, A. (2005). Realisation and estimation of piecewise-
linear output-error models. Automatica, 41(3):545-551.

98 BIBLIOGRAPHY

Russell, S. and Norvig, P. (1995). Artificial Intelligence A Modern Approach.
Prentice-Hall, New Jersey.

Salakhutdinov, R., Roweis, S. T., and Ghahramani, Z. (2003). Optimization with
EM and expectation-conjugate-gradient. In Proceedings of the international
conference on machine learning (ICML-2003), pages 672-679.

Sérkka, S., Vehtari, A., and Lampinen, J. (2006). Rao-Blackwellized particle filter
for multiple target tracking. Information Fusion. to appear.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
6(2):461-464.

Segal, E., Taskar, B., Gasch, A., Friedman, N., and Koller, D. (2001). Rich
probabilistic models for gene expression. Bioinformatics, 17:243-252.

Seltzer, M., Raj, B., and Stern, R. (2004). A Bayesian framework for spectro-
graphic mask estimation for missing feature speech recognition. Speech Com-
munication, 43(4):379-393.

Spiegelhalter, D., Thomas, A., Best, N., and Gilks, W. (1995). BUGS: Bayesian
inference using Gibbs sampling, version 0.50.

Srinivasan, A. (2005). The Aleph manual. Available at http://web.comlab.ox.
ac.uk/oucl/work/ashwin.srinivasan/.

Sterling, L. and Shapiro, E. (1994). The Art of Prolog. The MIT Press, second
edition.

Stinchcombe, M. and White, H. (1989). Universal approximation using feedforward
networks with non-sigmoid hidden layer activation functions. In Proceedings of
the International Joint Conference on Neural Networks (IJCNN °89), pages I-
613-617.

Stone, M. (1974). Cross-validation choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, 36:111-147.

Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative probabilistic models
for relational data. In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI02), pages 485-492, Edmonton.

Thrun, S. (1992). The role of exploration in learning control. In White, D. and
Sofge, D., editors, Handbook for Intelligent Control: Neural, Fuzzy and Adaptive
Approaches. Van Nostrand Reinhold, Florence, Kentucky 41022.

BIBLIOGRAPHY 99

Tornio, M. and Raiko, T. (2006). Variational Bayesian approach for nonlinear
identification and control. In Proceedings of the IFAC Workshop on Nonlinear
Model Predictive Control for Fast Systems (NMPC FS06), Grenoble, France. To
appear.

Valpola, H., Harva, M., and Karhunen, J. (2004). Hierarchical models of variance
sources. Signal Processing, 84(2):267-282.

Valpola, H., Honkela, A., Harva, M. Ilin, A. Raiko, T. and
Ostman, T. (2003a). Bayes blocks software library. Available at
http://www.cis.hut.fi/projects/bayes/software/.

Valpola, H. and Karhunen, J. (2002). An unsupervised ensemble learning method
for nonlinear dynamic state-space models. Neural Computation, 14(11):2647—
2692.

Valpola, H., Ostman, T., and Karhunen, J. (2003b). Nonlinear independent factor
analysis by hierarchical models. In Proc. Jth Int. Symp. on Independent Com-
ponent Analysis and Blind Signal Separation (ICA2003), pages 257262, Nara,
Japan.

Valpola, H., Raiko, T., and Karhunen, J. (2001). Building blocks for hierarchi-
cal latent variable models. In Proc. 3rd Int. Conf. on Independent Component
Analysis and Signal Separation (ICA2001), pages 710715, San Diego, USA.

Vigério, R., Jousméki, V., Haméldinen, M., Hari, R., and Oja, E. (1998). Inde-
pendent component analysis for identification of artifacts in magnetoencephalo-
graphic recordings. In Advances in Neural Information Processing System 10
(Proc. NIPS 97), pages 229-235. MIT Press.

Wallace, C. S. (1990). Classification by minimum-message-length inference. In
Aki, S. G., Fiala, F., and Koczkodaj, W. W., editors, Advances in Computing
and Information — ICCI "90, volume 468 of Lecture Notes in Computer Science,
pages 72-81. Springer, Berlin.

Winn, J. and Bishop, C. M. (2005). Variational message passing. Journal of
Machine Learning Research, 6:661-694.

Winn, J. and Joijic, N. (2005). LOCUS: Learning object classes with unsupervised
segmentation. In Proc. IEEE Intl. Conf. on Computer Vision (ICCV), pages
756-763, Beijing.

Won, K.-J., Prugel-Bennett, A., and Krogh, A. (2006). Evolving the structure
of hidden Markov models. IEEE Transactions on Evolutionary Computation,
10(1):39-49.

Publication 1

T. Raiko, H. Valpola, M. Harva, and J. Karhunen. Building Blocks for
Variational Bayesian Learning of Latent Variable Models. Report E4
in the Electronic report series of CIS, April, 2006, accepted for publica-
tion conditioned on minor revisions to the Journal of Machine Learning
Research.

Building Blocks for Variational Bayesian Learning
of Latent Variable Models

Tapani Raiko, Harri Valpola, Markus Harva,
and Juha Karhunen

Helsinki University of Technology, Adaptive Informatics Research Centre
P.O.Box 5400, F1-02015 HUT, Espoo, FINLAND

email: firstname.lastname@tkk.fi
URL: http://www.cis.hut.fi/projects/bayes/
Fax: +358-9-451 3277

April 26, 2006

Abstract

We introduce standardised building blocks designed to be used with
variational Bayesian learning. The blocks include Gaussian variables,
summation, multiplication, nonlinearity, and delay. A large variety of
latent variable models can be constructed from these blocks, including
variance models and nonlinear modelling, which are lacking from most
existing variational systems. The introduced blocks are designed to fit
together and to yield efficient update rules. Practical implementation
of various models is easy thanks to an associated software package
which derives the learning formulas automatically once a specific model
structure has been fixed. Variational Bayesian learning provides a cost
function which is used both for updating the variables of the model
and for optimising the model structure. All the computations can
be carried out locally, resulting in linear computational complexity.
We present experimental results on several structures, including a new
hierarchical nonlinear model for variances and means. The test results
demonstrate the good performance and usefulness of the introduced
method.

1 Introduction

Various generative modelling approaches have provided powerful statistical
learning methods for neural networks and graphical models during the last
years. Such methods aim at finding an appropriate model which explains
the internal structure or regularities found in the observations. It is assumed
that these regularities are caused by certain latent variables (also called fac-
tors, sources, hidden variables, or hidden causes) which have generated the

observed data through an unknown mapping [9]. In unsupervised learning,
the goal is to identify both the unknown latent variables and generative
mapping, while in supervised learning it suffices to estimate the generative
mapping.

The expectation-maximisation (EM) algorithm has often been used for
learning latent variable models [8, 9, 39, 41]. The distribution for the la-
tent variables is modelled, but the model parameters are found using max-
imum likelihood or maximum a posteriori estimators. However, with such
point estimates, determination of the correct model order and overfitting
are ubiquitous and often difficult problems. Therefore, full Bayesian ap-
proaches making use of the complete posterior distribution have recently
gained a lot of attention. Exact treatment of the posterior distribution is
intractable except in simple toy problems, and hence one must resort to
suitable approximations. So-called Laplacian approximation method [46, 8]
employs a Gaussian approximation around the peak of the posterior distri-
bution. However, this method still suffers from overfitting. In real-world
problems, it often does not perform adequately, and has therefore largely
given way for better alternatives. Among them, Markov Chain Monte Carlo
(MCMC) techniques [49, 51, 56] are popular in supervised learning tasks,
providing good estimation results. Unfortunately, the computational load is
high, which restricts the use of MCMC in large scale unsupervised learning
problems where the parameters and variables to be estimated are numer-
ous. For instance, [68] has a case study in unsupervised learning from brain
imaging data. He used MCMC for a scaled down toy example but resorted
to point estimates with real data.

Ensemble learning [26, 47, 51, 5, 45], which is one of the variational
Bayesian methods [40, 3, 41], has gained increasing attention during the
last years. This is because it largely avoids overfitting, allows for estimation
of the model order and structure, and its computational load is reasonable
compared to the MCMC methods. Variational Bayesian learning was first
employed in supervised problems [80, 26, 47, 5], but it has now become
popular also in unsupervised modelling. Recently, several authors have suc-
cessfully applied such techniques to linear factor analysis, independent com-
ponent analysis (ICA) [36, 66, 12, 27|, and their various extensions. These
include linear independent factor analysis [2], several other extensions of the
basic linear ICA model [4, 11, 53, 67|, as well as MLP networks for mod-
elling nonlinear observation mappings [44, 36] and nonlinear dynamics of the
latent variables (source signals) [38, 74, 75]. Variational Bayesian learning
has also been applied to large discrete models [54] such as nonlinear belief
networks [15] and hidden Markov models [48].

In this paper, we introduce a small number of basic blocks for building
latent variable models which are learned using variational Bayesian learning,.
The blocks have been introduced earlier in two conference papers [77, 23]
and their applications in [76, 33, 30, 65, 62, 63]. [71] studied hierarchical

models for variance sources from signal-processing point of view. This pa-
per is the first comprehensive presentation about the block framework itself.
Our approach is most suitable for unsupervised learning tasks which are
considered in this paper, but in principle at least, it could be applied to su-
pervised learning, too. A wide variety of factor-analysis-type latent-variable
models can be constructed by combining the basic blocks suitably. Varia-
tional Bayesian learning then provides a cost function which can be used for
updating the variables as well as for optimising the model structure. The
blocks are designed so as to fit together and yield efficient update rules. By
using a maximally factorial posterior approximation, all the required com-
putations can be performed locally. This results in linear computational
complexity as a function of the number of connections in the model. The
Bayes Blocks software package by [72] is an open-source C++/Python im-
plementation that can freely be downloaded.

The basic building block is a Gaussian variable (node). It uses as its
input values both mean and variance. The other building blocks include ad-
dition and multiplication nodes, delay, and a Gaussian variable followed by a
nonlinearity. Several known model structures can be constructed using these
blocks. We also introduce some novel model structures by extending known
linear structures using nonlinearities and variance modelling. Examples will
be presented later on in this paper.

The key idea behind developing these blocks is that after the connections
between the blocks in the chosen model have been fixed (that is, a particular
model has been selected and specified), the cost function and the updating
rules needed in learning can be computed automatically. The user does
not need to understand the underlying mathematics since the derivations
are done within the software package. This allows for rapid prototyping.
The Bayes Blocks can also be used to bring different methods into a unified
framework, by implementing a corresponding structure from blocks and by
using results of these methods for initialisation. Different methods can then
be compared directly using the cost function and perhaps combined to find
even better models. Updates that minimise a global cost function are guar-
anteed to converge, unlike algorithms such as loopy belief propagation [60],
extended Kalman smoothing [1], or expectation propagation [52].

[81] have introduced a general purpose algorithm called variational mes-
sage passing. It resembles our framework in that it uses variational Bayesian
learning and factorised approximations. The VIBES framework allows for
discrete variables but not nonlinearities or nonstationary variance. The pos-
terior approximation does not need to be fully factorised which leads to a
more accurate model. Optimisation proceeds by cycling through each factor
and revising the approximate posterior distribution. Messages that contain
certain expectations over the posterior approximation are sent through the
network.

[7, 17], and [6] view variational Bayesian learning as an extension to

the EM algorithm. Their algorithms apply to combinations of discrete and
linear Gaussian models. In the experiments, the variational Bayesian model
structure selection outperformed the Bayesian information criterion [69] at
relatively small computational cost, while being more reliable than annealed
importance sampling even with the number of samples so high that the
computational cost is hundredfold.

A major difference of our approach compared to the related methods by
[81] and by [7] is that they concentrate mainly on situations where there is
a handy conjugate prior [16] of the posterior distributions available. This
makes life easier, but on the other hand our blocks can be combined more
freely, allowing richer model structures. For instance, the modelling of vari-
ance in a way described in Section 5.1, would not be possible using the
gamma distribution for the precision parameter in the Gaussian node. The
price we have to pay for this advantage is that the minimum of the cost
function must be found iteratively, while it can be solved analytically when
conjugate distributions are applied. The cost function can always be eval-
uated analytically in the Bayes Blocks framework as well. Note that the
different approaches would fit together.

Similar graphical models can be learned with sampling based algorithms
instead of variational Bayesian learning. For instance, the BUGS software
package by [70] uses Gibbs sampling for Bayesian inference. It supports
mixture models, nonlinearities, and nonstationary variance. There are also
many software packages concentrated on discrete Bayesian networks. No-
tably, the Bayes Net toolbox by [55] can be used for Bayesian learning and
inference of many types of directed graphical models using several meth-
ods. It also includes decision-theoretic nodes. Hence it is in this sense
more general than our work. A limitation of the Bayes net toolbox [55] is
that it supports latent continuous nodes only with Gaussian or conditional
Gaussian distributions.

Autobayes [20] is a system that generates code for efficient implementa-
tions of algorithms used in Bayes networks. Currently the algorithm schemas
include EM, k-means, and discrete model selection. This system does not
yet support continuous hidden variables, nonlinearities, variational meth-
ods, MCMC, or temporal models. One of the greatest strengths of the code
generation approach compared to a software library is the possibility of au-
tomatically optimising the code using domain information.

In the independent component analysis community, traditionally, the ob-
servation noise has not been modelled in any way. Even when it is modelled,
the noise variance is assumed to have a constant value which is estimated
from the available observations when required. However, more flexible vari-
ance models would be highly desirable in a wide variety of situations. It
is well-known that many real-world signals or data sets are nonstationary,
being roughly stationary on fairly short intervals only. Quite often the am-

plitude level of a signal varies markedly as a function of time or position,
which means that its variance is nonstationary. Examples include financial
data sets, speech signals, and natural images.

Recently, [59] have demonstrated that several higher-order statistical
properties of natural images and signals are well explained by a stochastic
model in which an otherwise stationary Gaussian process has a nonstation-
ary variance. Variance models are also useful in explaining volatility of
financial time series and in detecting outliers in the data. By utilising the
nonstationarity of variance it is possible to perform blind source separation
on certain conditions [36, 61].

Several authors have introduced hierarchical models related to those dis-
cussed in this paper. These models use subspaces of dependent features in-
stead of single feature components. This kind of models have been proposed
at least in context with independent component analysis [10, 35, 34, 58], and
topographic or self-organising maps [43, 18]. A problem with these meth-
ods is that it is difficult to learn the structure of the model or to compare
different model structures.

The remainder of this paper is organised as follows. In the following sec-
tion, we briefly present basic concepts of variational Bayesian learning. In
Section 3, we introduce the building blocks (nodes), and in Section 4 we dis-
cuss variational Bayesian computations with them. In the next section, we
show examples of different types of models which can be constructed using
the building blocks. Section 6 deals with learning and potential problems
related with it, and in Section 7 we present experimental results on several
structures given in Section 5. This is followed by a short discussion as well
as conclusions in the last section of the paper.

2 Variational Bayesian learning

In Bayesian data analysis and estimation methods [51, 16, 39, 56], all the
uncertain quantities are modelled in terms of their joint probability density
function (pdf). The key principle is to construct the joint posterior pdf for
all the unknown quantities in a model, given the data sample. This posterior
density contains all the relevant information on the unknown variables and
parameters.

Denote by @ the set of all model parameters and other unknown variables
that we wish to estimate from a given data set X. The posterior probability
density p(0]|X) of the parameters 6 given the data X is obtained from Bayes

rule!

p(X[0)p(0) "
p(X)

Here p(X0) is the likelihood of the parameters 8 given the data X, p(0) is

the prior pdf of these parameters, and

p(0|1X) =

mx>—némxwmwme @)

is a normalising term which is called the evidence. The evidence can be
directly understood as the marginal probability of the observed data X as-
suming the chosen model H. By evaluating the evidences p(X) for different
models H;, one can therefore choose the model which describes the observed
data with the highest probability? [8, 51].

Variational Bayesian learning [5, 26, 45, 47, 51] is a fairly recently intro-
duced [26, 47] approximate fully Bayesian method, which has become pop-
ular because of its good properties. Its key idea is to approximate the exact
posterior distribution p(@|X) by another distribution ¢(0) that is computa-
tionally easier to handle. The approximating distribution is usually chosen
to be a product of several independent distributions, one for each parameter
or a set of similar parameters.

Variational Bayesian learning employs the Kullback-Leibler (KL) infor-
mation (divergence) between two probability distributions ¢(v) and p(v).
The KL information is defined by the cost function [24]

q(v)
Faalallp) = [o) G0 Q
which measures the difference in the probability mass between the densities
q(v) and p(v). Its minimum value 0 is achieved when the densities ¢(v) and
p(v) are the same.

The KL information is used to minimise the misfit between the actual
posterior pdf p(6|X) and its parametric approximation ¢(6). However, the
exact KL information Jk1,(¢(0) || p(6|X)) between these two densities does
not yet yield a practical cost function, because the normalising term p(X)
needed in computing p(€@|X) cannot usually be evaluated.

Therefore, the cost function used in variational Bayesian learning is de-
fined [26, 47]

CkL = JkL(q(0) || p(6]X)) — Inp(X) (4)

!The subscripts of all pdf’s are assumed to be the same as their arguments, and are
omitted for keeping the notation simpler.

2More accurately, one could show the dependence on the chosen model H by condi-
tioning all the pdf’s in (1) by H: p(0|X,H), p(X|H), etc. We have here dropped also the
dependence on H out for notational simplicity. See [74] for a somewhat more complete
discussion of Bayesian methods and ensemble learning.

After slight manipulation, this yields

Ckr, = /9 q(0)In %d@ (5)

which does not require p(X) any more. The cost function Cky, consists of
two parts:

¢, = (Ing(6)) = /9 4(0) 10 ¢(6)d0 (6)
¢, = (~1np(X.0)) = ~ [a(6)mp(X.0)i6 (7)

where the shorthand notation (-) denotes expectation with respect to the
approximate pdf ¢(@).

In addition, the cost function Ckr, provides a bound for the evidence
p(X). Since Jki(q || p) is always nonnegative, it follows directly from (4)
that

CxL > —Inp(X) (8)

This shows that the negative of the cost function bounds the log-evidence
from below.

It is worth noting that variational Bayesian ensemble learning can be de-
rived from information-theoretic minimum description length coding as well
[26]. Further considerations on such arguments, helping to understand sev-
eral common problems and certain aspects of learning, have been presented
in a recent paper [31].

The dependency structure between the parameters in our method is the
same as in Bayesian networks [60]. Variables are seen as nodes of a graph.
Each variable is conditioned by its parents. The difficult part in the cost
function is the expectation {In p(X, 8)) which is computed over the approxi-
mation ¢(0) of the posterior pdf. The logarithm splits the product of simple
terms into a sum. If each of the simple terms can be computed in constant
time, the overall computational complexity is linear.

In general, the computation time is constant if the parents are indepen-
dent in the posterior pdf approximation ¢(@). This condition is satisfied if
the joint distribution of the parents in ¢(6) decouples into the product of
the approximate distributions of the parents. That is, each term in ¢(6)
depending on the parents depends only on one parent. The independence
requirement is violated if any variable receives inputs from a latent variable
through multiple paths or from two latent variables which are dependent in
¢(0), having a non-factorisable joint distribution there. Figure 1 illustrates
the flow of information in the network in these two qualitatively different
cases.

Our choice for ¢(0) is a multivariate Gaussian density with a diagonal
covariance matrix. Even this crude approximation is adequate for finding

Figure 1: The dash-lined nodes and connections can be ignored while updat-
ing the shadowed node. Left: In general, the whole Markov blanket needs to
be considered. Right: A completely factorial posterior approximation with
no multiple computational paths leads to a decoupled problem. The nodes
can be updated locally.

the region where the mass of the actual posterior density is concentrated.
The mean values of the components of the Gaussian approximation pro-
vide reasonably good point estimates of the corresponding parameters or
variables, and the respective variances measure the reliability of these esti-
mates. However, occasionally the diagonal Gaussian approximation can be
too crude. This problem has been considered in context with independent
component analysis in [37], giving means to remedy the situation.

Taking into account posterior dependencies makes the posterior pdf ap-
proximation ¢(@) more accurate, but also usually increases the computa-
tional load significantly. We have earlier considered networks with multiple
computational paths in several papers, for example [44, 73, 74, 75]. The
computational load of variational Bayesian learning then becomes roughly
quadratically proportional to the number of unknown variables in the MLP
network model used in [44, 75, 32].

The building blocks (nodes) introduced in this paper together with as-
sociated structural constraints provide effective means for combating the
drawbacks mentioned above. Using them, updating at each node takes place
locally with no multiple paths. As a result, the computational load scales
linearly with the number of estimated quantities. The cost function and the
learning formulas for the unknown quantities to be estimated can be eval-
uated automatically once a specific model has been selected, that is, after
the connections between the blocks used in the model have been fixed. This
is a very important advantage of the proposed block approach.

3 Node types

In this section, we present different types of nodes that can be easily com-
bined together. Variational Bayesian inference algorithm for the nodes is
then discussed in Section 4.

-1

z

v 7152

m ls @
Va

l As+a i) s(t-1) s(t)

Figure 2: First subfigure from the left: The circle represents a Gaussian node
corresponding to the latent variable s conditioned by mean m and variance
exp(—v). Second subfigure: Addition and multiplication nodes are used to
form an affine mapping from s to As+ a. Third subfigure: A nonlinearity f
is applied immediately after a Gaussian variable. The rightmost subfigure:
Delay operator delays a time-dependent signal by one time unit.

In general, the building blocks can be divided into variable nodes, com-
putation nodes, and constants. Each variable node corresponds to a random
variable, and it can be either observed or hidden. In this paper we present
only one type of variable node, the Gaussian node, but others can be used
in the same framework. The computation nodes are the addition node, the
multiplication node, a nonlinearity, and the delay node.

In the following, we shall refer to the inputs and outputs of the nodes. For
a variable node, its inputs are the parameters of the conditional distribution
of the variable represented by that node, and its output is the value of the
variable. For computation nodes, the output is a fixed function of the inputs.
The symbols used for various nodes are shown in Figure 2. Addition and
multiplication nodes are not included, since they are typically combined to
represent the effect of a linear transformation, which has a symbol of its
own. An output signal of a node can be used as input by zero or more nodes
that are called the children of that node. Constants are the only nodes that
do not have inputs. The output is a fixed value determined at creation of
the node.

Nodes are often structured in vectors or matrices. Assume for example
that we have a data matrix X = [x(1),x(2),...,x(T)], where t =1,2,...T
is called the time index of an n-dimensional observation vector. Note that
t does not have to correspond to time in the real world, e.g. different ¢
could point to different people. In the implementation, the nodes are either
vectors so that the values indexed by t (e.g. observations) or scalars so
that the values are constants w.r.t. ¢ (e.g. weights). The data X would be
represented with n vector nodes. A scalar node can be a parent of a vector
node, but not a child of a vector node.

3.1 Gaussian node

The Gaussian node is a variable node and the basic element in building
hierarchical models. Figure 2 (leftmost subfigure) shows the schematic dia-
gram of the Gaussian node. Its output is the value of a Gaussian random
variable s, which is conditioned by the inputs m and v. Denote generally by
N(z;my,, 03) the probability density function of a Gaussian random variable
x having the mean m, and variance o2. Then the conditional probability
function (cpf) of the variable s is p(s | m,v) = N(s;m,exp(—v)). As a
generative model, the Gaussian node takes its mean input m and adds to it
Gaussian noise (or innovation) with variance exp(—v).

Variables can be latent or observed. Observing a variable means fixing
its output s to the value in the data. Section 4 is devoted to inferring the
distribution over the latent variables given the observed variables. Infer-
ring the distribution over variables that are independent of ¢ is also called
learning.

3.2 Computation nodes

The addition and multiplication nodes are used for summing and multiplying
variables. These standard mathematical operations are typically used to
construct linear mappings between the variables. This task is automated in
the software, but in general, the nodes can be connected in other ways, too.
An addition node that has n inputs denoted by s1, so, ..., Sy, gives the sum
of its inputs as the output)" | s;. Similarly, the output of a multiplication
node is the product of its inputs []"_; s;.

A nonlinear computation node can be used for constructing nonlinear
mappings between the variable nodes. The nonlinearity

f(s) = exp(—s?) 9)

is chosen because the required expectations can be solved analytically for
it. Another implemented nonlinearity for which the computations can be
carried out analytically is the cut function g(s) = max(s,0). Other possible
nonlinearities are discussed in Section 4.3.

3.3 Delay node

The delay operation can be used to model dynamics. The node operates
on time-dependent signals. It transforms the inputs s(1),s(2),...,s(T) into
outputs s, s(1),s(2),...,s(T — 1) where s¢ is a scalar parameter that pro-
vides a starting distribution for the dynamical process. The symbol z~! in
the rightmost subfigure of Fig. 2 illustrating the delay node is the standard
notation for the unit delay in signal processing and temporal neural net-
works [24]. Models containing the delay node are called dynamic, and the
other models are called static.

10

4 Variational Bayesian inference in Bayes blocks

In this section we give equations needed for computation with the nodes
introduced in Section 3. Generally speaking, each node propagates to the
forward direction a distribution of its output given its inputs. In the back-
ward direction, the dependency of the cost function (5) of the children on
the output of their parent is propagated. These two potentials are combined
to form the posterior distribution of each variable. There is a direct analogy
to Bayes rule (1): the prior (forward) and the likelihood (backward) are
combined to form the posterior distribution. We will show later on that
the potentials in the two directions are fully determined by a few values,
which consist of certain expectations over the distribution in the forward
direction, and of gradients of the cost function w.r.t. the same expectations
in the backward direction.

In the following, we discuss in more detail the properties of each node.
Note that the delay node does actually not process the signals, it just rewires
them. Therefore no formulas are needed for its associated the expectations
and gradients.

4.1 Gaussian node

Recall the Gaussian node in Section 3.1. The variance is parameterised
using the exponential function as exp(—v). This is because then the mean
(v) and expected exponential (exp v) of the input v suffice for evaluating the
cost function, as will be shown shortly. Consequently the cost function can
be minimised using the gradients with respect to these expectations. The
gradients are computed backwards from the children nodes, but otherwise
our learning method differs clearly from standard back-propagation [24].

Another important reason for using the parameterisation exp(—v) for
the prior variance of a Gaussian random variable s is that the posterior
distribution of s then becomes approximately Gaussian, provided that the
prior mean m of s is Gaussian, too (see for example Section 7.1 or [45]). The
conjugate prior distribution of the inverse of the prior variance of a Gaussian
random variable is the gamma distribution [16]. Using such gamma prior
pdf causes the posterior distribution to be gamma, too, which is mathemat-
ically convenient. However, the conjugate prior pdf of the second parameter
of the gamma distribution is something quite intractable. Hence gamma
distribution is not suitable for developing hierarchical variance models. The
logarithm of a gamma distributed variable is approximately Gaussian dis-
tributed [16], justifying the adopted parameterisation exp(—v). However, it
should be noted that both the gamma and exp(—v) distributions are used
as prior pdfs mainly because they make the estimation of the posterior pdf
mathematically tractable [45]; one cannot claim that either of these choices
would be correct.

11

4.1.1 Cost function

Recall now that we are approximating the joint posterior pdf of the random
variables s, m, and v in a maximally factorial manner. It then decouples
into the product of the individual distributions: ¢(s,m,v) = q(s)q(m)q(v).
Hence s, m, and v are assumed to be statistically independent a posteriori.
The posterior approximation ¢(s) of the Gaussian variable s is defined to be
Gaussian with mean s and variance $: ¢(s) = N(s;3,5). Utilising these, the
part C, of the Kullback-Leibler cost function arising from the data, defined in
Eq. (7), can be computed in closed form. For the Gaussian node of Figure 2,
the cost becomes

Csp = — (Inp(slm,v))
1 .

= 5{ (exp v) [(E —(m))*+ Var{m} +3| — (v) +1n 27r} (10)
The derivation is presented in Appendix B of [74] using slightly different
notation. For the observed variables, this is the only term arising from
them to the cost function Ckr,.

However, latent variables contribute to the cost function Ckr, also with
the part C, defined in Eq. (6), resulting from the expectation (Ing(s)). This
term is

Coqg = /q(s) Ing(s)ds = —%[ln(%rfé) + 1] (11)

which is the negative entropy of Gaussian variable with variance s. The
parameters defining the approximation ¢(s) of the posterior distribution of
s, namely its mean § and variance s, are to be optimised during learning.

The output of a latent Gaussian node trivially provides the mean and
the variance: (s) = 5 and Var {s} = 5. The expected exponential can be
easily shown to be [45, 74]

(exp s) = exp(s + 5/2) (12)

The outputs of the nodes corresponding to the observations are known
scalar values instead of distributions. Therefore for these nodes (s) = s,
Var {s} = 0, and (exps) = exps. An important conclusion of the consid-
erations presented this far is that the cost function of a Gaussian node can
be computed analytically in a closed form. This requires that the posterior
approximation is Gaussian and that the mean (m) and the variance Var {m}
of the mean input m as well as the mean (v) and the expected exponential
(expv) of the variance input v can be computed. To summarise, we have
shown that Gaussian nodes can be connected together and their costs can
be evaluated analytically.

We will later on use derivatives of the cost function with respect to some
expectations of its mean and variance parents m and v as messages from

12

children to parents. They are derived directly from Eq. (10), taking the

form
ICsp
(m) (expv) ({(m) —5) (13)
0Csp (expw)
OVar {m} 2 (14)
dCsp 1
o)~ 2 (15)
Csp (5—(m))>+ Var{m} +5
d(expv) 2 ' (16)

4.1.2 Updating the posterior distribution

The posterior distribution ¢(s) of a latent Gaussian node can be updated as

follows.

1. The distribution g(s) affects the terms of the cost function C, arising

from the variable s itself, namely Cs j, and C, 4, as well as the C, terms of
the children of s, denoted by Cy,(s) - The gradients of the cost Cey(s),p
with respect to (s), Var{s}, and (exps) are computed according to
Equations (13-16).

. The terms in C, which depend on 5 and s can be shown (see Appendix
B.2) to be of the form 3

Cp = Csp+ Con(s)p = M5+ V[(5 — Sewrrent)® + 3] + E (exps), (17)

where ac ac ac
=2 V=L and E= L4

M=% - % _ %
s’ 95’ 0 (exp s)

(18)
. The minimum of Cs = Cs + Cs g + Cep(s),p is solved. This can be done

analytically if & = 0, corresponding to the case of so-called free-form
solution (see [45] for details):

_ _ M ~ 1
Sopt = Scurrent — W s Sopt = W (19)

Otherwise the minimum is obtained iteratively. Iterative minimisation
can be carried out efficiently using Newton’s method for the posterior
mean § and a fixed-point iteration for the posterior variance s. The
minimisation procedure is discussed in more detail in Appendix A.

3Note that constants are dropped out since they do not depend on 5 or 3.

13

4.2 Addition and multiplication nodes

Consider first the addition node. The mean, variance and expected exponen-
tial of the output of the addition node can be evaluated in a straightforward
way. Assuming that the inputs s; are statistically independent, these expec-
tations are respectively given by

<Zsi> = (si) (20)

i=1 i=1
Var{z sl} =Y Var{s;} (21)
i=1 i=1

<eXp (Z 31>> = 1] (expsi) (22)

The proof has been given in Appendix B.1.
Consider then the multiplication node. Assuming independence between

the inputs s;, the mean and the variance of the output take the form (see
Appendix B.1)

<1:[1 si> = 1:[1 (si) (23)
Var {HS’} = H [<si>2 + Var {sl}] — H <3i>2 (24)
i=1 i=1 i=1

For the multiplication node the expected exponential cannot be evaluated
without knowing the exact distribution of the inputs.

The formulas (20)—(24) are given for n inputs because of generality, but
in practice we have carried out the needed calculations pairwise. When us-
ing the general formula (24), the variance might otherwise occasionally take
a small negative value due to minor imprecisions appearing in the compu-
tations. This problem does not arise in pairwise computations. Now, the
propagation in the forward direction is covered.

The form of the cost function propagating from children to parents is
assumed to be of the form (17). This is true even in the case, where there
are addition and multiplication nodes in between (see Appendix B.2 for
proof). Therefore only the gradients of the cost function with respect to
the different expectations need to be propagated backwards to identify the
whole cost function w.r.t. the parent. The required formulas are obtained
in a straightforward manner from Egs. (20)—(24). The gradients for the
addition node are:

oC oC
0 <81> - 0 <81 + 82> (25)

14

oC oC

OVar {s1} OVar{s| + s2} (26)
% = (exp 52) m. (27)
For the multiplication node, they become
88<scl> = {e2) a<216;2> +2Var {sz) % (s (28)
Ty = (o2 Var fs)) (29

As a conclusion, addition and multiplication nodes can be added between
the Gaussian nodes whose costs still retain the form (17). Proofs can be
found in Appendices B.1 and B.2.

4.3 Nonlinearity node

A serious problem arising here is that for most nonlinear functions it is im-
possible to compute the required expectations analytically. Here we describe
a particular nonlinearity in detail and discuss the options for extending to
other nonlinearities, for which the implementation is underway.

Ghahramani and Roweis have shown [19] that for the nonlinear function
f(s) = exp(—s?) in Eq. (9), the mean and variance have analytical expres-
sions, to be presented shortly, provided that it has Gaussian input. In our
graphical network structures this condition is fulfilled if we require that the
nonlinearity must be inserted immediately after a Gaussian node. The same
type of exponential function (9) is frequently used in standard radial-basis
function networks [8, 24, 19], but in a different manner. There the exponen-
tial function depends on the Euclidean distance from a center point, while
in our case it depends on the input variable s directly.

The first and second moments of the function (9) with respect to the
distribution ¢(s) are [19]

=2

o) =ep (—5 7) 5+ 1) (30)

=2

() = exp (45%) (45 +1)"

N

(31)

The formula (30) provides directly the mean (f(s)), and the variance is
obtained from (30) and (31) by applying the familiar formula Var {f(s)} =
([f())*)— (f(s))%. The expected exponential (exp f(s)) cannot be evaluated
analytically, which limits somewhat the use of the nonlinear node.

The updating of the nonlinear node following directly a Gaussian node
takes place similarly as the updating of a plain Gaussian node. The gradients
of C, with respect to (f(s)) and Var {f(s)} are evaluated assuming that they

15

arise from a quadratic term. This assumption holds since the nonlinearity
can only propagate to the mean of Gaussian nodes. The update formulas
are given in Appendix C.

Another possibility is to use as the nonlinearity the error function f(s)
= fjoo exp(—r?)dr, because its mean can be evaluated analytically and vari-
ance approximated from above [15]. Increasing the variance increases the
value of the cost function, too, and hence it suffices to minimise the upper
bound of the cost function for finding a good solution. [15] apply the error
function in MLP (multilayer perceptron) networks [8, 24] but in a manner
different from ours.

Finally, [54] has applied the hyperbolic tangent function f(s) = tanh(s),
approximating it iteratively with a Gaussian. [32] approximate the same
sigmoidal function with a Gauss-Hermite quadrature. This alternative could
be considered here, too. A problem with it is, however, that the cost function
(mean and variance) cannot be computed analytically.

4.4 Other possible nodes

One of the authors has recently implemented two new variable nodes [21, 23]
into the Bayes Blocks software library. They are the mixture-of-Gaussians
(MoG) node and the rectified Gaussian node. MoG can be used to model
any sufficiently well behaving distribution [8]. In the independent factor
analysis (IFA) method introduced in [2], a MoG distribution was used for
the sources, resulting in a probabilistic version of independent component
analysis (ICA) [36].

The second new node type, the rectified Gaussian variable, was intro-
duced in [53]. By omitting negative values and retaining only positive ones
of a variable which is originally Gaussian distributed, this block allows mod-
elling of variables having positive values only. Such variables are common-
place for example in digital image processing, where the picture elements
(pixels) have always non-negative values. The cost functions and update
rules of the MoG and rectified Gaussian node have been derived in [21]. We
postpone a more detailed discussion of these nodes to forthcoming papers
to keep the length of this paper reasonable.

In the early conference paper [77] where we introduced the blocks for
the first time, two more blocks were proposed for handling discrete models
and variables. One of them is a switch, which picks up its k-th continuous
valued input signal as its output signal. The other one is a discrete variable
k, which has a soft-max prior derived from the continuous valued input
signals ¢; of the node. However, we have omitted these two nodes from the
present paper, because their performance has not turned out to be adequate.
The reason might be that assuming all parents of all nodes independent is
too restrictive. For instance, building a mixture-of-Gaussians from discrete
and Gaussian variables with switches is possible, but the construction loses

16

Node type (y Var{} (exp-)
Gaussian node B s (12)
Addition node (20) (21) (22)
Multiplication node (23) (24) -
Nonlinearity (30) (30),(31) -
Constant c 0 expc

Table 1: The forward messages or expectations that are provided by the
output of different types of nodes. The numbers in parentheses refer to
defining equations. The multiplication and nonlinearity cannot provide the
expected exponential.

Input type % —avzf{-} —a<gg)_>
Mean of a Gaussian node (13) (14) 0
Variance of a Gaussian node (15) 0 (16)
Addendum (25) (26) (27)
Factor (28) (29) 0

Table 2: The backward messages or the gradients of the cost function
w.r.t. certain expectations. The numbers in parentheses refer to defining
equations. The gradients of the Gaussian node are derived from Eq. (10).
The Gaussian node requires the corresponding expectations from its inputs,
that is, (m), Var {m}, (v), and (expv). Addition and multiplication nodes
require the same type of input expectations that they are required to pro-
vide as output. Communication of a nonlinearity with its Gaussian parent
node is described in Appendix C.

out to a specialised MoG node that makes fewer assumptions. In [63], the
discrete node is used without switches.

Action and utility nodes [60, 55] would extend the library into deci-
sion theory and control. In addition to the messages about the variational
Bayesian cost function, the network would propagate messages about utility.
[64] describe such a system in a slightly different framework.

5 Combining the nodes

The expectations provided by the outputs and required by the inputs of the
different nodes are summarised in Tables 1 and 2, respectively. One can see
that the variance input of a Gaussian node requires the expected exponential
of the incoming signal. However, it cannot be computed for the nonlinear
and multiplication nodes. Hence all the nodes cannot be combined freely.

When connecting the nodes, the following restrictions must be taken into
account:

17

o9

Figure 3: Left: The Gaussian variable s(t) has a a constant variance exp(—v)
and mean m. Right: A variance source is added for providing a non-constant
variance input u(t) to the output (source) signal s(t). The variance source
u(t) has a prior mean v and prior variance exp(—w).

1. In general, the network has to be a directed acyclic graph (DAG). The
delay nodes are an exception because the past values of any node can
be the parents of any other nodes. This violation is not a real one
in the sense that if the structure were unfolded in time, the resulting
network would again be a DAG.

2. The nonlinearity must always be placed immediately after a Gaussian
node. This is because the output expectations, Equations (30) and
(31), can be computed only for Gaussian inputs. The nonlinearity
also breaks the general form of the likelihood (17). This is handled by
using special update rules for the Gaussian followed by a nonlinearity
(Appendix C).

3. The outputs of multiplication and nonlinear nodes cannot be used as
variance inputs for the Gaussian node. This is because the expected
exponential cannot be evaluated for them. These restrictions are evi-
dent from Tables 1 and 2.

4. There should be only one computational path from a latent variable to
a variable. Otherwise, the independency assumptions used in Equa-
tions (10) and (21)—(24) are violated and variational Bayesian learning
becomes more complicated (recall Figure 1).

Note that the network may contain loops, that is, the underlying undi-
rected network can be cyclic. Note also that the second, third, and fourth
restrictions can be circumvented by inserting mediating Gaussian nodes.
A mediating Gaussian node that is used as the variance input of another
variable, is called the variance source and it is discussed in the following.

5.1 Nonstationary variance

In most currently used models, only the means of Gaussian nodes have
hierarchical or dynamical models. In many real-world situations the variance

18

— — — Var{u(t)}=0
Var{u(t)}=1
P N Var{u(t)}=2

Figure 4: The distribution of s(¢) is plotted when s(t) ~ N (0, exp[—u(t)])
and u(t) ~ N(0,-). Note that when Var {u(t)} = 0, the distribution of s(¢) is
Gaussian. This corresponds to the right subfigure of Fig. 3 when m = v =0
and exp(—w) =0, 1, 2.

is not a constant either but it is more difficult to model it. For modelling
the variance, too, we use the variance source [71] depicted schematically in
Figure 3. Variance source is a regular Gaussian node whose output w(t) is
used as the input variance of another Gaussian node. Variance source can
convert prediction of the mean into prediction of the variance, allowing to
build hierarchical or dynamical models for the variance.

The output s(t) of a Gaussian node to which the variance source is at-
tached (see the right subfigure of Fig. 3) has in general a super-Gaussian
distribution. Such a distribution is typically characterised by long tails and
a high peak, and it is formally defined as having a positive value of kurto-
sis (see [36] for a detailed discussion). This property has been proved for
example in [59], where it is shown that a nonstationary variance (ampli-
tude) always increases the kurtosis. The output signal s(t) of the stationary
Gaussian variance source depicted in the left subfigure of Fig. 3 is natu-
rally Gaussian distributed with zero kurtosis. The variance source is useful
in modelling natural signals such as speech and images which are typically
super-Gaussian, and also in modelling outliers in the observations.

5.2 Linear independent factor analysis

In many instances there exist several nodes which have quite similar role in
the chosen structure. Assuming that i*" such node corresponds to a scalar
variable y;, it is convenient to use the vector y = (y1,¥2,...,%n)" to jointly
denote all the corresponding scalar variables yi, 49, ..., y,. This notation is
used in Figures 5 and 6 later on. Hence we represent the scalar source nodes
corresponding to the variables s;(¢) using the source vector s(t), and the
scalar nodes corresponding to the observations x;(t) using the observation
vector x(t).

The addition and multiplication nodes can be used for building an affine

19

A

:
® -3

e
g
&

Figure 5: Model structures for linear factor analysis
pendent factor analysis (IFA) (right).

—~

FA) (left) and inde-

transformation
x(t) = As(t) + a+n,(t) (32)

from the Gaussian source nodes s(t) to the Gaussian observation nodes
x(t). The vector a denotes the bias and vector n,(t) denotes the zero-
mean Gaussian noise in the Gaussian node x(t). This model corresponds
to standard linear factor analysis (FA) assuming that the sources s;(t) are
mutually uncorrelated; see for example [36].

If instead of Gaussianity it is assumed that each source s;(t) has some
non-Gaussian prior, the model (32) describes linear independent factor anal-
ysis (IFA). Linear IFA was introduced by [2], who used variational Bayesian
learning for estimating the model except for some parts which he estimated
using the expectation-maximisation (EM) algorithm. Attias used a mixture-
of-Gaussians source model, but another option is to use the variance source
to achieve a super-Gaussian source model. Figure 5 depicts the model struc-
tures for linear factor analysis and independent factor analysis.

5.3 A hierarchical variance model

Figure 6 (right subfigure) presents a hierarchical model for the variance, and
also shows how it can be constructed by first learning simpler structures
shown in the left and middle subfigures of Fig. 6. This is necessary, because
learning a hierarchical model having different types of nodes from scratch in
a completely unsupervised manner would be too demanding a task, ending
quite probably into an unsatisfactory local minimum.

The final rightmost variance model in Fig. 6 is somewhat involved in
that it contains both nonlinearities and hierarchical modelling of variances.
Before going into its mathematical details and into the two simpler models
in Fig. 6, we point out that we have considered in our earlier papers related
but simpler block models. In [76], a hierarchical nonlinear model for the
data x(¢) is discussed without modelling the variance. Such a model can be

Figure 6: Construction of a hierarchical variance model in stages from sim-
pler models. Left: In the beginning, a variance source is attached to each
Gaussian observation node. The nodes represent vectors. Middle: A layer
of sources with variance sources attached to them is added. They layers are
connected through a nonlinearity and an affine mapping. Right: Another
layer is added on the top to form the final hierarchical variance model.

applied for example to nonlinear ICA or blind source separation. Experi-
mental results [76] show that this block model performs adequately in the
nonlinear BSS problem, even though the results are slightly poorer than for
our earlier computationally more demanding model [44, 75, 32] with multiple
computational paths.

In another paper [71], we have considered hierarchical modelling of vari-
ance using the block approach without nonlinearities. Experimental re-
sults on biomedical MEG (magnetoencephalography) data demonstrate the
usefulness of hierarchical modelling of variances and existence of variance
sources in real-world data.

Learning starts from the simple structure shown in the left subfigure of
Fig. 6. There a variance source is attached to each Gaussian observation
node. The nodes represent vectors, with uy(t) being the output vector of
the variance source and x(t) the ¢ observation (data) vector. The vectors
u;(t) and x(t) have the same dimension, and each component of the vari-
ance vector uj(t) models the variance of the respective component of the
observation vector x(t).

Mathematically, this simple first model obeys the equations

x(t) = a; + ny(t) (33)
u(t) = by +ny, (t) (34)

Here the vectors a; and by denote the constant means (bias terms) of the
data vector x(t) and the variance variable vector uy(t), respectively. The
additive “noise” vector n,(t) determines the variances of the components

21

of x(t). It has a Gaussian distribution with a zero mean and variance
exp[—uy (¢)]:
n, (t) ~ N(0,exp[—uy (¢)]) (35)

More precisely, the shorthand notation N (0, exp[—uj(t)]) means that each
component of n,(t) is Gaussian distributed with a zero mean and variance
defined by the respective component of the vector exp[—uj(¢)]. The expo-
nential function exp(-) is applied separately to each component of the vector
—u; (¢). Similarly,

4, (1) ~ N (0, exp [~v1]) (36)

where the components of the vector vy define the variances of the zero mean
Gaussian variables n,, (£).

Consider then the intermediate model shown in the middle subfigure of
Fig. 6. In this second learning stage, a layer of sources with variance sources
attached to them is added. These sources are represented by the source vec-
tor s9(t), and their variances are given by the respective components of the
variance vector ug(t) quite similarly as in the left subfigure. The (vector)
node between the source vector sz(t) and the variance vector u;(t) repre-
sents an affine transformation with a transformation matrix A; including a
bias term. Hence the prior mean inputted to the Gaussian variance source
having the output uy(¢) is of the form Bif(sy(¢)) + by, where by is the
bias vector, and f(-) is a vector of componentwise nonlinear functions (9).
Quite similarly, the vector node between s5(t) and the observation vector
x(t) yields as its output the affine transformation A;f(sa(t)) + a;, where a;
is a bias vector. This in turn provides the input prior mean to the Gaussian
node modelling the observation vector x(t).

The mathematical equations corresponding to the model represented
graphically in the middle subfigure of Fig. 6 are:

= Aif(sa(t)) 4+ a; + n,(t)
= B f(s2(t)) + by + ny, (1)

Compared with the simplest model (33)—(34), one can observe that the
source vector sa(t) of the second (upper) layer and the associated variance
vector ugy(t) are of quite similar form, given in Egs. (39)—(40). The models
(37)—(38) of the data vector x(¢) and the associated variance vector uy (¢)
in the first (bottom) layer differ from the simple first model (33)—(34) in
that they contain additional terms A1f(s2(t)) and B1f(s2(t)), respectively.
In these terms, the nonlinear transformation f(s3(t)) of the source vector
S9(t) coming from the upper layer have been multiplied by the linear mixing
matrices A; and By. All the “noise” terms ng(t), ny, (t), ns,(t), and n,, (t)

22

in Egs. (37)—(40) are modelled by similar zero mean Gaussian distributions
as in Egs. (35) and (36).

In the last stage of learning, another layer is added on the top of the
network shown in the middle subfigure of Fig. 6. The resulting structure
is shown in the right subfigure. The added new layer is quite similar as
the layer added in the second stage. The prior variances represented by the
vector uz(t) model the source vector s3(¢), which is turn affects via the affine
transformation Bof(s3(t)) + by to the mean of the mediating variance node
uy(t). The source vector s3(t) provides also the prior mean of the source
so(t) via the affine transformation Asf(s3(¢)) + as.

The model equations (37)—(38) for the data vector x(t) and its associated
variance vector u;(t) remain the same as in the intermediate model shown
graphically in the middle subfigure of Fig. 6. The model equations of the
second and third layer sources sy(t) and s3(t) as well as their respective
variance vectors uz(t) and ug(¢) in the rightmost subfigure of Fig. 6 are
given by

+ ay + ny,(t)
+ by + ny, (1)

]
[NV
~~
Il
>z
-
—
9]
w
—
~
=
=

Again, the vectors ag, ba, ag, and b represent the constant means (biases) in
their respective models, and As and By are mixing matrices with matching
dimensions. The vectors ng, (t), n,,(t), ns,(t), and n,, (¢t) have similar zero
mean Gaussian distributions as in Eqgs. (35) and (36).

It should be noted that in the resulting network the number of scalar-
valued nodes (size of the layers) can be different for different layers. Addi-
tional layers could be appended in the same manner. The final network of
the right subfigure in Fig. 6 utilises variance nodes in building a hierarchical
model for both the means and variances. Without the variance sources the
model would correspond to a nonlinear model with latent variables in the
hidden layer. As already mentioned, we have considered such a nonlinear
hierarchical model in [76]. Note that computation nodes as hidden nodes
would result in multiple paths from the latent variables of the upper layer
to the observations. This type of structure was used in [44], and it has a
quadratic computational complexity as opposed to linear one of the networks
in Figure 6.

5.4 Linear dynamic models for the sources and variances

Sometimes it is useful to complement the linear factor analysis model

x(t) = As(t) + a+n,(t) (45)

23

=
)

PO

Figure 7: Three model structures. A linear Gaussian state-space model
(left); the same model complemented with a super-Gaussian innovation pro-
cess for the sources (middle); and a dynamic model for the variances of the
sources which also have a recurrent dynamic model (right).

with a recursive one-step prediction model for the source vector s(t):
s(t) =Bs(t — 1) + b + ny(t) (46)

The noise term ng(t) is called the innovation process. The dynamic model
of the type (45), (46) is used for example in Kalman filtering [24, 25], but
other estimation algorithms can be applied as well [24]. The left subfigure
in Fig. 7 depicts the structure arising from Eqs. (45) and (46), built from
the blocks.

A straightforward extension is to use variance sources for the sources
to make the innovation process super-Gaussian. The variance signal u(t)
characterises the innovation process of s(t), in effect telling how much the
signal differs from the predicted one but not in which direction it is changing.
The graphical model of this extension is depicted in the middle subfigure of
Fig. 7. The mathematical equations describing this model can be written
in a similar manner as for the hierarchical variance models in the previous
subsection.

Another extension is to model the variance sources dynamically by using
one-step recursive prediction model for them:

u(t) = Cu(t — 1) + ¢ + ny(t). (47)

This model is depicted graphically in the rightmost subfigure of Fig. 7. In
context with it, we use the simplest possible identity dynamical mapping for

s(t):
s(t) =s(t — 1) + ng(t). (48)

The latter two models introduced in this subsection will be tested experi-
mentally later on in this paper.

24

5.5 Hierarchical priors

It is often desirable that the priors of the parameters should not be too
restrictive. A common type of a vague prior is the hierarchical prior [16].
For example the priors of the elements a;; of a mixing matrix A can be
defined via the Gaussian distributions

plaij | vi') = N(aij; 0, exp(—v}')) (49)
p(uf [m", 0") = N(vj'; m", exp(—v™)) . (50)

Finally, the priors of the quantities m*® and v¥® have flat Gaussian dis-
tributions A/ (+;0,100) (the constants depending on the scale of the data).
When going up in the hierarchy, we use the same distribution for each col-
umn of a matrix and for each component of a vector. On the top, the
number of required constant priors is small. Thus very little information is
provided and needed a priori. This kind of hierarchical priors are used in
the experiments later on this paper.

6 Learning

Let us now discuss the overall learning procedure, describing also briefly
how problems related with learning can be handled.

6.1 Updating of the network

The nodes of the network communicate with their parents and children by
providing certain expectations in the feedforward direction (from parents
to children) and gradients of the cost function with respect to the same
expectations in the feedback direction (from children to parents). These
expectations and gradients are summarised in Tables 1 and 2.

The basic element for updating the network is the update of a single
node assuming the rest of the network fixed. For computation nodes this is
simple: each time when a child node asks for expectations and they are out
of date, the computational node asks from its parents for their expectations
and updates its own ones. And vice versa: when parents ask for gradients
and they are out of date, the node asks from its children for the gradients
and updates its own ones. These updates have analytical formulas given in
Section 4.

For a variable node to be updated, the input expectations and output
gradients need to be up-to-date. The posterior approximation ¢(s) can then
be adjusted to minimise the cost function as explained in Section 4. The
minimisation is either analytical or iterative, depending on the situation.
Signals propagating outwards from the node (the output expectations and
the input gradients) of a variable node are functions of ¢(s) and are thus

25

updated in the process. Each update is guaranteed not to increase the cost
function.

One sweep of updating means updating each node once. The order in
which this is done is not critical for the system to work. It would not be
useful to update a variable twice without updating some of its neighbours
in between, but that does not happen with any ordering when updates are
done in sweeps. We have used an ordering where each variable node is
updated only after all of its descendants have been updated. Basically when
a variable node is updated, its input gradients and output expectations are
labeled as outdated and they are updated only when another node asks for
that information.

It is possible to use different measures to improve the learning process.
Measures for avoiding local minima are described in the next subsection.
Another enhancement can be used for speeding up learning. The basic idea
is that after some time, the parameters describing ¢(s) are changing fairly
linearly between consecutive sweeps. Therefore a line search in that direction
provides faster learning, as discussed in [28, 33]. We apply this line search
only at every tenth sweep for allowing the consecutive updates to become
fairly linear again.

Learning a model typically takes thousands of sweeps before convergence.
The cost function decreases monotonically after every update. Typically this
decrease gets smaller with time, but not always monotonically. Therefore
care should be taken in selecting the stopping criterion. We have chosen to
stop the learning process when the decrease in the cost during the previous
200 sweeps is lower than some predefined threshold.

6.2 Structural learning and local minima

The chosen model has a pre-specified structure which, however, has some
flexibility. The number of nodes is not fixed in advance, but their optimal
number is estimated using variational Bayesian learning, and unnecessary
connections can be pruned away.

A factorial posterior approximation, which is used in this paper, often
leads to automatic pruning of some of the connections in the model. When
there is not enough data to estimate all the parameters, some directions
remain ill-determined. This causes the posterior distribution along those di-
rections to be roughly equal to the prior distribution. In variational Bayesian
learning with a factorial posterior approximation, the ill-determined direc-
tions tend to get aligned with the axes of the parameter space because then
the factorial approximation is most accurate.

The pruning tendency makes it easy to use for instance sparsely con-
nected models, because the learning algorithm automatically selects a small
amount of well-determined parameters. But at the early stages of learning,
pruning can be harmful, because large parts of the model can get pruned

26

away before a sensible representation has been found. This corresponds to
the situation where the learning scheme ends up into a local minimum of the
cost function [50]. A posterior approximation which takes into account the
posterior dependences has the advantage that it has far less local minima
than a factorial posterior approximation. It seems that Bayesian learning
algorithms which have linear time complexity cannot avoid local minima in
general.

However, suitable choices of the model structure and countermeasures
included in the learning scheme can alleviate the problem greatly. We have
used the following means for avoiding getting stuck into local minima:

e Learning takes place in several stages, starting from simpler struc-
tures which are learned first before proceeding to more complicated
hierarchic structures. An example of this technique was presented in
Section 5.3.

e New parts of the network are initialised appropriately. One can use
for instance principal component analysis (PCA), independent com-
ponent analysis (ICA), vector quantisation, or kernel PCA [29]. The
best option depends on the application. Often it is useful to try dif-
ferent methods and select the one providing the smallest value of the
cost function for the learned model. There are two ways to handle ini-
tialisation: either to fix the sources for a while and learn the weights
of the model, or to fix the weights for a while and learn the sources
corresponding to the observations. The fixed variables can be released
gradually (see Section 5.1 of [76]).

e Automatic pruning is discouraged initially by omitting the term

oC

2Var {82} m

(s1)

in the multiplication nodes (Eq. (28)). This effectively means that the
mean of s; is optimistically adjusted as if there were no uncertainty
about so. In this way the cost function may increase at first due to
overoptimism, but it may pay off later on by escaping early pruning.

e New sources s;(t) (components of the source vector s(t) of a layer) are
generated, and pruned sources are removed from time to time.

e The activations of the sources are reset a few times. The sources
are re-adjusted to their places while keeping the mapping and other
parameters fixed. This often helps if some of the sources are stuck into
a local minimum.

27

7 Experimental results

The Bayes Blocks software [72] has been applied to several problems.

[71] considered several models of variance. The main application was
the analysis of MEG measurements from a human brain. In addition to
features corresponding to brain activity the data contained several artifacts
such as muscle activity induced by the patient biting his teeth. Linear
ICA applied to the data was able to separate the original causes to some
degree but still many dependencies remained between the sources. Hence an
additional layer of so-called variance sources was used to find correlations
between the variances of the innovation processes of the ordinary sources.
These were able to capture phenomena related to the biting artifact as well
as to rhythmic activity.

An astrophysical problem of separating young and old star populations
from a set of elliptical galaxy spectra has been studied by one of the authors
in [57]. Since the observed quantities are energies and thus positive and
since the mixing process is also known to be positive, it is necessary for the
subsequent astrophysical analysis to be feasible to include these constraints
to the model as well. The standard technique of putting a positive prior
on the sources was found to have the unfortunate technical shortcoming
of inducing sparsely distributed factors, which was deemed inappropriate
in that specific application. To get rid of the induced sparsity but to still
keep the positivity constraint, the nonnegativity was forced by rectification
nonlinearities [22]. In addition to finding an astrophysically meaningful
factorisation, several other specifications were needed to be met related to
handling of missing values, measurements errors and predictive capabilities
of the model.

In [63], a nonlinear model for relational data is applied to the analysis
of the boardgame Go. The difficult part of the game state evaluation is to
determine which groups of stones are likely to get captured. A model similar
to the one that will be described in Section 7.2, is built for features of pairs
of groups, including the probability of getting captured. When the learned
model is applied to new game states, the estimates propagate through a
network of such pairs. The structure of the network is thus determined
by the game state. The approach can be used for inference in relational
databases.

The following three sets of experiments are given as additional examples.
The first one is a difficult toy problem that illustrates hierarchy and variance
modelling, the second one studies the inference of missing values in speech
spectra, and the third one has a dynamical model for image sequences.

28

Figure 8: Samples from the 1000 image patches used in the extended bars
problem. The bars include both standard and variance bars in horizontal and
vertical directions. For instance, the patch at the bottom left corner shows
the activation of a standard horizontal bar above the horizontal variance bar
in the middle.

7.1 Bars problem

The first experimental problem studied was testing of the hierarchical non-
linear variance model in Figure 6 in an extension of the well-known bars
problem [13]. The data set consisted of 1000 image patches each having
6 x 6 pixels. They contained both horizontal and vertical bars. In addition
to the regular bars, the problem was extended to include horizontal and ver-
tical variance bars, characterized and manifested by their higher variance.
Samples of the image patches used are shown in Figure 8.

The data were generated by first choosing whether vertical, horizon-
tal, both, or neither orientations were active, each with probability 1/4.
Whenever an orientation is active, there is a probability 1/3 for a bar in
each row or column to be active. For both orientations, there are 6 regular
bars, one for each row or column, and 3 variance bars which are 2 rows or
columns wide. The intensities (grey level values) of the bars were drawn
from a normalised positive exponential distribution having the pdf p(z) =
exp(—z),z > 0, p(z) = 0,z < 0. Regular bars are additive, and variance
bars produce additive Gaussian noise having the standard deviation of its
intensity. Finally, Gaussian noise with a standard deviation 0.1 was added
to each pixel.

The network was built up following the stages shown in Figure 6. It was
initialised with a single layer with 36 nodes corresponding to the 36 dimen-
sional data vector. The second layer of 30 nodes was created at the sweep
20, and the third layer of 5 nodes at the sweep 100. After creating a layer
only its sources were updated for 10 sweeps, and pruning was discouraged
for 50 sweeps. New nodes were added twice, 3 to the second layer and 2 to
the third layer, at sweeps 300 and 400. After that, only the sources were
updated for 5 sweeps, and pruning was again discouraged for 50 sweeps.
The source activations were reset at the sweeps 500, 600 and 700, and only

29

the sources were updated for the next 40 sweeps. Dead nodes were removed
every 20 sweeps. The multistage training procedure was designed to avoid
suboptimal local solutions, as discussed in Section 6.2.

Figure 9 demonstrates that the algorithm finds a generative model that
is quite similar to the generation process. The two sources on the third layer
correspond to the horizontal and vertical orientations and the 18 sources on
the second layer correspond to the bars. Each element of the weight matrices
is depicted as a pixel with the appropriate grey level value in Fig. 9. The
pixels of Ay and By are ordered similarly as the patches of A7 and By,
that is, vertical bars on the left and horizontal bars on the right. Regular
bars, present in the mixing matrix A, are reconstructed accurately, but the
variance bars in the mixing matrix B; exhibit some noise. The distinction
between horizontal and vertical orientations is clearly visible in the mixing
matrix Ao.

A, (18 x 2) B, (18 x 2

Ay (36 x 18) B, (36 x 18)
I INEEE
| | = -

Figure 9: Results of the extended bars problem: Posterior means of the
weight matrices after learning. The sources of the second layer have been
ordered for visualisation purposes according to the weight (mixing) matrices
A5 and Bs. The elements of the matrices have been depicted as pixels having
corresponding grey level values. The 18 pixels in the weight matrices Ao
and Bo correspond to the 18 patches in the weight matrices A; and By.

A comparison experiment with a simplified learning procedure was run
to demonstrate the importance of local optima. The creation and pruning
of layers were done as before, but other methods for avoiding local min-
ima (addition of nodes, discouraging pruning and resetting of sources) were
disabled. The resulting weights can be seen in Figure 10. This time the
learning ends up in a suboptimal local optimum of the cost function. One

30

A, (14 x 2) B, (14 x 2)
: m
A (36 x 14) B, (36 x 14)
| —
T =
1 L1 -
10 500 1000 1500 I I I

Figure 10: Left: Cost function plotted against the number of learning
sweeps. Solid curve is the main experiment and the dashed curve is the
comparison experiment. The peaks appear when nodes are added. Right:
The resulting weights in the comparison experiment are plotted like in Fig-

— - — - prior

— — —likelihood
posterior
approximation

Figure 11: A typical example illustrating the posterior approximation of a
variance source.

of the bars was not found (second horizontal bar from the bottom), some
were mixed up in a same source (most variance bars share a source with a
regular bar), fourth vertical bar from the left appears twice, and one of the
sources just suppresses variance everywhere. The resulting cost function (5)
is worse by 5292 compared to the main experiment. The ratio of the model
evidences is thus roughly exp(5292).

Figure 11 illustrates the formation of the posterior distribution of a typ-
ical single variable. It is the first component of the variance source uj(1)
in the comparison experiment. The prior means here the distribution given
its parents (especially s2(1) and B1) and the likelihood means the potential
given its children (the first component of x(1)). Assuming the posteriors
of other variables accurate, we can plot the true posterior of this variable
and compare it to the Gaussian posterior approximation. Their difference
is only 0.007 measured by Kullback-Leibler divergence.

31

7.2 Missing values in speech spectra

In hierarchical nonlinear factor analysis (HNFA) [76], there are a number
of layers of Gaussian variables, the bottom-most layer corresponding to the
data. There is a nonlinearity and a linear mixture mapping from each layer
to all the layers below it.

HNFA resembles the model structure in Section 5.3. The model structure
is depicted in the left subfigure of Fig. 12. Model equations are

h(t) = As(t) +a+ny(t) (51)
x(t) = Bo[h(t)] + Cs(t) + b+ n,(t), (52)

where ny,(t) and n,(t) are Gaussian noise terms and the nonlinearity ¢(§) =
exp(f§2) again operates on each element of its argument vector separately.
Note that we have included a short-cut mapping C from sources to obser-
vations. This means that hidden nodes only need to model the deviations
from linearity.

HNFA is compared against three other methods. Factor analysis (FA) is
a linear method described in Section 5.2. It is a special case of HNFA where
the dimensionality of h(t) is zero. Nonlinear factor analysis (NFA) [44, 32]
differs from HNFA in that it does not use mediating variables h(?):

x(t) = Btanh[As(t) + a] + b + n,(?). (53)

Note that NFA has multiple computational paths between s(¢) and x(¢),
which leads to a higher computational complexity compared to HNFA.

The self-organising map SOM [42] differs most from the other methods.
A rectangular map has a number of map units with associated model vectors
that are points in the data space. Each data point is matched to the closest
map unit. The model vectors of the best-matching unit and its neighbours in
the map are moved slightly towards the data point. See [42, 24] for details.

The data set consisted of speech spectrograms from several Finnish sub-
jects. Short term spectra were windowed to 30 dimensions with a standard
preprocessing procedure for speech recognition. It is clear that a dynamic
source model would give better reconstructions, but in this case the tempo-
ral information was left out to ease the comparison of the models. Half of
the about 5000 samples were used as test data with some missing values.
Missing values were set in four different ways to measure different properties
of the algorithms (Figure 13):

1. 38 percent of the values are set to miss randomly in 4 x 4 patches.

(Right subfigure of Figure 12)

2. Training and testing sets are randomly permuted before setting miss-
ing values in 4 x 4 patches as in Setting 1.

3. 10 percent of the values are set to miss randomly independent of any
neighbours. This is an easier setting, since simple smoothing using
nearby values would give fine reconstructions.

32

Data with missing values
L RO T

Original data
-

HNFA reconstruction
T I L

Figure 12: Left: The model structure for hierarchical nonlinear factor anal-
ysis (HNFA). Right: Some speech data with and without missing values
(Setting 1) and the reconstruction given by HNFA.

Nonlinearity
(patches)

Memorisation

Generalisation (permuted)

High
dimensionality

Figure 13: Four different experimental settings with the speech data used
for measuring different properties of the algorithms.

4. Training and testing sets are permuted and 10 percent of the values

are set to miss independently of any neighbours.

We tried to optimise each method and in the following, we describe
how we got the best results. The self-organising map was run using the
SOM Toolbox [79] with long learning time, 2500 map units and random
initialisations. In other methods, the optimisation was based on minimising
the cost function or its approximation. NFA was learned for 5000 sweeps
through data using a Matlab implementation. Varying number of sources
were tried out and the best ones were used as the result. The optimal
number of sources was around 12 to 15 and the size used for the hidden
layer was 30. A large enough number should do, since the algorithm can
effectively prune out parts that are not needed.

In factor analysis (FA), the number of sources was 28. In hierarchical

33

nonlinear factor analysis (HNFA), the number of sources at the top layer
was varied and the best runs according to the cost function were selected.
In those runs, the size of the top layer varied from 6 to 12 and the size of the
middle layer, which is determined during learning, turned out to vary from
12 to 30. HNFA was run for 5000 sweeps through data. Each experiment
with NFA or HNFA took about 8 hours of processor time, while FA and
SOM were faster.

Several runs were conducted with different random initialisations but
with the same data and the same missing value pattern for each setting and
for each method. The number of runs in each cell is about 30 for HNFA,
4 for NFA and 20 for the SOM. FA always converges to the same solution.
The mean and the standard deviation of the mean square reconstruction
error are:

| FA| HNFA | NFA | SOM
Setting 1 | 1.87 | 1.80 £0.03 | 1.74 £0.02 | 1.69 % 0.02
Setting 2 | 1.85 | 1.78 0.03 | 1.71£0.01 | 1.55 + 0.01
Setting 3 | 0.57 | 0.55 +.005 | 0.56 +.002 | 0.86 + 0.01
Setting 4 | 0.58 | 0.55 +.008 | 0.58 +.004 | 0.87 +0.01

The order of results of the Setting 1 follow our expectations on the
nonlinearity of the models. The SOM with highest nonlinearity gives the
best reconstructions, while NFA, HNFA and finally FA follow in that order.
The results of HNFA vary the most - there is potential to develop better
learning schemes to find better solutions more often. The sources h(t) of
the hidden layer did not only emulate computation nodes, but they were
also active themselves. Avoiding this situation during learning could help
to find more nonlinear and thus perhaps better solutions.

In the Setting 2, due to the permutation, the test set contains vectors
very similar to some in the training set. Therefore, generalisation is not as
important as in the Setting 1. The SOM is able to memorise details corre-
sponding to individual samples better due to its high number of parameters.
Compared to the Setting 1, SOM benefits a lot and makes clearly the best
reconstructions, while the others benefit only marginally.

The Settings 3 and 4, which require accurate expressive power in high
dimensionality, turned out not to differ from each other much. The basic
SOM has only two intrinsic dimensions? and therefore it was clearly poorer
in accuracy. Nonlinear effects were not important in these settings, since
HNFA and NFA were only marginally better than FA. HNFA was better
than NFA perhaps because it had more latent variables when counting both
s(t) and h(t).

To conclude, HNFA lies between FA and NFA in performance. HNFA
is applicable to high dimensional problems and the middle layer can model

“Higher dimensional SOMs become quickly intractable due to exponential number of
parameters.

34

part of the nonlinearity without increasing the computational complexity
dramatically. FA is better than SOM when expressivity in high dimensions
is important, but SOM is better when nonlinear effects are more important.
The extensions of FA, NFA and HNFA, expectedly performed better than
FA in each setting. It may be possible to enhance the performance of NFA
and HNFA by new learning schemes whereas especially FA is already at its
limits. On the other hand, FA is best if low computational complexity is
the determining factor.

7.3 Variance model of image sequences

In this section an experiment with a dynamical model for variances applied
to image sequence analysis is reported. The motivation behind modelling
variances is that in many natural signals, there exists higher order depen-
dencies which are well characterised by correlated variances of the signals
[59]. Hence we postulate that we should be able to better catch the dynam-
ics of a video sequence by modelling the variances of the features instead of
the features themselves. This indeed is the case as will be shown.

The model considered can be summarised by the following set of equa-
tions:

x(t) ~ N(As(t), diag(exp[—va]))
s(t) ~ N (s(t — 1), diag(exp[—u(t)]))
u(t) ~ N(Bu(t — 1), diag(exp[-vu]))

We will use the acronym DynVar in referring to this model. The linear
mapping A from sources s(t) to observations x(¢) is constrained to be sparse
by assigning each source a circular region on the image patch outside of
which no connections are allowed. These regions are still highly overlapping.
The variances u(t) of the innovation process of the sources have a linear
dynamical model. It should be noted that modelling the variances of the
sources in this manner is impossible if one is restricted to use conjugate
priors.

The sparsity of A is crucial as the computational complexity of the
learning algorithm depends on the number of connections from s(¢) to x(¥).
The same goal could have been reached with a different kind of approach
as well. Instead of constraining the mapping to be sparse from the very
beginning of learning it could have been allowed to be full for a number of
iterations and only after that pruned based on the cost function as explained
in Section 6.2. But as the basis for image sequences tends to get sparse
anyway, it is a waste of computational resources to wait while most of the
weights in the linear mapping tend to zero.

For comparison purposes, we postulate another model where the dynam-
ical relations are sought directly between the sources leading to the following

35

model equations:

x(t) ~ N(As(t), diag(exp[—v.]))
s(t) ~ N(Bs(t — 1), diag(exp[—u(t)]))

We shall refer to this model as DynSrc.

The data x(t) was a video image sequence [78] of dimensions 16 x 16 x
4000. That is, the data consisted of 4000 subsequent digital images of the
size 16 x 16. A part of the data set is shown in Figure 14.

Both models were learned by iterating the learning algorithm 2000 times
at which stage a sufficient convergence was attained. The first hint of the
superiority of the DynVar model was provided by the difference of the cost
between the models which was 28 bits/frame (for the coding interpretation,
see [31]). To further evaluate the performance of the models, we considered
a simple prediction task where the next frame was predicted based on the
previous ones. The predictive distributions, p(x(t+1)|x(1), ...,x(t)), for the
models can be approximately computed based on the posterior approxima-
tion. The means of the predictive distributions are very similar for both of
the models. Figure 15 shows the means of the DynVar model for the same
sequence as in Figure 14. The means themselves are not very interesting,
since they mainly reflect the situation in the previous frame. However, the
DynVar model provides also a rich model for the variances. The standard
deviations of its predictive distribution are shown in Figure 16. White stands
for a large variance and black for a small one. Clearly, the model is able
to increase the predicted variance in the area of high motion activity and
hence provide better predictions. We can offer quantitative support for this
claim by computing the predictive perplexities for the models. Predictive
perplexity is widely used in language modelling and it is defined as

256
perplexity (t) = exp {—% ; log p(x;(t + 1)|x(1), ..., x(t))})
The predictive perplexities for the same sequence as in Figure 14 are shown
in Figure 17. Naturally the predictions get worse when there is movement
in the video. However, DynVar model is able to handle it much better than
the compared DynSrc model. The same difference can also be directly read
by comparing the cost functions (3).

The possible applications for a model of image sequences include video
compression, motion detection, early stages of computer vision, and making
hypotheses on biological vision.

8 Discussion

One of the distinctive factors between different Bayesian approaches is the
type of posterior approximation. We have concentrated on large unsuper-

36

Figure 16: The standard deviations of the predictive distribution for the
DynVar model.

37

25 ; T . T T
—— DynSrc
- - DynVar

201

[uy
ol
T

Pred. Perplexity
B
2

Figure 17: Predictive perplexities.

vised learning tasks, where point estimates are too prone to overfitting and
sampling used in MCMC methods and particle filters, is often too slow.
The problems tackled with particle filters in [14] vary from 1 to 10 in di-
mensionality, whereas the latent space in Section 7.3 is 128 dimensional. The
variational Bayesian learning seems to provide a good compromise between
point estimates and sampling methods.

Often the posterior distribution consists of clusters or solution modes. It
depends on the posterior approximation again, whether only one of the clus-
ters, or all of them are modelled. In our case, the expectation in Jkr,(q || p)
is taken over the approximate distribution ¢, which in practice leads to mod-
elling a single mode. In expectation propagation [52], the Kullback-Leibler
divergence is formed differently, leading to modelling of all the modes. Also,
sampling is supposed to take place in all the modes. For the purpose of find-
ing a single good representative of the posterior probability mass, the first
approach should be better. In fact, the expectation over the true posterior,
also known as the Bayes estimate, is often degenerate due to symmetry. For
instance in factor analysis type models, the posterior is symmetric to the
permutation of factors. The number of permutations also gives a hint of
the infeasibility of accurately modelling all the modes in a high-dimensional
problem. Perhaps it would be best to find one mode for the parameters, but
all modes for the time-dependent variables when feasible.

The variational Bayesian methods vary further depending on the pos-
terior approximation. In this paper, all variables are assumed to be in-
dependent a posteriori. We have chosen to model individual distributions
as Gaussians. Often different conjugate distributions are used instead, for
instance, the variance of a Gaussian variable is modelled with a Gamma
distribution. Conjugate distributions are accurate and in some sense practi-

38

cal, but by restricting to Gaussians, the nodes can be connected more freely
allowing for example hierarchical modelling of variances. It should be noted
that the effect of assuming independencies is far more significant compared
to the effect of approximations in modelling individual distributions.

The scope of this paper has been restricted to models which can be
learned using purely local computations. This is possible, if the parents
of each node are independent a posteriori. This can be accomplished by
using a factorial posterior approximation and by not allowing multiple com-
putational paths between variables. Purely local computations result in a
computational complexity that is linear w.r.t. the number of connections in
the model. In small models, one could afford to take all the dependencies
into account. In larger models, it might be desirable to model posterior
dependencies within disjoint groups of variables, but to assume the groups
statistically independent, as is done by [81].

According to our experience, almost maximally factorial posterior pdf
approximation ¢(0) suffices in many cases. It seems that a good model
structure is usually more important than a good approximation of the pos-
terior pdf of the model. Therefore the available computation time is often
better invested in a larger model using a simple posterior approximation.
In any case, density estimates of continuous valued latent variables offer an
important advantage over point estimates, because they are robust against
overfitting and provide a cost function suitable for learning model structures.
With variational Bayesian learning employing a factorial posterior pdf ap-
proximation ¢(0) the density estimates are almost as efficient as point esti-
mates. Moreover, latent variable models often exhibit rotational and other
invariances which variational Bayesian learning can utilise by choosing a
solution where the factorial approximation is most accurate.

The basic algorithm for learning and inference is based on updating a
variable at a time while keeping other variables fixed. It has the benefits
of being completely local and guaranteed to converge. A drawback is that
the flow of information through time can be slow while performing inference
in a dynamical model. There are alternative inference algorithms, where
updates are carried out in forward and backward sweeps. These include
particle smoothing [14], extended Kalman smoothing [1], and expectation
propagation [52]. When the model needs to be learned at the same time,
one needs to iterate a lot anyway, so the variational Bayesian algorithm
that makes small but consistent improvements at every sweep might be
preferable.

It is an important design choice that each node is updated while keeping
the other nodes fixed. If new node types are added later on, there is no
need to change the global learning algorithm, but it suffices to design an
update rule for the new node type. Also, there is an option to update
some nodes more often than others. When different parameters are coupled
and cyclic updating is slow, it can be sped up by line search as described

39

by [33]. Note that all the updates are done in order to minimise a global
cost function, that is, a cost function over all the variables. Expectation
propagation [52] updates one approximation at a time, too. An important
difference is that there updates are done using a local cost function, i.e. the
local approximation is fitted to the local true posterior assuming that the
rest of the approximation is accurate. This is the reason why expectation
propagation may diverge.

Large nonlinear problems often have numerous suboptimal local solu-
tions that should be avoided. We have used many tricks to avoid them, as
discussed in Section 6.2. It depends on the application which tricks work
best. It is an important aspect of future work to make the procedure as
simple as possible for the user.

9 Conclusions

In this paper, we have introduced standardised nodes (blocks) for construct-
ing generative latent variable models. These nodes include a Gaussian node,
addition, multiplication, a nonlinearity following directly a Gaussian node,
and a delay node. The nodes have been designed so that they fit together, al-
lowing construction of many types of latent variable models, including both
known and novel structures. Constructing new prototype models is rapid
since the user does not need to take care of the learning formulas. The nodes
have been implemented in an open source software package called the Bayes
Blocks [72].

The models built from these blocks are taught using variational Bayesian
(ensemble) learning. This learning method essentially uses as its cost func-
tion the Kullback-Leibler information between the true posterior density
and its approximation. The cost function is used for updating the unknown
variables in the model, but it also allows optimisation of the number of nodes
in the chosen model type. By using a factorial posterior density approxima-
tion, all the required computations can be carried out locally by propagating
means, variances, and expected exponentials instead of full distributions. In
this way, one can achieve a linear computational complexity with respect to
the number of connections in the chosen model. However, initialisation to
avoid premature pruning of nodes and local minima require special attention
in each application for achieving good results.

In this paper, we have tested the introduced method experimentally in
three separate unsupervised learning problems with different types of mod-
els. The results demonstrate the good performance and usefulness of the
method. First, hierarchical nonlinear factor analysis (HNFA) with variance
modelling was applied to an extension of the bars problem. The presented
algorithm could find a model that is essentially the same as the complicated
way in which the data were generated. Secondly, HNFA was used to recon-

40

struct missing values in speech spectra. The results were consistently better
than with linear factor analysis, and were generally best in cases requir-
ing accurate representation in high dimensionality. The third experiment
was carried out using real-world video image data. We compared the lin-
ear dynamical model for the means and for the variances of the sources.
The results demonstrate that finding strong dependencies between different
sources was considerably easier when the variances were modelled, too.

Acknowledgments

We thank Antti Honkela, Tomas Ostman, and Alexander Ilin for work
on Bayes blocks software library and for useful comments, and Hans van
Hateren for supplying the video data [78] used in the experiments. This
research has been funded by the European Commission project BLISS and
the Finnish Center of Excellence Programme (2000-2005) under the project
New Information Processing Principles.

APPENDICES

A Updating ¢(s) for the Gaussian node

Here we show how to minimise the function
1
C(m,v) = Mm + V[(m —mg)* + v] + Eexp(m +v/2) — 5 Inv, (54)

where M,V E, and myg are scalar constants. A unique solution exists when
V > 0 and F > 0. This problem occurs when a Gaussian posterior with
mean m and variance v is fitted to a probability distribution whose logarithm
has both a quadratic and exponential part resulting from Gaussian prior
and log-Gamma likelihoods, respectively, and Kullback-Leibler divergence
is used as the measure of the misfit.

In the special case E = 0, the minimum of C(m,v) can be found an-
alytically and it is m = mg — %, v = % In other cases where £ > 0,
minimisation is performed iteratively. At each iteration, one Newton iter-
ation for the mean m and one fixed-point iteration for the variance v are
carried out as explained in more detail in the following.

41

A.1 Newton iteration for the mean m

The Newton iteration for m is obtained by

8C(m,-7 vi)/({)mi

Mip1 = m; — 2C (my, vi)) Om?
B M + 2V (m; — mg) + Eexp(m +v/2) (55)
- 2V + Eexp(m +v/2) ’

The Newton iteration converges in one step if the second derivative remains
constant. The step is too short if the second derivative decreases and too
long if the second derivative increases. For stability, it is better to take too
short than too long steps.

In this case, the second derivative always decreases if the mean m de-
creases and vice versa. For stability it is therefore useful to restrict the
growth of m because it is consistently over-estimated.

A.2 Fixed-point iteration for the variance v

A simple fixed-point iteration rule is obtained for the variance v by solving
the zero of the derivative:

_dC(m,v) E 1
O—T—V+2exp(m+v/2) 5y ©
_ 1 def
YT g Eexp(m+v/2) 9(v) (56)
vit1 = g(vi) (57)

In general, fixed-point iterations are stable around the solution veps if | (Vopt)| <
1 and converge best when the derivative ¢’(vopt) is near zero. In our case
g'(v;) is always negative and can be less than —1. In this case the solution
can be an unstable fixed-point. This can be avoided by taking a weighted
average of (57) and a trivial iteration v; 41 = v;:

§(vi)g(vi) + Vi def

(% = = Vg 58
o= I Y (58)
The weight & should be such that the derivative of f is close to zero at the
optimal solution v, which is achieved exactly when &(vopt) = —¢' (Vopt)-
It holds
E/2)exp(m +v/2) 1 1
'(v) =~ (=g*(v) |V — =g(v) |Vgv)—=| =
90 = o Bapm ol ¢ OV T g T |V 75
1 1
gl(vopt) = Vopt {Vvopt - §:| = g(vopt) = Vopt [5 - Vvopt} (59)

42

The last steps follow from the fact that vepe = ¢(vopt) and from the re-
quirement that f'(vept) = 0. We can assume that v is close to veps and

use
1

¢v) =0 {5 - vuopt] . (60)

Note that the iteration (57) can only yield estimates with 0 < v 11 < 1/2V
which means that £(v;+1) > 0. Therefore the use of £ always shortens the
step taken in (58). If the initial estimate vy > 1/2V, we can set it to
Vo = 1/2V

A.3 Summary of the updating method for ¢(s)
1. Set vy < min(vg, 1/2V).
2. Iterate:
(a) Solve the new estimate of the mean m from Eq. (55) under the
restriction that the maximum step is 4;
(b) Solve the new estimate of the variance v from Egs. (60) and (58)

under the restriction that the maximum step is 4.

3. Stop the iteration after the corrections become small enough, being
under some suitable predefined threshold value.

B Addition and multiplication nodes

Equations (20)—(24) for the addition and multiplication nodes are proven in
the following section. Only the Equation (20) applies in general, the others
assume that the incoming signals are independent a posteriori. That is,
q(s1,82,...,8,) = q(s1)q(s2) ...q(sn). Also the proof of the form of the cost
function mostly concerns propagation through addition and multiplication
nodes, so it is presented here. Finally, the formulas of propagating the
gradients of the cost function w.r.t. the expectations are derived.

B.1 Expectations

Equation (20) follows directly from the linearity of the expectation opera-
tion, or can be proven analogously to the proof of Equation (23):

SIEYI| Sy r—"

_ = /f[_sﬂ(sz')ds = ﬁ/SiQ(si)dsi = f[(sz'> :

43

Equation (21) states that the variance of a sum of independent variables
is the sum of their variances. This fact can be found in basic probability
theory books. It can be proven with simple manipulation by using Equations
(20) and (23).

Equation (22) can be proven by applying (23) to exp s;:

Equation (24) can be proven by applying Equation (23) to both s; and s:

n n 2 n 2 n n
el Mo = (1))= (M) = (114 - ({1
=TT = T 6> =TT [0 + Var s3] = T] ¢s)”
i=1 j=1 i=1 j=1

B.2 Form of the cost function

The form of the part of the cost function that an output of a node affects is
shown to be of the form

CP =M <> + V[(<> - <'>current)2 + Var {}] +E <€Xp > +C (61)

where () denotes the expectation of the quantity in question. If the output
is connected directly to another variable, this can be seen from Eq. (10) by
substituting

M = <6Xp U> (<S>current - <m>)

V= % (expv)

E=0

€ = 3 [(expv) (Var (m) + (m)? — (52 et) — (0) + 2]

If the output is connected to multiple variables, the sum of the affected costs
is of the same form. Now one has to prove that this form remains the same
when the signals are fed through the addition and multiplication nodes. °
If the cost function is of the predefined form (61) for the sum s; + so, it
has the same form for sy, when so is regarded as a constant. This can be

5Note that delay node only rewires connections so it does not affect the formulas.

44

shown using Egs. (20), (21), and (22):

Cp = M (s1+ 82) +V ({514 52) = (51 + 52) currens)” + Var {1 + 52}
+ E (exp(s1 + s2)) + C (62)
= M (1) + V[(1) = {81)curren)” + Var {s1}]
+ (F (exp s2)) (exp s1) + (C' + M (s9) + V'Var {s3})
It can also be seen from (62) that when E = 0 for the sum sj + s9, it is zero
for the addend s1, that is ' = E (exp s2) = 0. This means that the outputs
of product and nonlinear nodes can be fed through addition nodes.
If the cost function is of the predefined form (61) with E = 0 for the

product s15s9, it is similar for the variable s1, when the variable ss is regarded
as a constant. This can be shown using Eqs. (23) and (24):

Cp =M (s1s2) +V |:(<8182> - <3152>Current)2 + Var {8182}] +C (63)
= (M (s2) + 2V Var {s2} ($1) current) (51)
[V (20 + Var {s2}) | [(651) = (51)cunmens)” + Var {51}

+ (C — V'Var {s2} <81>§urront>

C Updating ¢(s) for the Gaussian node followed
by a nonlinearity

A Gaussian variable has its own terms in the cost function and it affects the
cost function of its children. In case there is a nonlinearity attached to it,
only the latter is changed. The cost function of the children can be written
in the form

Cch(s),p =M <f(8)> + V[(<f($)> - <f(8)>current)2 + Var {f(S)}] (64)

where (f(5))eyrrent Stands for the expectation using the current posterior
estimate ¢(s), and M and V are constants.

The posterior q(s) = N (s;5,3) is updated to minimise the cost function.
For s we get a fixed point iteration for the update candidate:

4V (1 - 252 +23) ((f(s)) — 2%) (f(s))
(254 1)?
4V (1 —48% + 43) ([f(s)]?) -

a (45 + 1) (65)

VSnew = | (expv) +

45

And for 5 we have an approximated Newton’s iteration update candidate

Suew = 5 — B | (exp) (5. (m)) + 4V'5 <<<f (s)) — a7) /() _ (I (5”2>>

25+ 1 45+1
(66)

These candidates guarantee a direction, in which the cost function decreases
locally. As long as the cost function is about to increase in value, the step
size is halved. This guarantees the convergence to a stable point.

D Example where point estimates fail

The following example illustrates what can go wrong with point estimates.
Three dimensional data vectors x(¢) are modelled with the linear factor
analysis model x(¢) = as(t) + n(t), using a scalar source signal s(t) and
a Gaussian noise vector n(t) with zero mean and parameterised variance
p(ny) = N(0,0%). Here a is a three-dimensional weight vector.

The weight vector a might get a value a = [1 0 0]7, while the source can
just copy the values of the first dimension of x(t), that is, s(t) = x1(¢). When
the reconstruction error or the noise term is evaluated: n(t) = x(t)—as(t) =
[0 2(t) 23(t)]", one can see that problems will arise with the first variance
parameter 7. The likelihood goes to infinity as o} goes to zero. The
same applies to the posterior density, since it is basically just the likelihood
multiplied by a finite factor.

The found model is completely useless and still, it is rated as infinitely
good using point estimates. These problems are typical for models with
estimates of the noise level or products. They can be sometimes avoided
by fixing the noise level or using certain normalisations [4]. When the noise
model is nonstationary (see Section 5.1), the problem becomes even worse,
since the infinite likelihood appears if the any of the variances goes to zero.

References

[1] B. Anderson and J. Moore. Optimal Filtering. Prentice-Hall, Engle-
wood Cliffs, NJ, 1979.

[2] H. Attias. Independent factor analysis. Neural Computation, 11(4):803—
851, 1999.

[3] H. Attias. A variational Bayesian framework for graphical models. In

T. L. et al., editor, Advances in Neural Information Processing Systems
12, pages 209-215, Cambridge, 2000. MIT Press.

46

[4]

H. Attias. ICA, graphical models and variational methods. In
S. Roberts and R. Everson, editors, Independent Component Analy-
sis: Principles and Practice, pages 95—-112. Cambridge University Press,
2001.

D. Barber and C. Bishop. Ensemble learning in Bayesian neural net-
works. In C. Bishop, editor, Neural Networks and Machine Learning,
pages 215-237. Springer, Berlin, 1998.

M. Beal. Variational Algorithms for Approximate Bayesian Inference.
PhD thesis, University of London, UK, 2003.

M. Beal and Z. Ghahramani. The variational Bayesian EM algorithm
for incomplete data: with application to scoring graphical model struc-
tures. Bayesian Statistics 7, pages 453-464, 2003.

C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
1995.

C. Bishop. Latent variable models. In M. Jordan, editor, Learning
in Graphical Models, pages 371-403. The MIT Press, Cambridge, MA,
USA, 1999.

J.-F. Cardoso. Multidimensional independent component analysis. In
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP’98), pages 1941-1944, Seattle, Washington, USA, May 12—
15, 1998.

K. Chan, T.-W. Lee, and T. Sejnowski. Variational learning of clus-
ters of undercomplete nonsymmetric independent components. In Proc.
Int. Conf. on Independent Component Analysis and Signal Separation
(ICA2001), pages 492-497, San Diego, USA, 2001.

R. Choudrey, W. Penny, and S. Roberts. An ensemble learning ap-
proach to independent component analysis. In Proc. of the IEEE Work-
shop on Neural Networks for Signal Processing, Sydney, Australia, De-
cember 2000, pages 435-444. TEEE Press, 2000.

P. Dayan and R. Zemel. Competition and multiple cause models. Neural
Computation, 7(3):565-579, 1995.

A. Doucet, N. de Freitas, and N. J. Gordon. Sequential Monte Carlo
Methods in Practice. Springer Verlag, 2001.

B. J. Frey and G. E. Hinton. Variational learning in nonlinear Gaussian
belief networks. Neural Computation, 11(1):193-214, 1999.

A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis.
Chapman & Hall/CRC Press, Boca Raton, Florida, 1995.

47

[17]

[19]

[25]

[26]

Z. Ghahramani and M. Beal. Propagation algorithms for variational
Bayesian learning. In T. Leen, T. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 507—-513.
The MIT Press, Cambridge, MA, USA, 2001.

7. Ghahramani and G. E. Hinton. Hierarchical non-linear factor anal-
ysis and topographic maps. In M. I. Jordan, M. J. Kearns, and S. A.
Solla, editors, Advances in Neural Information Processing Systems 10,
pages 486-492. The MIT Press, Cambridge, MA, USA, 1998.

7. Ghahramani and S. Roweis. Learning nonlinear dynamical systems
using an EM algorithm. In M. Kearns, S. Solla, and D. Cohn, editors,
Advances in Neural Information Processing Systems 11, pages 431-437.
The MIT Press, Cambridge, MA, USA, 1999.

A. Gray, B. Fischer, J. Schumann, and W. Buntine. Automatic deriva-
tion of statistical algorithms: The EM family and beyond. In Advances
in Neural Information Processing Systems 15, 2002.

M. Harva. Hierarchical Variance Models of Image Sequences. Helsinki
Univ. of Technology, Dept. of Computer Science and Eng., Espoo, Fin-
land, March 2004. Master of Science (Dipl.Eng.) thesis. Available at
http://www.cis.hut.fi/mha.

M. Harva and A. Kabdn. A variational Bayesian method for rectified
factor analysis. In Proc. 2005 IEEE International Joint Conference
on Neural Networks (IJCNN 2005), pages 185-190, Montreal, Canada,
2005.

M. Harva, T. Raiko, A. Honkela, H. Valpola, and J. Karhunen. Bayes
Blocks: An implementation of the variational Bayesian building blocks
framework. In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence, UAI 2005, pages 259-266, Edinburgh, Scotland,
July 2005.

S. Haykin. Neural Networks — A Comprehensive Foundation, 2nd ed.
Prentice-Hall, 1998.

S. Haykin, editor. Kalman Filtering and Neural Networks. Wiley, New
York, 2001.

G. E. Hinton and D. van Camp. Keeping neural networks simple
by minimizing the description length of the weights. In Proc. of the
6th Ann. ACM Conf. on Computational Learning Theory, pages 5-13,
Santa Cruz, CA, USA, 1993.

48

[27]

[28]

[29]

[30]

[34]

[35]

P. Hgjen-Sgrensen, O. Winther, and L. Hansen. Mean-field approaches
to independent component analysis. Neural Computation, 14(4):889—
918, 2002.

A. Honkela. Speeding up cyclic update schemes by pattern searches.
In Proc. of the 9th Int. Conf. on Neural Information Processing
(ICONIP’02), pages 512-516, Singapore, 2002.

A. Honkela, S. Harmeling, L. Lundqvist, and H. Valpola. Using kernel
PCA for initialisation of variational Bayesian nonlinear blind source
separation method. In C. Puntonet and A. Prieto, editors, Proc. of the
Fifth Int. Conf. on Independent Component Analysis and Blind Signal
Separation (ICA 2004), volume 3195 of Lecture Notes in Computer
Science, pages 790-797, Granada, Spain, 2004. Springer-Verlag, Berlin.

A. Honkela, T. Ostman, and R. Vigario. Empirical evidence of the linear
nature of magnetoencephalograms. In Proc. 15th Furopean Symposium
on Artificial Neural Networks (ESANN 2005), pages 285-290, Bruges,
Belgium, 2005.

A. Honkela and H. Valpola. Variational learning and bits-back coding:
an information-theoretic view to Bayesian learning. IEEE Transactions
on Neural Networks, 15(4):800-810, 2004.

A. Honkela and H. Valpola. Unsupervised variational Bayesian learning
of nonlinear models. In L. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems 17. MIT Press,
Cambridge, MA, USA, 2005. To appear.

A. Honkela, H. Valpola, and J. Karhunen. Accelerating cyclic update
algorithms for parameter estimation by pattern searches. Neural Pro-
cessing Letters, 17(2):191-203, 2003.

A. Hyvérinen and P. Hoyer. Emergence of phase and shift invariant
features by decomposition of natural images into independent feature
subspaces. Neural Computation, 12(7):1705-1720, 2000.

A. Hyvérinen and P. Hoyer. Emergence of topography and complex cell
properties from natural images using extensions of ICA. In S. A. Solla,
T. K. Leen, and K.-R. Mller, editors, Advances in Neural Information
Processing Systems 12, pages 827-833. The MIT Press, Cambridge,
MA, USA, 2000.

A. Hyvérinen, J. Karhunen, and E. Oja. Independent Component Anal-
ysis. J. Wiley, 2001.

49

[37]

[39]

[40]

[45]

[46]

[47]

A. Tlin and H. Valpola. On the effect of the form of the posterior
approximation in variational learning of ICA models. In Proc. of the
4th Int. Symp. on Independent Component Analysis and Blind Signal
Separation (ICA2003), pages 915-920, Nara, Japan, 2003.

A. Ilin, H. Valpola, and E. Oja. Nonlinear dynamical factor analysis for
state change detection. IEEE Trans. on Neural Networks, 15(3):559—
575, May 2003.

M. Jordan, editor. Learning in Graphical Models. The MIT Press,
Cambridge, MA, USA, 1999.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduc-
tion to variational methods for graphical models. In M. Jordan, editor,
Learning in Graphical Models, pages 105-161. The MIT Press, Cam-
bridge, MA, USA, 1999.

M. Jordan and T. Sejnowski, editors. Graphical Models: Foundations
of Neural Computation. The MIT Press, Cambridge, MA, USA, 2001.

T. Kohonen. Self-Organizing Maps. Springer, 3rd, extended edition,
2001.

T. Kohonen, S. Kaski, and H. Lappalainen. Self-organized formation of
various invariant-feature filters in the Adaptive-Subspace SOM. Neural
Computation, 9(6):1321-1344, 1997.

H. Lappalainen and A. Honkela. Bayesian nonlinear independent com-
ponent analysis by multi-layer perceptrons. In M. Girolami, editor,
Advances in Independent Component Analysis, pages 93—-121. Springer-
Verlag, Berlin, 2000.

H. Lappalainen and J. Miskin. Ensemble learning. In M. Girolami,
editor, Advances in Independent Component Analysis, pages 75-92.
Springer-Verlag, Berlin, 2000.

D. MacKay. A practical Bayesian framework for backpropagation net-
works. Neural Computation, 4(3):448-472, 1992.

D. MacKay. Developments in probabilistic modelling with neural net-
works — ensemble learning. In Neural Networks: Artificial Intelligence
and Industrial Applications. Proc. of the 3rd Annual Symposium on
Neural Networks, pages 191-198, 1995.

D. MacKay. Ensemble learning for hidden Markov models. Available
at http://wol.ra.phy.cam.ac.uk/mackay/, 1997.

50

[49]

[50]

[51]

[52]

[54]

[59]

D. MacKay. Introduction to Monte Carlo methods. In M. Jordan,
editor, Learning in Graphical Models, pages 175—204. The MIT Press,
Cambridge, MA, USA, 1999.

D. MacKay. Local minima, symmetry-breaking, and model
pruning in variational free energy minimization. Available at
http://www.inference.phy.cam.ac.uk/mackay/, 2001.

D. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

T. Minka. Expectation propagation for approximate Bayesian inference.
In Proceedings of the 17th Conference in Uncertainty in Artificial In-
telligence, UAT 2001, pages 362—-369, Seattle, Washington, USA, 2001.

J. Miskin and D. MacKay. Ensemble learning for blind source separa-
tion. In S. Roberts and R. Everson, editors, Independent Component
Analysis: Principles and Practice, pages 209-233. Cambridge Univer-
sity Press, 2001.

K. Murphy. A variational approximation for Bayesian networks with
discrete and continuous latent variables. In Proc. of the 15th Annual
Conf. on Uncertainty in Artificial Intelligence (UAI-99), pages 457—
466, Stockholm, Sweden, 1999.

K. Murphy. The Bayes net toolbox for Matlab. Computing Science and
Statistics, 33:331-350, 2001.

R. Neal. Bayesian Learning for Neural Networks, Lecture Notes in
Statistics No. 118. Springer-Verlag, 1996.

L. Nolan, M. Harva, A. Kabdn, and S. Raychaudhury. A data-
driven Bayesian approach to finding young stellar populations in
early-type galaxies from their UV-optical spectra. Monthly Notices
of the Royal Astronomical Society, 2005. To appear. Available at
http://www.cis.hut.fi/mha/.

H.-J. Park and T.-W. Lee. A hierarchical ICA method for unsupervised
learning of nonlinear dependencies in natural images. In C. Puntonet
and A. Prieto, editors, Proc. of the 5th Int. Conf. on Independent Com-
ponent Analysis and Blind Signal Separation (ICA2004), pages 1253—
1261, Granada, Spain, 2004.

L. Parra, C. Spence, and P. Sajda. Higher-order statistical properties
arising from the non-stationarity of natural signals. In T. Leen, T. Di-
etterich, and V. Tresp, editors, Advances in Neural Information Pro-
cessing Systems 13, pages 786-792. The MIT Press, Cambridge, MA,
USA, 2001.

51

[60]

[61]

J. Pearl, editor. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers, San Fran-
cisco, California, 1988.

D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mix-
tures of nonstationary sources. IEFEE Trans. on Signal Processing,
49(9):1837-1848, 2001.

T. Raiko. Partially observed values. In Proc. Int. Joint Conf. on Neural
Networks (IJCNN’04), pages 2825-2830, Budapest, Hungary, 2004.

T. Raiko. Nonlinear relational Markov networks with an application
to the game of Go. In Proceedings of the International Conference
on Artificial Neural Networks (ICANN 2005), pages 989-996, Warsaw,
Poland, September 2005.

T. Raiko and M. Tornio. Learning nonlinear state-space models for
control. In Proc. Int. Joint Conf. on Neural Networks (IJCNN’05),
pages 815-820, Montreal, Canada, 2005.

T. Raiko, H. Valpola, T. Ostman, and J. Karhunen. Missing val-
ues in hierarchical nonlinear factor analysis. In Proc. of the Int.

Conf. on Artificial Neural Networks and Neural Information Processing
(ICANN/ICONIP 2003), pages 185-189, Istanbul, Turkey, 2003.

S. Roberts and R. Everson, editors. Independent Component Analysis:
Principles and Practice. Cambridge Univ. Press, 2001.

S. Roberts, E. Roussos, and R. Choudrey. Hierarchy, priors and
wavelets: structure and signal modelling using ICA. Signal Process-
ing, 84(2):283-297, February 2004.

D. Rowe. Multivariate Bayesian Statistics: Models for Source Separa-
tion and Signal Unmizing. Chapman & Hall/CRC, Medical College of
Wisconsin, 2003.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6:461-464, 1978.

D. Spiegelhalter, A. Thomas, N. Best, and W. Gilks. BUGS:

Bayesian inference using Gibbs sampling, version 0.50. Available at
http://www.mrc-bsu.cam.ac.uk/bugs/, 1995.

H. Valpola, M. Harva, and J. Karhunen. Hierarchical models of variance
sources. Signal Processing, 84(2):267-282, 2004.

H. Valpola, A. Honkela, M. Harva, A. Ilin, T. Raiko, and T. Ostman.
Bayes Blocks software library, 2003. Available at http://www.cis.
hut.fi/projects/bayes/software/.

52

73]

[74]

[75]

[77]

[79]

[80]

H. Valpola, A. Honkela, and J. Karhunen. An ensemble learning ap-
proach to nonlinear dynamic blind source separation using state-space
models. In Proc. Int. Joint Conf. on Neural Networks (IJCNN’02),
pages 460465, Honolulu, Hawaii, USA, 2002.

H. Valpola and J. Karhunen. An unsupervised ensemble learning
method for nonlinear dynamic state-space models. Neural Computa-
tion, 14(11):2647-2692, 2002.

H. Valpola, E. Oja, A. Ilin, A. Honkela, and J. Karhunen. Nonlinear
blind source separation by variational Bayesian learning. IFICE Trans-
actions on Fundamentals of FElectronics, Communications and Com-
puter Sciences, E86-A(3):532-541, 2003.

H. Valpola, T. Ostman, and J. Karhunen. Nonlinear independent fac-
tor analysis by hierarchical models. In Proc. Jth Int. Symp. on Inde-
pendent Component Analysis and Blind Signal Separation (ICA2003),
pages 257-262, Nara, Japan, 2003.

H. Valpola, T. Raiko, and J. Karhunen. Building blocks for hierarchical
latent variable models. In Proc. 3rd Int. Conf. on Independent Com-
ponent Analysis and Signal Separation (ICA2001), pages 710-715, San
Diego, USA, 2001.

J. H. van Hateren and D. L. Ruderman. Independent component anal-
ysis of natural image sequences yields spatio-temporal filters similar to
simple cells in primary visual cortex. Proceedings of the Royal Society
of London B, 265(1412):2315-2320, 1998.

J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. Self-
organizing map in Matlab: the SOM toolbox. In Proceedings of the
Matlab DSP Conference, pages 35—40, Espoo, Finland, November 1999.
Available at http://www.cis.hut.fi/projects/somtoolbox/.

C. S. Wallace. Classification by minimum-message-length inference.
In S. G. Aki, F. Fiala, and W. W. Koczkodaj, editors, Advances in
Computing and Information — ICCI “90, volume 468 of Lecture Notes
in Computer Science, pages 72—81. Springer, Berlin, 1990.

J. Winn and C. M. Bishop. Variational message passing. Journal of
Machine Learning Research, 6:661-694, April 2005.

53

Publication 2

T. Raiko, H. Valpola, T. C)stman, and J. Karhunen. Missing Values
in Hierarchical Nonlinear Factor Analysis. In the Proceedings of the
International Conference on Artificial Neural Networks and Neural In-
formation Processing (ICANN/ICONIP 2003), pp. 185-189, Istanbul,
Turkey, June 26-29, 2003.

MISSING VALUES IN HIERARCHICAL NONLINEAR FACTOR ANALYSIS

Tapani Raiko, Harri Valpola, Tomas Ostman and Juha Karhunen

Helsinki University of Technology, Neural Networks Research Centre
P.O. Box 5400, FIN-02015 HUT, Espoo, Finland

firstname.lastname@hut.fi

ABSTRACT

The properties of hierarchical nonlinear factor anal-
ysis (HNFA) recently introduced by Valpola and others
[1] are studied by reconstructing missing values. The
variational Bayesian learning algorithm for HNFA has
linear computational complexity and is able to infer the
structure of the model in addition to estimating the pa-
rameters. To compare HNFA with other methods, we
continued the experiments with speech spectrograms
in [2] comparing nonlinear factor analysis (NFA) with
linear factor analysis (FA) and with the self-organising
map. Experiments suggest that HNFA lies between
FA and NFA in handling nonlinear problems. Further-
more, HNFA gives better reconstructions than FA and
it is more reliable than NFA.

1. INTRODUCTION

A typical machine learning task is to estimate a prob-
ability distribution in the data space that best corre-
sponds to the set of real valued data vectors x(t) [3].
This probabilistic model is said to be generative - it can
be used to generate data. Instead of finding the distri-
butions directly, one can assume that sources s(t) have
generated the observations x(t) through a (possibly)
nonlinear mapping f(-):

x(t) = f[s(t)] + n(t), (1)

where n(t) is additive noise. Principal component anal-
ysis and independent component analysis are linear ex-
amples, but we focus on nonlinear extensions.

It is difficult to visualise the situation if for instance
a 10-dimensional source space is mapped to form a non-
linear manifold in a 30-dimensional data space. There-
fore, some indirect measures for studying the situation
are useful. We use real-world data to make the exper-
iment setting realistic and mark parts of the data to

This research has been funded by the European Commission
project BLISS, and the Finnish Center of Excellence Programme
(2000—-2005) under the project New Information Processing Prin-
ciples.

http://www.cis.hut.fi/projects/ica/bayes/

be missing for the purpose of controlled comparison.
By varying the configuration of the missing values and
then comparing the quality of their reconstructions, we
measure different properties of the algorithms.

Generative models handle missing values in an easy
and natural way. Whenever a model is found, re-
constructions of the missing values are also obtained.
Other methods for handling missing data are discussed
in [4]. Reconstructions are used here to demonstrate
the properties of hierarchical nonlinear factor analysis
(HNFA) [1] by comparing it to nonlinear factor analysis
(NFA) [5], linear factor analysis (FA) [6] and to the self-
organising map (SOM) [7]. Similar experiments using
only the latter three methods were presented in [2].

FA is similar to principal component analysis
(PCA) but it has an explicit noise model. It is a ba-
sic tool that works well when nonlinear effects are not
important. The mapping f(-) is linear and the sources
s(t) have a diagonal Gaussian distribution. Large di-
mensionality is not a problem. The SOM can be pre-
sented in terms of (1), although that is not the standard
way. The source vector s(t) contains discrete map co-
ordinates which select the active map unit. The SOM
captures nonlinearities and clusters, but has difficul-
ties with data of high intrinsic dimensionality and with
generalisation.

2. VARIATIONAL BAYESIAN LEARNING
FOR NONLINEAR MODELS

Variational Bayesian (VB) learning techniques are
based on approximating the true posterior probabil-
ity density of the unknown variables of the model
by a function with a restricted form. Currently the
most common technique is ensemble learning [8] where
Kullback-Leibler divergence measures the misfit be-
tween the approximation and the true posterior. It
has been applied to ICA and a wide variety of other
models (see [1, 9] for some references).

In ensemble learning, the posterior approximation
q(0) of the unknown variables 0 is required to have a

suitably factorial form ¢(6) = [], ¢:(0;), where 6; are
the subsets of unknown variables. The misfit between
the true posterior p(6 | X) and its approximation ¢(0)
is measured by Kullback-Leibler divergence. An addi-
tional term — log p(X) is included to avoid calculation
of the model evidence term p(X) = [p(X,0)d6. The
cost function is

¢ = D(a(8) || p(6]X)) ~ logp(X) = <10g pf>(<91;>> ’
(2)

where () denotes the expectation over distribution
q(0). Note that since D(q || p) > 0, it follows that
the cost function provides a lower bound for p(X) >
exp(—C). For a more detailed discussion, see [9].

The missing values in data behave like other la-
tent variables and are therefore handled as a part of
6 instead of X. The posterior approximation ¢(8) is
estimated during the learning and it can be used as
a reconstruction for the missing values. The fraction
of missing values in the data does not affect computa-
tional complexity substantially.

Beal and Ghahramani [10] compare the VB method
of handling incomplete data to annealed importance
sampling (AIS). In their example, the variational
method works more reliably and about 100 times faster
than AIS. Chan et al. [11] used ICA with VB learning
successfully to reconstruct missing values. A competing
approach without VB by Welling and Weber [12] has
an exponential complexity w.r.t. the data dimensional-
ity. ICA can be seen as FA with a non-Gaussian source
model. Instead of going into that direction, we choose
to stick to the Gaussian source model and concentrate
on extending the mapping to be nonlinear instead.

2.1. Nonlinear factor analysis and hierarchical
nonlinear factor analysis

In [5], a nonlinear generative model (1) was estimated
by ensemble learning and the method was called nonlin-
ear factor analysis (NFA). A more recent version with
an analytical cost function and a linear computational
complexity, is called hierarchical nonlinear factor anal-
ysis (HNFA) [1]. In many respects HNFA is similar to
NFA. The posterior approximation, for instance, was
chosen to be maximally factorial for the sake of compu-
tational efficiency and the terms ¢;(6;) were restricted
to be Gaussian.

In NFA, a multi-layer perceptron (MLP) network
with one hidden layer was used for modelling the non-
linear mapping f(-):

f(s(t); A,B,a,b) = Atanh[Bs(¢) + b] +a, (3)

where A and B are weight matrices, a and b are bias
vectors and the activation function tanh operates on

each element separately. The key idea in HNFA is to
introduce latent variables h(t) before the nonlinearities
and thus split the mapping (3) into two parts:

h(t) = Bs(t)+b+nu(t) (4)
x(t) = Ao¢h(t)] +Cs(t)+a+n.(t), (5)

where np,(t) and n,(t) are Gaussian noise terms and
the nonlinearity ¢(¢) = exp(—£?) again operates on
each element separately. Note that we have included
a short-cut mapping C from sources to observations.
This means that hidden nodes only need to model the
deviations from linearity.

Learning is unsupervised and thus differs in many
ways from standard backpropagation. FEach step in
learning tries to minimise the cost function (2). In
NFA, the sources are updated while keeping the map-
ping constant and vice versa. The computational com-
plexity is proportional to the number of paths from
sources to the data, i.e. the product of sizes of the three
layers. In HNFA, all terms ¢;(6;) of ¢(@) are updated
one at a time. The computational complexity is lin-
ear with the number of connections in the model and
thus HNFA scales better than NFA. In both algorithms,
the update steps are repeated for several thousands of
times per parameter.

In NFA, neither the posterior mean nor the variance
of £(-) over ¢(0) can be computed analytically. The ap-
proximation based on Taylor series expansion may be
inaccurate if the posterior variance for the input of the
hidden nodes grows too large. This may be the source
of the instability observed in some simulations. Pre-
liminary experiments suggest that it may be possible
to fix the problem at the expense of efficiency.

In HNFA, the posterior mean and variance of the
mappings in (4) and (5) have analytic expressions. This
is possible at the expense of assuming independencies
of the extra latent variables h(t) in the posterior ap-
proximation ¢(0). The assumption increases the mis-
fit between the approximated and the true posterior.
Minimisation of (2) pushes the solution in a direction
where the misfit would be smaller. In [13], it is shown
how this can lead to suboptimal separation in linear
ICA. Tt is difficult to analyse the situation in nonlinear
models, but it can be expected that models with fewer
simultaneously active hidden nodes and thus more lin-
ear mappings are favoured. This should lead to conser-
vative estimates of the nonlinearity of the model.

Since HNFA is built from simple blocks introduced
in [14], learning the structure! becomes easier. The

1By structure, we mean the sizes of the layers and the con-
nections between the nodes. In principle, we could allow any
directed acyclic graph connecting the latent and observed vari-
ables.

Data with missing values

LR nions Ris
Original data

L LMLk

o

=

HNFA reconstruction
T

Fig. 1. Some speech data with and without missing
values and the reconstruction given by HNFA.

cost function (2) relates to the model evidence p(X |
model) and can thus be used to compare structures.
The model is built in stages starting from linear FA,
i.e. HNFA without hidden nodes. See [1] for further
details.

3. EXPERIMENTS

The goal is to study nonlinear models by measuring the
quality of reconstructions of missing values.

The data set consists of speech spectrograms from
several Finnish subjects. Short term spectra are win-
dowed to 30 dimensions with a standard preprocessing
procedure for speech recognition. It is clear that a dy-
namic? source model would give better reconstructions,
but in this case the temporal information is left out to
ease the comparison of the models. Half of the about
5000 samples are used as test data with some missing
values. Missing values are set in four different ways
to measure different properties of the algorithms (Fig-
ure 2):

1. 38 percent of the values are set to miss randomly

in 4 x 4 patches. (Figure 1)

2. Training and testing sets are randomly permuted
before setting missing values in 4 X 4 patches as
in Setting 1.

3. 10 percent of the values are set to miss randomly
independent of any neighbours. This is an eas-
ier setting, since simple smoothing using nearby
values would give fine reconstructions.

2Tn [9], NFA was extended to include a model for the dynamics
of the sources. A similar extension for HNFA would lead to
hierarchical nonlinear dynamical factor analysis.

Nonlinearity
(patches)

Memorisation

Generalisation (permuted)

High
dimensionality

Fig. 2. Four different experimental settings with the
speech data used for measuring different properties of
the algorithms.

4. Training and testing sets are permuted and 10
percent of the values are set to miss indepen-
dently of any neighbours.

We tried to optimise each method and in the fol-
lowing, we describe how we got the best results. The
SOM was run using the SOM Toolbox with long learn-
ing time, 2500 map units and random initialisations.
One parameter, the width of the softening kernels [2]
that was used in making the reconstruction, was se-
lected based on the results, which is not completely
fair. In other methods, the optimisation was based on
minimising the cost function (2) or its approximation.
NFA was learned for 5000 sweeps through data using
a Matlab implementation. Varying number of sources
were tried out and the best ones were used as the re-
sult. The optimal number of sources was around 12
to 15 and the size used for the hidden layer was 30.
A large enough number should do, since the algorithm
can effectively prune out parts that are not needed.
Some runs with a higher number of sources were good
according to the approximation of the cost function
(2), but a better approximation or a simple look at the
reconstruction error of the observed data showed that
those runs were actually bad. These runs and the ones
that diverged were filtered out.

The details of the HNFA (and FA) implementation
can be found in [1]. In FA, the number of sources was
28. In HNFA, the number of sources at the top layer
was varied and the best runs according to the cost func-
tion were selected. In those runs, the size of the top
layer varied from 6 to 12 and the size of the middle
layer, which is determined during learning, turned out
to vary from 12 to 30. HNFA was run for 5000 sweeps
through data. Each run with NFA or HNFA takes
about 8 hours of processor time, while FA and SOM
are faster.

Several runs were conducted with different random
initialisations but the same data and the same missing
value pattern for each setting and for each method. The

number of runs in each cell is about 30 for HNFA, 4 for
NFA and 20 for the SOM. FA always converges to the
same solution. The mean and the standard deviation
of the mean square reconstruction error are:

FA HNFA NFA SOM
1.1 1.87 | 1.80+£0.03 | 1.74£0.02 | 1.69 £ 0.02
2.11.85 | 1.78+0.03 | 1.71+£0.01 | 1.55+£0.01
3.10.57 | 0.55£.005 | 0.56 +.002 | 0.86+£0.01
4.1 0.58 | 0.55£.008 | 0.58+.004 | 0.87£0.01

The order of results of the Setting 1 follow our
expectations on the nonlinearity of the models. The
SOM with highest nonlinearity gives the best recon-
structions, while NFA, HNFA and finally FA follow
in that order. The results of HNFA vary the most -
there is potential to develop better learning schemes to
find better solutions more often. The sources h(t) of
the hidden layer did not only emulate computational
nodes, but they were also active themselves. Avoiding
this situation during learning could help to find more
nonlinear and thus perhaps better solutions.

In the Setting 2, due to the permutation, the test
set contains vectors very similar to some in the training
set. Therefore, generalisation is not as important as in
the Setting 1. The SOM is able to memorise details
corresponding to individual samples better due to its
high number of parameters. Compared to the Setting
1, SOM benefits a lot and makes clearly the best re-
constructions, while the others benefit only marginally.

The Settings 3 and 4, which require accurate ex-
pressive power in high dimensionality, turned out not
to differ from each other much. The basic SOM has
only two intrinsic dimensions® and therefore it was
clearly poorer in accuracy. Nonlinear effects were not
important in these settings, since HNFA and NFA were
only marginally better than FA. HNFA was better than
NFA perhaps because it has more latent variables when
counting both s(¢) and h(¢).

To conclude, HNFA lies between FA and NFA
in performance. HNFA is applicable to high dimen-
sional problems and the middle layer can model part of
the nonlinearity without increasing the computational
complexity dramatically. FA is better than the SOM
when expressivity in high dimensions is important, but
the SOM is better when nonlinear effects are more
important. The extensions of FA, NFA and HNFA,
expectedly performed better than FA in each setting.
HNFA is recommended over NFA because of its relia-
bility. It may be possible to enhance the performance
of NFA and HNFA by new learning schemes whereas
especially FA is already at its limits. On the other

3Higher dimensional SOMs become quickly intractable due to
exponential number of parameters.

hand, FA is best if low computational complexity is
the determining factor.

4. REFERENCES

[1] H. Valpola, T. Ostman, and J. Karhunen, “Nonlinear
independent factor analysis by hierarchical models,”
in Proc. of the 4th Int. Symp. on Independent Compo-
nent Analysis and Blind Signal Separation (ICA2003),
2003. To appear.

[2] T. Raiko and H. Valpola, “Missing values in nonlinear
factor analysis,” in Proc. of the 8th Int. Conf. on Neu-
ral Information Processing (ICONIP’01), (Shanghai),
pp. 822-827, 2001.

[3] C. Bishop, Neural Networks for Pattern Recognition.
Clarendon Press, 1995.

[4] R. Little and D.B.Rubin, Statistical Analysis with
Missing Data. J. Wiley & Sons, 1987.

[5] H. Lappalainen and A. Honkela, “Bayesian nonlin-
ear independent component analysis by multi-layer
perceptrons,” in Advances in Independent Compo-
nent Analysis (M. Girolami, ed.), pp. 93-121, Berlin:
Springer-Verlag, 2000.

[6] A. Hyvérinen, J. Karhunen, and E. Oja, Independent
Component Analysis. J. Wiley, 2001.

[7] T. Kohonen, Self-Organizing Maps. Springer, 3rd, ex-
tended ed., 2001.

[8] D. Barber and C. Bishop, “Ensemble learning in
Bayesian neural networks,” in Neural Networks and
Machine Learning (M. Jordan, M. Kearns, and
S. Solla, eds.), pp. 215-237, Berlin: Springer, 1998.

[9] H. Valpola and J. Karhunen, “An unsupervised en-
semble learning method for nonlinear dynamic state-
space models,” Neural Computation, vol. 14, no. 11,
pp. 2647-2692, 2002.

[10] M. Beal and Z. Ghahramani, “The variational
Bayesian EM algorithm for incomplete data: with
application to scoring graphical model structures,”
Bayesian Statistics 7, 2003. To appear.

[11] K. Chan, T.-W. Lee, and T. J. Sejnowski, “Handling
missing data with variational bayesian estimation of
ica,” in Proc. 9th Joint Symposium on Neural Com-
putation, vol. 12, (Institute for Neural Computation,
Caltech), May 2002.

[12] M. Welling and M. Weber, “Independent compo-
nent analysis of incomplete data,” in Proc. of the
6th Annual Joint Symposium on Neural Computation
(JNSC99), (Pasadena), 1999.

[13] A. Ilin and H. Valpola, “On the effect of the form of
the posterior approximation in variational learning of
ICA models,” in Proc. of the 4th Int. Symp. on Inde-
pendent Component Analysis and Blind Signal Sepa-
ration (ICA2003), 2003. To appear.

[14] H. Valpola, T. Raiko, and J. Karhunen, “Building
blocks for hierarchical latent variable models,” in Proc.
3rd Int. Conf. on Independent Component Analysis
and Signal Separation (ICA2001), (San Diego, USA),
pp. 710-715, 2001.

Publication 3

T. Raiko. Partially Observed Values. In the Proceedings of the In-
ternational Joint Conference on Neural Networks (IJCNN 2004), pp.
28252830, Budapest, Hungary, July 25-29, 2004.

(© 2004 IEEE. Reprinted with permission.

Partially Observed Values

Tapani Raiko
Laboratory of Computer and Information Science
Helsinki University of Technology
FIN-02015 HUT, Espoo, Finland
E-mail: Tapani.Raiko@hut.fi
http://www.cis.hut.fi/projects/bayes/

Abstract— It is common to have both observed and missing missingness of the value can depend on the actual value. But
values in data. This paper concentrates on the case wherejn these textbooks, a value is either observed or missing and
a value can be somewhere between those two ends, partlallythere is no option in between. Heitjan and Rubin [10], [11]

observed and partially missing. To achieve that, a method of using define coarse data which means that we might observe (no
evidence nodes in a Bayesian network is studied. Different ways of 9

handling inaccuracies are discussed in examples and the proposedmore and no less than) that a data valuéelongs to some
approach is justified in the experiments with real image data. set, sayxz € [a,b). Examples include rounded and out-of-

Also, a justification is given for the standard preprocessing step scale measurements. In this case, the value is not entirely
of adding a tiny amount of noise to the data, when a continuous- mjssing, since we observe to which set it belongs to. Zhang
valued model is used for discrete-valued data. . . . g
and Honavar [12] use decision trees with partially specified
data. They can specify discrete values at different levéls o
precision, e.g. the same shape can be described as a potygon i

Most of the data sets collected in real life are not perfegjeneral or a square in specific. These hierarchies are aapeci
They contain errors and missing values. There are also caggse of coarse data.
where some observations are left out on purpose, e.g. not alCoarse data is already quite close to “fuzziness”. The gap
patients are sent to all laboratory tests. Also, some obseris closed completely by using a fuzzy membership function
tions are more accurate or reliable than others. Usuallsethe/(z) € [0,1] as virtual evidence fox;, instead of the regular
is some knowledge about these inaccuracies, but it is oftest membership restriction. | will stay in the Bayesian feam
ignored in machine learning. Fuzzy logic, on the other hangiork and not use fuzzy logic. Section Il describes two ways
is based on modeling inaccuracies. of introducing fuzzy membership functions into Bayesian

Bayesian networks [1], [2] are very popular with the artifinetworks. Section Il briefly reviews the variational Baiges
cial intelligence and machine learning communities. They aframework for background. Two examples that illustratéedif
graphical models [3] where nodes represent random vasabéit phenomena concerning partially observed values aem giv
and the lack of arcs represents conditional independenneSection IV. Experiments with independent factor analysi
assumptions. A complex system is built by combining simplein image data are described in Section V. Subsequently, the
parts. Traditional Bayesian networks use discrete va@ablmatters are discussed and concluded.
but in this paper, the emphasis is on continuous variables.

The experiments are run with Bayes blocks [4] that use !lI- VIRTUAL EVIDENCE FORCONTINUOUS-VALUED
variational Bayesian learning. They can handle missingesl VARIABLES
in a straightforward manner [5]. Figure 1 shows examples of membership functidéf(s),

How to exploit the best features of the Bayesian and thehich can describe different types of observations: 1) An
fuzzy frameworks? Wald [6] proved that every admissiblexact observation that a person is 183 cm tall. 2) A missing
decision rule is a Bayes decision rule. Fuzzy logic is just @servation with no knowledge of the height of this partcul
construction of heuristics, but on the other hand, fuzzy-coperson. 3) A coarse observation that the person is taller tha
cepts are very intuitive. For instance, the distinctionalmetn 180 cm. 4) Finally, a fuzzy observation that a person is™tall
the concepta cupanda bowlis shown in [7] to be vague and The common sense of peoples heights (no-one can be 3 meters
context-dependent. Pearl [1] studies so called virtualesvie tall etc.) corresponds to a model or prior experience. The
in Bayesian networks. It means that part of a situation is nqtiestion is, how to combine the knowledge given by the model
carefully modelled but instead some evidence is summarizedthe knowledge given by the membership function.
into virtual evidence. Virtual evidence corresponds esaly Pearl’s virtual evidence [1] can be implemented as follows.
to fuzzy observations. This paper shows how virtual evidentet us consider a Bayesian network and a single valireit.
can be used with a continuous valued model and what isTib makex partially observed, we add a binary nadealled an
good for. evidence node [13], to it (see Figure 2). The evidence node

There are numerous approaches to handling missing valhesz as the only parent and it has no children. The conditional
[8], [9] and some approaches work even in cases where fir@bability function (cpf)p(e = 1 | z) = U(x) is the fuzzy

I. INTRODUCTION

U(Xl) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, since the posterior distribution is fixed ©(z). | call this
the Frozen approachlt can be thought of as knowing that
the true data is distributed in a specific way. This time, all
\ T T prior information should be included i@V (z) but that might
160 180 200 xlcm be difficult in practice.
U(x) Now, let us consider the continuous-valued case and a
1 g partial observation that is probably greater than a constant
P c. For that, one can use the Evidence approach with a logistic
0 ‘ | membership function
160 180 200 x/lcm 1
V@) = rreear

o

)
Fig. 1. Different types of observations of a person’s heidfdp, solid
line: observed value, dashed line: missing value. Bottonid disle: coarse Where « is a constant that sets the slope or fuzziness of the
observation, dashed line: fuzzy observation. All of thesses can be membership function. This can be implemented with a soft-
interpreted as partially observed values. . .

max node [4] fore with 2 /o andc¢/a as parents. Using several

different soft-max nodes combined with logical operations
\‘l/ \ / \”/ one could build practically arbitrary membership functon
Note that the Frozen approach cannot handle unnormalisable

membership functions such as the logistic function.
There are also other ways to produce a virtual evidence for
z. One can use for instance the Gaussian evidence node [13].
A partial observation about is that it is aroundzy with a
Fig. 2. The noder in a Bayesian network can be either observed (Ieft)\,/ariance02- The cpf for a continuous-valued evidence node

missing (middle) or partially observed (right). The nade called an evidence e is defined agp(e | z) = N(e;x,JQ). Observinge = z
node. A shaded node represents an observed variable andta mdde changes the posterior distribution ofto

represents a latent variable.
p(z | H, X)ple = zg | 2, H,X)

membership functiod/(x). Now we leaver latent but observe ple = 20) (3)
e = 1. This provides evidence farthat corresponds exactly to ocplz | H, X)ple = zo |)
U(z) and therefore this can be called tBgidence approach = p(x | H, X)N(x;20,0%),

The modelp(z | H,X) for = given the model structuré(
and the rest of the datX, is combined with the evidence
given bye = 1. Together they form the posterior distribution

plz | H,X,e =1x9) =

corresponding to a Gaussian membership funcligiy) =
N (x;20,0%). The last step of (3) becomes clear when noticing
that the differences — = is normally distributed. The Frozen

(@ | H, X, e=1) = plz | H,X)ple =1z, H,X) approach with a Gaussian distribution is handled simply by
p e =1)= ple=1|H,X) @ fixing p(z) = N(z; 20, 02).
xplx | H,X)ple=1]|x)
ll. VARIATIONAL BAYESIAN LEARNING
=p(x | H, X)U ().

.) . . Variational Bayesian learning techniques are based on ap-
The partial observatiotV (x) of z is thus further specified by proximating the true posterior probability density of the- u

f[he model. Note that the marginal Iike_lihoquﬂe =1] H’_X) known variables of the model by a function with a restricted
is a constant w.r.tz and can be thus |_gn0red. '_I'he Ewdenc_?Orm_ Currently the most common technique is ensemble
approach can be thought of as making a noisy observatlfé%ming [15], [16], [17], [18] where the Kullback-Leibler

¢ aboutz. The actual valuer is then reconstructed during i ergence measures the misfit between the approximation an
learning by combining prior experienggxz | H,X) with Jhe true posterior

the evidenceU(z) from the noisy observation. One shoul In ensemble learning, the posterior approximatig#) of

be careful not to mclude any prior |nforr_nat|on (z) since the unknown variable@ is required to have a suitably factorial
it would then be taken into account twice. Note also that

x) is scaled by a constant, it still produces exactly the same
idence. i ’ 10 = [Ta(0)). @
Morris et al. [14] define soft missing data by fixing a !
distribution over each data valug(z) « U(xz). A Dirac where@; denotes a subset of the unknown variables. The misfit
delta function corresponds to a fully observed value, bbetween the true posterip(@ | X) and its approximation(0)
unfortunately a very wide function does not approach a fulig measured by the Kullback-Leibler divergence. An add#io
missing value as will be shown in Section IV-A. In this casderm — In p(X) is included to avoid calculation of the model
the model cannot further specify the partial observatitr), evidence ternp(X) = [p(X,6)d6. The cost function then

has the form [19], [15]
C =D(q(0) || p(8]X)) — Inp(X)
= (Inq(9)) — (Inp(X,0)),

where(-) denotes expectation over the distributigi®). Note
that sinceD(q || p) > 0, it follows that the cost function
provides a lower boung(X) > exp(—C) for the model
evidencep(X).

For each update of the posterior approximatigd;), the
variabled; requires the prior distributiop(d; | parent$ given
by its parents and the likelihoog(children | 6;, co-parents
obtained from its children. The relevant part of the Kullbac _. .

Some x-values of the data are observed only partiatey are

ibl di b inimised i ﬁig 3.
Leibler divergence to be minimised is, up to a consta rked with dotted lines representing their confidence \mater Top: A toy

independent of;(6;) data set for a factor analysis problem. Bottom left: In thezEroapproach, the
model needs to adjust to cover the distributions. Bottontrighthe Evidence
q(@i) approach, the partially observed values are reconstrixaeed on the model.

6; | parent$p(children| 6;, co-parents (')
6

(®)

C(q(6;)) = <ln o

To make it concrete, let us look at a Gaussian variable no@aussians with fairly large variances that are assumed to be
[4] which is a basic building block for a number of models.known.

A Gaussian variable has two inputsn andv and a cpf ~ The Frozen approach (see Section I) assumes that the data
p(s|m,v) = N(s;m,exp(—v)). The variance is parametrisedis really distributed according to the membership function
this way because then the mean and expected exponential/¢f(t)) = N(x(t);Z(t), Z(t)). Therefore, the model has to
v suffice for computing the cost function. It can be shownover the whole distributions. In the Evidence approactthen
that whens, m andwv are mutually independent a posterioripther hand, the posterior distribution (Eq. 1) of the pdytia

i.e. g(s,m,v) = q(s)g(m)q(v), Cp(gs(s)) = — (Inp(s|m,v)) observed values can be adjusted based on the model. Figure 3
yields shows the (hypothetical) situation after learning. ThezEro
approach is disturbed by the partially observed valuesredse
Cpq(s)) = %{ (expv) [(<S> — <m>)2 + Var {m} + tne Evidence approach reconstructs them based on the rest of
the data.

+ Var {s}} — (V) +1n 27r}) When the variancé(t) of a Gaussian membership function
. . . goes to infinity,U(z(t)) is constant in any finite set. In the
Eor]?bslerved var!all;:es tu's IS _the Ionly term in thel (_:ostf‘iunct Evidence approach, the constant evidence corresponds to a
ut for latent variables there is also a tedpresulting from (fully) missing value. To see what happens in the Frozen

<1nq<s).>' Th_e posterior apprpximitioq(s) Is defi_ned to _be approach, one can write down the sample variance ofrthe
Gaussian with mean and variance: ¢(s) = N(s;s,5). This component over the data set

yields

1 ~ T
Cqla(s)) = —5 In2mes ®) Var{z} — ﬁ S (@) —Ele)? +70)] . (©)
which is the negative entropy of a Gaussian variable with =1
variances. The parameter$ and 5 are optimised during The model has to adjust to account for the variance in the
learning. data. When anyz(t) — oo, also the whole sample variance
Var{z} — co. That is, the learning will lead to a degenerate

IV. PHENOMENA WITH PARTIALLY OBSERVEDVALUES gp|ution in which the model fox is unreasonably wide.

This Section gives two examples that illustrate intergstin . .
phenomena that might occur with partially observed valuelé: Narrow Membership Functions
Both examples concern Gaussian membership functionseln thLet us think about an example of a one-dimensional
first case, the variances are large and a comparison is dongsture-of-Gaussians model for data. In case thereTadata
the fully missing value. The second case shows how addiggmplesc(1),...,z(T) exactly at the same point, a Gaussian
even the tiniest amount of inaccuracy to the data can makélaster with a meam: = z(1) = --- = x(T") might specialise
difference by getting rid of degenerate solutions. in those samples with a tiny varianeé&. Ignoring the rest of

)) . the clusters and data samples, the essential likelihoddrfec

A. Wide Membership Functions proportional toT'/o. When the cluster gets narrower,— 0,

Figure 3 depicts an example of two-dimensiofaly) data the posterior density(m,o | H,X) — oo. That is, the
for factor analysis. Factor analysis is a version of priatipsolution is degenerate but it gets an infinitely good scomeN
component analysis (PCA) with a noise model. Some of thieat the problem occurs even in cage= 1, that is, when
valuesz(t) are only partially observed. Their distributions ar@othing is assumed about the data.

v 40)
SRRt
Fig. 5. The model structure used for the experiments. Each cadesponds
to a matrix of variables. Variance sourcesare used for making the sources
s super-Gaussian. The square node represents an affineotraatibn with

a weight matrixA and a bias vectob. Hierarchical priors are hidden for
clarity.

Fig. 4. A model structure representing a single Gaussiartezlugith mean
m containing data samples(1),...,z(T"). On the left, the data points are
fully observed and on the right, only partially observedeTdark dot at the
side of a node represents the variance input.

infinitely narrow with no cost. In variational Bayesian |eeng,
The problem is not that serious when variational Bayesiafescribing the cluster mean with a great accuracy shows up
learning is used instead. Figure 4 depicts the model streictuin the cost. In case there is just one data samyle in the
The cluster mean has a cp¥(m;my,,exp(—vy,)) and a cluster, the advantage in cost is similar to the cost thattwen
posteriorg(m) = N(m;mm, m). The cpfs for the data variablesinto describingm well. WhenT > 1, the advantage i&-fold
x(t) areN (x(t); m, exp(—v,)). The essential terms of the costand thus the degenerate solution seems infinitely good. The

function from Equations (7) and (8) are “happy surprise” that the data poinig1),...,z(T) collide
T B is as great at all levels of accuracy. But when an explicit
Cla(z,m)) = 5 (expvs) m — (va)) inaccuracy ofe is introduced, the surprise of data points

1 ~ _ colliding is limited to the level of accuracy. An information
5 ({expvm)m —Inm). (10) theoretic point of view [20] to the situation is enlightegin

Solving them to minimize C(q(x, m)) gives
~ 1

V. EXPERIMENTS

m = Tloxp o) T (op o) (11) A model structure that implements Independent factor
* m analysis (IFA) [16], is depicted in Figure 5 and used for
which is substituted back into (10) to give the experiments. The data vectax$t) are assumed to be
generated from unknown source§) through an unknown
Cla(w,m)) = linear mapping with noise

1
g L+ (T expus) 4 (expuon) = T(wa)] (2) ey |y = N(x(t); As(t) + b, diag(exp(—v2))), (13)
In caseT > 1, whenwv, goes to infinity (corresponding to L
% — 0), the cost goez tognegative infin)i/t;. This r%eans%hatvgheredlag(e)(p (=vz))) is a diagonal covariance matrix with

- . . T valuesexp applied componentwise to the vectow,, on the
isr:rr;gasr;:jregelnerate solution, that is rated infinitely gomdsts diagonal. The sourcest) have a zero-mean super-Gaussian

djstribution generated as a Gaussian with a varying vagianc
Let us then assume that the data samples are not exac{Fy 9 ying

ol_aserved. _Instead, they have a G_aussian membership fanctio ;(s(¢) | u(t)) = N(s(t); 0, diag(exp(—u(t)))). (14)

with a variancee? > 0. The likelihood term atr does not

change which means that maximum a posteriori learning Tée variablesA, b, andu(t) have hierarchical priors [9]. The

still prone to the same problem. Variational Bayesian legyn prior of A is sparse (mixture of a Gaussian and a delta function

on the other hand, gets rid of the problem even in cdsesl. at zero) and the other priors are Gaussians.

Figure 4 depicts the model structure with evidence nodes. Th The model is initialised randomly and learned using vari-

posterior ofz(t) is ¢(x(t)) = N(z(t);z(t),z(¢)) and the cpf ational Bayesian learning. The learning scheme is designed

of an evidence node(t) is p(e(t) | z(t)) = N(e(t); z(t),€*). to minimise the cost functiod@ in Equation (5) by iterative

Variancesm and z(t) can be solved like in (11) and theupdates, by addition and pruning of weights, and by line

resulting cost is similar to (12) with an additional termsearch. More details can be found in [21].

(T/2) In({expv,) + €2). Now the cost approaches positive The first experiment is a comparison of different ways

infinity when v, — oo and thus the degenerate solution nto reconstruct corrupted values, when exact knowledge of

longer exists. the corruption is available. The second experiment shows a
An interpretation of the situation follows. When using &ituation where the learning diverges towards a degenerate

point estimate for the cluster mean, the cluster can be madesolution. Solution to avoid the problem is given.

Evidence 1 Missing The following observations can be made:

« Evidence: As expected, the Evidence approach was the
best way of reconstructing corrupted values at all corrup-

0.5 o 0.5 ~—r— tion levels. Small corruption leads to accurate reconstruc
e - tions and as the corruption level increases, the Evidence
0 0 setting approaches the Missing setting.
0 0.5 1 0 0.5 1 — X « Missing: The data posteridi) is the same aéAs + b).
- —(As+b) The reconstructions are independent of the corruption
Frozen Observed

level since all the corrupted values were discarded. The
discarded information was so important that the recon-
structions were the worst.

« Frozen: Reconstructions are the second best overall. One
would still need to justify when and why to use the
reconstructions given byAs + b) and not by (x). If
the corruption level increases further, the reconstrastio
become worse than those of the Missing setting.

Fig. 6. Reconstruction error as a function of the amount ofugiion (std). « Observed: Ignoring the corruption mechanism gives the

second worst results. Reconstruction accuracy depends

much on the corruption level.

A. Reconstruction)]
B. Problem with noiseless data

The first data set consists of 13 different gray-scale nlatura_l_he second data set consists of 13 different diagram-like

images. 1000 samples of 10-by-10-pixel patches are Cho?r%%\ges. They have discrete gray-scale values from 0 to 255
randomly. The patches are normalised to zero mean and uni

variance. Each pixel has a 10% chance of being corrupted ik though mostly they are black and white. Setting 1 has

a Gaussian noise with a standard deviation (std) that isl;eve%g added noise, whereas in Setting 2, a tiny amount of

distributed from 0 to 1. The amount of corruption is assum% e images. After that, figures are normalised to zero-madn a

to be known. That is, in addition to the datdt), the stds =~ > .
v.(t) are known. The ICA model initialised with 100 sourceéJnlt variance. 1000 samples of 6 by 6 image patches are chosen

is learned for 1000 sweeps through the data in four differerrﬂndomly' The same ICA—modeI Is used, this time initialised
settings: wnh an over-complete baS|§ of 50 sources. .
_ _ . _ _ Figure 7 shows the learning curves for the first 100 sweeps
» Evidence: Evidence approach as defined in Section {kyough the data. In the beginning, the two settings behave
The corrupted data valuesi(;(t) > 0) are marked gjmilarly, but after 45 sweeps they start to differ. After010

missing and Gaussian evidence nodes (Eq. 3) are attach@fbeps, the modelled variance of the data is of the order

aussian noise with a standard deviation of 0.1 is added to

to them:p(e;(t) | (1)) = N(ei(t); zi(t), ve.i(t)). 10-2% in Setting 1 and the learning is becoming unstable
» Missing: Corrupted values are discarded and treated @% numerical reasons. The same phenomenon as explained
missing values. in Section IV-B is applying. The learning is diverging towar

« Frozen: Frozen approach as defined in Section Il. Adegenerate solution that is rated infinitely good. Setirisy
Gaussian distribution with the given mean and std is fixedaple, even though the original difference in the two sg#t

over each corrupted data value. was very small.
« Observed: The knowledge about corruption is discardedTne problem of a degenerate solution is often encountered
and values are treated as observed values. when variances are modelled. As explained in Section IV-B,

The following table shows the root mean square errors ftve problem is not as serious when using variational Bagesia
the reconstruction of corrupted values in different sgin learning as when using point estimates, but it still exists.
The solution is to add a tiny amount of noise to the data.
= 031 048 057 057 Whether it is done by epricitIy sampling n.oise' gsing a

(As + b) 0.34 0.48 0.36 0.38 rgndom numper generator or adding the noise implicitly gisin
either the Evidence or the Frozen approach, makes no real

Both the expectation over the posterior distribution ofadatifference in results. Explicit sampling is usually the plast
(x(t)) and the conditional probabilityp(x(t) | A,s(t),b)) = and computationally lightest so it has become the standard.
(As(t) + b) are presented, because the Frozen and the Ob-
served settings have the corrupted data directly(ag))

(the result0.57 is the corruption level). The same results are Some real-world applications for partially observed value
separated into 10 different levels of corruption and shown aould be brought from the fuzzy logic community to machine
curves in Figure 6. Note that the optimal constant predictidearning community. Perhaps the most promising option is to
0 gives the reconstruction errarsince the data is normalised.find some clinical data which would contain information abou

|Evidence Missing Frozen Observed

VI. DISCUSSION

x 10°

40 60 80 100

(1]
(2]
(3]

(4]

Fig. 7. The behavior of the cost functighduring learning. The diverging
lower curve corresponds to no added noise and the upper toreetiny

amount of added noise. The regular fluctuation is expecterkfliécts our
learning process where every tenth iteration is done in fardifit manner.

the inaccuracies. Morris [14] studied speech recognitidth w [5]
soft missing data.

Often, it is known that the data set contains errors, but
it is not known which values are erroneous. This could béf]
modelled as evidence of evidence. The first evidence nog
would be left latent and its posterior distribution wouldl tee
probability of the corresponding value to be correct or fibie
second evidence node would be observed and it would give[zi
membership function for the first evidence, and through, thafo]
some likelihood factor for the actual data value, too. It \dou 1
be easier to find data for this kind of a model, since it does n[o?]
require explicit knowledge of individual errors. Appligaits
for outlier detection [22] are already well known.

Variational Bayesian learning is prone to local minima sp2]
tricks to avoid them during learning are useful. The Gaussia
evidence node was first used in [13] to keep parts of t
network fixed to initial values until the other parts have
adapted appropriately. The width of the Gaussian evidence
was increased after each iteration until the whole node w;
removed. The persistence of the initialisation could besthu
controlled accurately.

(11]

(18]

VIl. CONCLUSION [16]
. ' [léj

Partially observed values fill the gap between observed an
missing values in data. A distinction is made between fixing
a distribution over a data value (the Frozen approach) aﬁg]
getting evidence about the data value through a noisy obser-
vation (the Evidence approach). Only the Evidence approach
has a missing value as a limit case. It can be implemented Qg]
adding an extra node to a Bayesian network for each partia[lly
observed value.

Experiments with natural image data and an IFA modgol
with variational Bayesian learning show that making use of
the knowledge about inaccuracies pays off. Also, a probldg#!
with applying continuous-valued models to discrete data is
solved by using variational Bayesian learning combinedwif22]
a tiny amount of additional noise to the data.

ACKNOWLEDGMENT

The author would like to thank Markus Harva, Antti
0 Honkela, Alexander llin, Juha Karhunen, Erkki Oja, Jan-
Hendrik Schleimer, and Harri Valpola for useful discussion
This work was supported by the Finnish Centre of Excellence
Programme (2000-2005) under the project New Information
Processing Principles.

REFERENCES

J. Pearl,Probabilistic Reasoning in Intelligent Systems : Netwooks
Plausible Inference San Francisco: Morgan Kaufmann, 1988.

F. Jensen,Bayesian Networks and Decision Graphs New York:
Springer, 2001.

K. Murphy, “An introduction to graphical models,” Intel é3earch
Technical Report, Tech. Rep., 2001.

H. Valpola, T. Raiko, and J. Karhunen, “Building blocksr tierarchical
latent variable models,” ifProc. 3rd Int. Conf. on Independent Compo-
nent Analysis and Signal Separation (ICA2008an Diego, USA, 2001,
pp. 710-715. .

T. Raiko, H. Valpola, T.Ostman, and J. Karhunen, “Missing values
in hierarchical nonlinear factor analysis,” iRAroc. of the Int. Conf.
on Artificial Neural Networks and Neural Information Prosewy,
ICANN/ICONIP 2003 Istanbul, Turkey, 2003, pp. 185-189.

A. Wald, Statistical Decision Functions New York: John Wiley &
Sons, 1950.

ﬂ W. Labov, “The boundaries of words and their meaning,Naw ways

of analyzing variation of English. Fishman, Ed. Georgetown Press,
1973, pp. 340-373.

R. Little and D.B.Rubin,Statistical Analysis with Missing Data J.
Wiley & Sons, 1987.

A. Gelman, J. Carlin, H. Stern, and D. RubBayesian Data Analysis
Boca Raton, Florida: Chapman & Hall/CRC Press, 1995.

D. F. Heitjan and D. B. Rubin, “Inference from coarsealata multiple
imputation with application to age heapinglburnal of the American
Statistical Associationpp. 304-314, 1990.

——, “lgnorability and coarse dataThe Annals of Statisticpp. 2244—
2253, 1991.

J. Zhang and V. Honavar, “Learning from attribute vakagonomies
and partially specified instances,” iAroc. of the 20th International
Conference on Machine Learning (ICML-2002003, pp. 880-887.

H. Valpola, T.Ostman, and J. Karhunen, “Nonlinear independent factor
analysis by hierarchical models,” Proc. 4th Int. Symp. on Independent
Component Analysis and Blind Signal Separation (ICA2008ra,
Japan, 2003, pp. 257-262.

§] A. Morris, J. Barker, and H. Bourlard, “From missing datamaybe

useful data: soft data modelling for noise robust ASR,” IDJABIAP-

RR 06, 2001.

H. Lappalainen and J. Miskin, “Ensemble learning,” Amlvances in
Independent Component Analysid. Girolami, Ed. Berlin: Springer-
Verlag, 2000, pp. 75-92.

H. Attias, “Independent factor analysis\teural Computationvol. 11,

no. 4, pp. 803-851, 1999.

J. Miskin and D. J. C. MacKay, “Ensemble learning for blisource
separation,” inlndependent Component Analysis: Principles and Prac-
tice, S. Roberts and R. Everson, Eds. Cambridge University Press,
2001, pp. 209-233.

H. Valpola, E. Oja, A. llin, A. Honkela, and J. Karhunéionlinear
blind source separation by variational Bayesian learhitgCE Trans-
actions on Fundamentals of Electronics, Communicatioms@omputer
Sciencesvol. E86-A, no. 3, pp. 532-541, 2003.

D. Barber and C. Bishop, “Ensemble learning in Bayesiaural
networks,” inNeural Networks and Machine Learnin@. Bishop, Ed.
Berlin: Springer, 1998, pp. 215-237.

A. Honkela and H. Valpola, “Variational learning andssback coding:
an information-theoretic view to Bayesian learningZEE Trans. on
Neural Networks2004, to appear.

H. Valpola, M. Harva, and J. Karhunen, “Hierarchical ratsdof variance
sources,” inProc. 4th Int. Symp. on Independent Component Analysis
and Blind Signal Separation (ICA20Q3)ara, Japan, 2003, pp. 83-88.
V. Barnett and T. LewisQutliers in Statistical Data New York: John
Wiley and Sons, 1994.

Publication 4

T. Raiko and M. Tornio. Learning Nonlinear State-Space Models for
Control. In the Proceedings of the International Joint Conference on
Neural Networks (IJCNN 2005), pp. 815-820, Montreal, Canada, July
31-August 4, 2005.

(© 2005 IEEE. Reprinted with permission.

Learning Nonlinear State-Space Models for Control

Tapani Raiko and Matti Tornio
Neural Networks Research Centre
Helsinki University of Technology
P.0.Box 5400, FI-02015 TKK
Espoo, FINLAND
E-mail: tapani.raiko@hut.fi, matti.tornio@hut.fi

Abstract— This paper studies the learning of nonlinear state- though, control signals need to be selected either by fatigw
space models for a control task. This has some advantages overan example or by maximising a reward. The model should thus
traditional methods. Variational Bayesian leaming provides a ot opjy learn the dynamics, but also learn to help control.
framework where uncertainty is explicitly taken into account . . .
and system identification can be combined with model-predictive The_reSt of the paper is structgred '?IS follows: I.n Sec“?” I,
control. Three different control schemes are used. One of them & Nonlinear state-space model is reviewed and in Section II
optimistic inference control, is a novel method based directly on its use as a controller is presented. After experiments in

the probabilistic modelling. Simulations with a cart-pole swing-up Section IV matters are discussed and concluded.
task confirm that the latent state space provides a representan

that is easier to predict and control than the original observation II. NONLINEAR STATE-SPACE MODELS

space.
P Nonlinear dynamical factor analysis (NDFA) [17] is a

l. INTRODUCTION powerful tool for modelling the dynamics of an unknown noisy

Nonlinear control is difficult even in the case that the systesystem. NDFA scales only quadratically with the dimensiona
dynamics are known. If the dynamics are not known, thty of the observation space, so it is also suitable for mougl
traditional approach is to make a model of the dynamigystems with fairly high dimensionality [17].
(system identification) and then try to control the simudate In NDFA, the observation(¢) have been generated from
model (nonlinear model-predictive control). The modetiheal the hidden state(t) by the following generative model:
from data is of course not perfect, but these imperfections
are often ignored. The modern view of control sees feedback x(t) = £(s(t), 0¢) + () (1)
as a tool for uncertainty management [11], but managing it s(t) = g(s(t —1),0g) + m(t), 2)

already in the modelling might have advantages. For instang here@ is a vector containing the model parameters and time

fthe cont.roller can avoid regions where the confidence in ﬂnoriéls discrete. The noise terms(t) and m(t) are assumed to
is not high enough [9].

The idea of studving uncertaintv in control is not ne be Gaussian and white. Only the observatianare known

. ! udying un ity 1S Wbeforehand, and both the statesnd the mapping$ and g
It is known that the magnitude of motor noise in human

S ; L are learned from the data.
hand motion is proportional to muscle activation [10]. In . .
: : Multilayer perceptron (MLP) networks [6] suit well to
control theory, the theoretical foundations are alreadyl we . . : o
) . . modelling both strong and mild nonlinearities. The MLP
covered in [3]. In [14], a nonlinear state-space model igluse
! Iy . . -network models fof andg are
for control. The nonlinearities are modelled using piecawi
affine mappings. Parameters are estimated using the poedict f(s(t),0¢) = Btanh[As(t) +a] + b (3)
error method, which is equivalent to the maximum likelihood g(s(t),0g) = s(t) + D tanh [Cs(t) + ¢] + d, (4)
estimate in the Bayesian framework.

Nonlinear dynamical factor analysis (NDFA) [17] is awhere the sigmoidal tanh nonlinearity is applied component
state-of-the-art tool for finding nonlinear state-spacedet® wise to its argument vector. The parametérsnclude: (1)
with variational Bayesian learning. This paper is abouhgsi the weight matricesA ... D, the bias vectora...d; (2) the
NDFA for control. In NDFA, the parameters, the states, arghrameters of the distributions of the noise sign#(s) and
the observations are real-valued vectors that are modelledt) and the column vectors of the weight matrices; (3) the
with parametrised probability distributions. Uncertastfrom hyperparameters describing the distributions of biaselstiam
noisy observations and model imperfections are thus takearameters in group (2).
explicitly into account. There are infinitely many models that can explain any given

Learning is extremely important for control of complexdata. In Bayesian learning, all the possible explanatioase-
systems [2]. The proposed method involves learning in moeeaged weighting by their posterior probability. The pdste
than one way. The original NDFA is based on unsupervisgdobability p(s, 8 | x) of the states and the parameters after
learning. That is, it creates a model of the underlying dyiegam observing the data, contains all the relevant informatiooua

by passively making observations. When used for contrahem. Variational Bayesian learning is a way to approximate

the posterior density by a parametric distributigis, 8). The
misfit is measured by the Kullback-Leibler divergence:

_ _4(s,0)
Ckr = /q(s,@) log (5.0 %) deds. (5)

The approximationg needs to be simple for mathemat-
ical tractability and computational efficiency. Variablase
assumed to depend of each other in the following way:

T m

a(s,0) = [[[T aCsi®) | sit =) [Ta6s). (8
t=14=1 j Fig. 1. Traditional model (left) and task-oriented identfion (right).

Traditionally, the control signalsi(¢) are coming from outside the model,

wherem is the dimensionality of the state spaceFurther- but in task-oriented identification they are within the model
more, g is assumed to be Gaussian.
Learning and inference happen by adjustipguch that _) _)
the cost functionCxr, is minimised. A good initialisation PY replacing the equation of dynamics (2) with one of these

and other measures are essential because the iteratimentpartVo options:

algorithm can easily get stuck into a local minimum of the u(t—1)
cost function. The standard initialisation is based ongipial s(t) = ({ s(t—1)] ’eg) +m(t))
component analysis of the data augmented with embedding. u(t) u(t — 1)
Details can be found in [17]. [s(t)] =g ({ s(t — 1)] ,Bg) +m(t). (8

A. lterated Extended Kalman Smoothing The first one (7) assumes that the control signal is coming

In a typical NDFA learning phase, both the model paran_1.p_uts;i_d_e the model. The Iatte_:r one (8) is ca!led task_-or'dente
eters@ and the states are updated. The updating of thddentification _becausg it predicts the control S|_gma(hs) within
network weights is computationally the most expensive pdi€ model. Figure 1 illustrates these two options. o
of the process, so the speed of the updating of the states j¥/€ choose to use task-oriented identification (Eq. 8) in this
of minor importance [17]. In the control schemes studied iaPer for the following reasons. Firstly, it allows for tarif-
this work, however, the model parameters can be kept fix&ent control schemes described in the next section. Ségon
and only the states are inferred. As a faster alternativéado {t Créates an opportunity to learn more. The learning affyori
update process used in the NDFA Matlab package, extensidiids such a state space that the prediction of observations
of Kalman filtering [7] are explored. and control signals is as accurate as possible. A well-ghrn

Kalman smoothing estimates the state of a linear GaussAte Space should thus make control easier. Thirdly, it is

state-space model in a two-phase forward and backward p&l’gl_ogically motivated. Different parts of the cerebelluan

Extended Kalman smoothing [1] does the same for a nonlindXt US€d for motor control and cognitive processing dependin
model by linearising the model based on the current estim&& Where their outputs are directed [5].
of the states and then applying linear Kalman smoothing. 1. CONTROL SCHEMES

The process iterates between updating the states and thgO far only passive observation and leaming has been

linearisation. considered. Now we come to the question how the control

Kalman-based methods are fast because they propaga{eais (or actions) are selected. That is, given the lyistor

information through the whole time window in every iterags ohservations . . ,x(to — 2),x(to — 1) and control signals

_tion, whgreas the update rules included in NDFA p_ropagel.tg.’u(to —9),u(to — 1), select a good control signal(t,) at
information only one step forward and backward per iteratiog o current time,. Then, a new observation(t,) is made and
Unfortunately, Kalman-based methods have no guaranteeafo ; i increased by one. Three different control schemes

convergence W_hen applied to nonlinear systems: To sols_ze ?th their cooperation are studied below and summarised in
issue we used iterated extended Kalman smoothing for findifgya |

a good initialisation which was then improved by some NDFA
updates. A. Direct Control (DC)

In this work, a non-variational Kalman smoother is used. In direct control schemes, the neural network itself acts
A variational Kalman smoother does exists [4], but as thgs the controller. Many such schemes exists, includingctdire
Kalman smoother is used only for the initialisation of NDFAinverse control, optimal control, and feedforward conffd].
the added complexity was not deemed worthwhile. Direct control can only mimic the control done in the data tha
has been used for learning. It therefore requires examgles o
correct control aiming at the same goal.

When the dynamic system is controlled by a continuous- Equation (8) provides a prediction of the control signal
valued control signal vectau(z), it can be taken into accountu(ty) based on the previous control signglt, — 1) and the

B. Task-Oriented Identification

TABLE |
| CONTROL SCHEME SUMMARY

| A
! ! ! Scheme Based on Data Speed
§ } } DC internal MLP task-oriented fast
8 oI ‘ olC probabilistic inference general slow
° : : NMPC cost minimisation general slow
ED (‘) 10 20 2 4‘0 50

time t

the method becomes unreliable. Even with a realistic goal, i
| is not in general guaranteed that the iteration will coneety
} the optimal control signal, as the iteration may get stuck in
| local minimum. The inferred control signals can be validate
|
|
|
|

[N
o
T

o
T

o
T

by releasing the optimistic future and re-inferring. If flaéure

|
o
T

control signal u(t)

|

|

|

|

|

|

|

| changes a lot, the control is unreliable. Note that OIC dags n
-10 0 10 20 20 a0 50 require goal-oriented data, because different goals casebe
fmet by changing the desired future.

|
i
o

Fig. 2. Optimistic inference control (see Section 1lI-B). eTlinferred

observations and control signals are plotted with confideintervals. The ; [y
current time istop = 0 and after timeto + 7. = 40, the observatiorx(¢) is C. Nonlinear Model Predictive Control (NMPC)

assumed 10 be at the desired level Nonlinear model predictive control (NMPC) [13] is based
on minimising a cost functiotf defined over a future window

previous estimate of the hidden state, — 1). The prediction Of fixed length 7. For example, the quadratic difference

mapping is called the policy in Figure 1. A control methodith€tween the predicted future observationsind a reference

we simply call direct control (DC), chooses the control sign Signalr can be used:

by collapsing the inferred probability distributiarfu(to)) to T,

its expected value. When the control signel,) is selected J(s(to),ulto),...,ulto+ T, — 1)) = Z Ix(to +7) —r|?.
and the observatior(ty) is made, the two probability distri- o

bution collapse and these changes affect the estimatesof th 9)
statess(t) that are then re-inferred. This works as the errorhen.J is minimised w.r.t. the control signais and the first

feedback mechanism. oneu(tp) is executed.
In this paper, the states and observations (but not control

B. Optimistic Inference Control (OIC) signals) are modelled probabilistically so we actually imise
Optimistic inference control (OIC) is a novel method whiclhe expected cost,{J}. The current guess(t), . .., u(to+
works as follows. Assume that after a fixed deldy, the T, — 1) defines a probability distribution over future states
desired goal is reached. That is, (some components of) #d observations. This inference can be done with a single
observationsc are at the desired level Given this optimistic forward pass, when ignoring the policy mapping, that is, the
assumption and the observations and control signals so t&pendency of the state on future control signals. In thég,ca
infer what happens in between. Then choose the expectatipmakes sense to ignore the policy mapping anyway, since the
of q(u(to)) as before. An example situation is illustrated ifuture control signals do not have to follow the policy.
Figure 2. Minimisation of E,{J} is done with a certain quasi-Newton
OIC in a nutshell: algorithm [12]. For that, the partial derivativ@&_(t_g)/ﬁu(tl)
Given observations. ., x(t, — 2), x(to — 1) and for all ¢, g_tl <ty <tg+T, a_re computed_ efﬂmently based
control signals . ., u(ty — 2),u(to — 1) on the chain r_uIe .and dynamic programming. Details are left
for future publications due to lack of space.

1. Fix futurex(to+7.) =x(to+Tc+1)=---=r))

2: Infer the distributiong(u(t), s(t), x(t)) for all ¢ The use of a cost function makes NMPC very versatile.

3: Select the mean af(u(ty)) as the control signal Costs for contrql signals a_nd_ observations can be set for

4: Observex(t,) and release(t, + 7.) instance to restrict values within bounds etc. Quadrat&tsco

5: Increase, and loop from1 such as (9) make things easy for the optimisation algorithm.
O_IQ propagates _the same evidence f_orwards as the DC and IV. EXPERIMENTS

additionally, the evidence from the desired future backisar

The inference is conceptually simple, but algorithmicalif¢ Mechanical dynamical systems are easily understandable by

ficult. The information from the future needs to flow througipeople and thus illustrative as examples. We chose a siatulat

tens of nonlinear mappings before it affectsu(ty). system to ease experimentation. To make the setting more

In case there are constraints for control signals or obseealistic, the controllers do not have access to the sinoulat
vations, they are forced after every inference iteratibihé equations but have to adapt to control an unknown system
horizon is set too short or the goal is otherwise overoptinis instead.

During the training phase for indirect methods, trainintada

with 2500 samples was used. In [18], different reinforcemen
@ learning algorithms require from 9000 up to 2500000 samples

to learn to control the cart. Most of the training data caesis

of a sequence generated with semi-random control where the

only goal was to ensure that the cart does not crash into the
v boundaries. Training data also contained some examples of
hand-generated sections to better model the whole range of
the observation and the dynamic mapping. The model was
trained for 500000 iterations, which translates to threesdd
A. Cart-Pole Swing-Up Task computation time. Six-dimensional state spa¢g was used

. . because it resulted in a model with the lowest cost function
The Cart-Pole system [8] is a classic benchmark for nogE 5).
n

linear control. The system consist of a pole (which acts as For the direct control method, training data consisted of

inverted pendulum) attached to a cart (Figure 3).'The fof%% examples of successful swing-ups with 100 samples each.
applied to the cart can be gqntrolled, anq _the_goal IS to SW”ﬁ’\ey were generated using the NMPC method with a horizon
the pole to an upward position and stabilise it. This must g, s of 40 time steps. Four-dimensional state space grove

accomplished without the cart crashing into the walls of tr}g be the best here. and the model was trained for 100000
track. Note that a linear controller cannot perform the gwin iterations '

up- . . For all the models, the first 1000 iterations of the training

The observed variables of the system are the posmo'n'of I'\z%re run with the embedded versions of the data to avoid
carty, a_ngl_e of th? po_le n)easured from th_e upw_ard POSHION o4 Jocal optima. Time-shifted versions of the observed dat
and their first derivativeg’ and ¢’. Control input is the force x(t —7), with 7 = 1,2, 4,8, 16 , were used in addition to the
F applied to the cart. The detailed dynamics and constrairbt% ’ e

for the simulated cart-pole syst be found in [8 ginal data.
or Ine simulated cart-poie system can be found In [8]. The states(t) was estimated using the iterated extended
A discrete system was simulated with a time step\of=

) . Kalman smoother. A history of five observations and control
0.05s. The possible force was constrained betwe&fN and y

10N. and th ition bet 5 43m. Th ‘ signals seemed to suffice to give a reliable estimate. The
(U, and Ihe position betweensm an/ m./ € SYSIEM Was reference signat was ¢ = 0 and ¢’ = 0 at the end of the
initialised to a random state aroufd vy’, ¢, ¢'] = [0,0, —m, 0]

X . .. horizon and for five observations beyond that.
with a standard deviation of 0.1 for all the observed vagabl To take care of the constraints in the system with NMPC,

B. Simulation a slightly modified version of the cost function (9) was used.
All simulations were ran with both lowo{ = 0.001) and Out-of-bounds values of the location of the cart and the€forc
high (= = 0.1) level of Gaussian additive observation noisd"cUITed @ quadratic penalty, and the full cost functionfis o

Gaussian process noise with— 0.001 was used in all the 1€ form

Fig. 3. The cart-pole system

simulations and the training data set. For the NMPC and OIC J1(to, u) =J (to, u)+ (11)
methods the length of the control horizon was set to 40 time T

steps corresponding to 2 seconds of system’s real time. The Z(min(lo lu(to +7)|) — 10)2+
simulations were run for 60 time steps corresponding to 3 = ’

seconds of real time to ensure that the controller was able to
stabilise the pole. (min(3, |z, (to + 7)|) — 3)?,

To study the benefits of using a hidden state-space in
modelling the dynamics of an unknown system, a comparison .
model was built which used identity mappidgnstead of an where, (t) refers to the location componeptof the obser-

MLP f for the observation mapping. In practice this mean\gatIon vectorx(t).

replacing (1) with D. Simulation Results

x(t) = s(t) + n(t). (20) For all the control schemes, the cart-pole simulation was

Also, a modified version of the problem was considered, Wherrlén for 100 times and the number of successful swing-ups

onlv two observations. the location of the carand the anale was collected. As in [8], a swing-up is considered succés#sfu
y W servauons, 1 ' 8 9€ the final angle is betweern0.1337 and0.133, final angular
of the pole¢, were available.

velocity between—2rad/s and2rad/s, and the cart has not
C. Implementation crashed into the boundaries of the area during swing-up.

The NDFA package version 0.9.5, the scripts for running the The results of all the simulations are collected in Table II.

experiments, and the used training data are publicly avafla FOr €ach simulation type, the number of successful swing-
ups and the number of partial successes are listed. Thealparti

Lhttp://www.cis.hut.fi/projects/bayes/software/ successes include all the simulation runs that at some point

e

3
Il
—

Fig. 5. Example of a successful swing-up with NMPC and higts@orlhe
system is plotted with the observation noise included.

4) Dynamic Model Based Directly on the Observations:
With the modified model using the observation space as the
state space, the performance was still perfect when the nois
level was low. However, with high noise level, the original
model performed clearly better than the modified model.

‘ ‘ ‘ ‘ ‘ 5) Models with Fewer Observation€gven though most of
° ® et * ®° the information on the speegl and the angular velocity’
can still be inferred taking into account past observatioms
Fig. 4. Example of a successful swing-up with NMPC and low @ohe practice the problem of learning the dynamics of the system
cart starts from the middle with the pole hanging down, andsdeg to swing becomes harder and relying on past observations increases t
the pole up.
reaction time. The model with hidden state could still perfo
the swing-up with some success, but a model based directly on
observations could not handle the swing-up at all. Thisltesu
was to be expected, as the dynamic mapping (8) alone cannot
adequately describe the modified system.

TABLE Il
RESULTS. NUMBER OF SUCCESSFUL AND SEMISUCCESSFUL(IN
BRACKETS) SWING-UPS WITH LOW AND HIGH NOISE LEVELo.

Setting | 0=0001 | g=0.1 6) Horizon length: Horizon length was of no great impor-
Direct Control 14 (48)| 4 (31 i
Optimistic Inference Control 97 (100)| 94 (98) rance to the performance of Fhe NMPC or thg QIC. All horizon
NMPC 100 (100)| 94 (95) engths between 30 and 45 time steps had similar performance
NMPC (onlyy and ¢ observed)| 14 (66) | 1 (21) Horizon lengths between 25 and 30 had problems with the
NMPC (f = I 100 (100) | 70 (70) cart crashing to the walls. Horizons shorter than 25 time

NMPC (f =1, onl d 0 0| 0 (© : .
(only y and¢) © © steps could not reliably perform the swing-up task because

the reference signal became too unrealistic.

Very long horizons were also problematic. First of all,
reached the desired state, but possibly still failed eileeause they increase the computational burden of the algorithne Th
the pole was not stabilised or the cart crashed into a wall. increase in the number of the parameters often also leaals int

1) Direct Control: The direct control could perform theincrease in the number of local minima, which makes the
swing-up part of the task quite well, but there were problenaptimisation problem more involved. In addition, becausky o
with stabilising the pole. Further testing is still neededé¢rify an approximative model of the system is available, preafisti
if the performance of the method can be improved by extfar to the future become more unreliable. This can lead the
training with pole stabilising data. algorithm to choose an optimisation strategy which is not

2) Indirect Control: Even though there was some modellingeasible in practice.
error left in the model used with indirect control schemes,
both methods performed extremely well under low noise
conditions. Even with added noise, the performance wasypret Three different control schemes were studied in the frame-
satisfactory. Examples of successful swing-ups can bedfounork of nonlinear state-space models. Direct control i$ fas
in Figures 4 and 5. use, but requires the learning of a policy mapping, which is

3) Performance: With modern hardware (2.2 GHz AMD hard to do well. Optimistic inference control is a hovel ntgth
Opteron) the direct control typically worked in real-timéthv based on Bayesian inference answering the question: “Assum
the cart-pole simulation. On average, the traditional NMPi@g success in the end, what will happen in near future?” It
method was about 20 times slower than real-time and OI€ based on a single probabilistic inference but unfortelgat
more than 100 times slower. The bad performance of Olgither of the two tested inference algorithms work wellhwit
resulted from the Kalman smoothing (see Section II-A) ndt The third control scheme is a probabilistic version o th
converging and having to switch to the slow update modstandard nonlinear model-predictive control, which isdaas
Further optimisations to the algorithms or improvements ion optimising control signals based on a cost function. The
hardware are clearly required, before systems with fast dgiter two schemes are both indirect control methods ang the
namics can be controlled. performed comparably well in the experiments.

V. DIscussSION ANDCONCLUSION

A. Future Work Nonlinear state-space models seem promising for complex
ntrol tasks, where the observations about the systera stat
those phenomena that appear in the data. If the data is & mcqrnr]]plete or thetdyn_?r:mcs_ of lthe SB{Stﬂn Ls_ng_t v:e(ljl
uniform, the model will not become robust. In other word nown. 1he experiments with a simple control task indicate
tpe benefits of the proposed approach. There is still wotkref

one should balance between exploration and exploitation. batina high tational lexit din aivi
this paper, the data sets are generated partly by hand andFgjypating high computational compiexity and in giving some

the control schemes aim at exploitation only. A good stgrti uarantees or proofs on performance especially in unesgect

point for taking exploration into account is in [16]. Situations or near boundaries.
For direct control, the model was learned using examples ACKNOWLEDGEMENT

of control with a single goal in mind. It is straightforward The authors would like to thank Harri Valpola, Sampsa
to generalise this into a situation with a selection of défé | gine Kaj Zenger, Heikki Hgtyniemi, and Antti Honkela
goals. The dynamics of the system stays the same regardiggSyyitful discussions and comments. This research has be
of the goal and only the policy mapping (see Figure 1) neegig,qed by the Finnish Centre of Excellence Programme (2000-
to be changed for each goal. 2005) under the project New Information Processing Princi-
The direct and indirect control methods can be used tBres, and by the IST Programme of the European Community,

gether. One can use the data produced by indirect contiplger the PASCAL Network of Excellence, IST-2002-506778.
methods for learning the direct controller. This can be dongjs publication only reflects the authors’ views.

even offline, that is, simulating the estimated model and
sampling observations from their predicted distributiofisis REFERENCES
can be compared to dreaming. The enhancement of the tagkr B. Anderson and J. MooréDptimal Filtering Prentice-Hall, Englewood

i i ifi ot i i i Cliffs, NJ, 1979.
.O”G.“med identification (po_hcy mappmg) in turn- helps the{ﬁ] K.J. Astrom, P. Albertos, M. Blamke, A. Isidori, W. Schaufelberger, and
indirect methods, too. This idea is comparable to temporal’ R sanz.Control of complex systemSpringer, 2001.

difference learning [15] where the difference of tempagrall [3] Y. Bar-Shalom. Stochastic dynamic programming: Caution @ding.

successive predictions is used for adjusting the earlier one e Transactions on Automatic Conya?6(3):1184-1195, Octaber
should be careful, though. If the examples given for leanin4; m. 3. Beal and z. Ghahramani. The variational Kalman smaothe
are fluent all the time, the robustness of the model might star Technical Report 003, Gatsby Computational Neurosciendg ROO1.
to decrease. [5] K.Doya. What are the computations in the cerebellum, thallgenglia,
. . and the cerebral cortexteural Networks12(7):961-974, 1999.
When faced with an unknown state, the best thing to d@) s. Haykin. Neural Networks — A Comprehensive Foundation, 2nd ed.
is often first decrease the uncertainty by for example logpkin Prentice-Hall, 1999.

around, and then take action based on what has been revealgl R: E- Kalman. A new approach to linear filtering and predict
problems. Transactions of the ASME-Journal of Basic Engineering

This is called probing. Unfortunately the simple posterior gy(series D):35-45, 1960.
approximation used in this paper does not allow such plan] H. Kimura and S. Kobayashi. Efficient non-linear contrgl éombining

; ; Q-learning with local linear controllers. IRAroceedings of the Sixteenth
The future actions (CoerI S|gnals) need to depend on dutur International Conference on Machine Learnjngages 210-219, San

states but unfortunately they are assumed to be independent prancisco, CA, USA, 1999.
here. An interesting continuation is to use another pasteri [9] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and B. Likaedictive

; ; ; ; ; control with Gaussian process models.Hroceedings of IEEE Region
approximation, such as particle filters, for allowing that. 8 Eurocon 2003: Computer as a Toglages 352-356, 2003,
[10] G.G. Murray and K. Sykes. The variation of hand tremorhwiirce in
B. Main Results healthy subjectsJournal of Physiology191:699-711, 1967.
))) éll] R. Murray, K. J.Astrom, S. P. Boyd, R. W. Brockett, and G. Stein.
Selecting actions based on a state-space model instead of Future directions in control in an information-rich worldEEE Control
based on the observation directly has many benefits: F,irstllyz] Systems Magazin@3(2):20-33, April 2003.

L. _L, J. Nocedal and S. J. WrighNumerical Optimization Springer-Verlag,
it is more resistant to noise because it implicitly involveS™ oy York 1999

filtering. Secondly, the observations (without history) mimt [13] M. Nargaard, O. Ravn, N. K. Poulsen, and L. K. HanseNeural
always carry enough information about the system state. Networks for Modelling and Control of Dynamic Systentpringer-

Third h i d . delled b f ti Verlag London Limited, 2001.
irdly, when nonlinear dynamics are modefled Dy a Tunclig) £ rosenquist and A. Karlsim. Realisation and estimation of piecewise-

approximator such as an multilayer perceptron network, a linear output-error modelsAutomatica 41(3):545-551, March 2005.
state-space model can find such a representation of the stkte R. Sutton. Leaming to predict by the methods of temporémnces.

that it i itable for th imati d th Machine Learning 3:9—-44, 1988.
at It Is more suitable 1or the approximation an us moffﬁ] S. B. Thrun. The role of exploration in learning contrbi D. A. White

predictable. and D. A. Sofge, editorgdandbook of Intelligent Control: Neural, Fuzzy

When task-oriented identification is used, the state represe ﬁ?ﬁeﬁgsp}i;itj\cﬁ’j°fgg§$ages 527-559. Van Nostrand Reinhold,
tation becomes such that also the control signals becon® €ag7] H. valpola and J. Karhunen. An unsupervised ensemblenileg

to predict, that is, control becomes easier. The learneidypol method for nonlinear dynamic state-space modetsural Computation
mapping can al traightforwardl for direct @intr ~ 14(11):2647-2692, 2002,

app . g can aiso bes_ aig O a.c.iy '.JSEd or direct @ [68] P. Wawrzynski and A. Pacut. Model-free off-policy riErcement
We_ think that task-oriented |d_en_t|f|cat|on should a_lso hel learning in continuous environment. Rroceedings of the International
indirect control methods but this is yet to be experimeptall Joint Conference on Neural Networkpages 1091-1096, Budapest,
confirmed. Hungary, July 2004.

When learning from data, the model represents well on

Publication 5

T. Raiko, M. Tornio, A. Honkela, and J. Karhunen. State Inference in
Variational Bayesian Nonlinear State-Space Models. In the Proceedings
of the 6th International Conference on Independent Component Analy-
sis and Blind Source Separation (ICA 2006), pp. 222-229, Charleston,
South Carolina, USA, March 5-8, 2006.

(© 2006 Springer-Verlag. With kind permission of Springer Science and
Business Media.

State Inference in Variational Bayesian
Nonlinear State-Space Models

Tapani Raiko, Matti Tornio, Antti Honkela, and Juha Karhunen

Helsinki University of Technology,
Neural Networks Research Centre,
P.O. Box 5400, FI-02015 HUT, Espoo, Finland
{tapani.raiko, matti.tornio, antti.honkela, juha.karhunen}@hut.fi

Abstract. Nonlinear source separation can be performed by inferring
the state of a nonlinear state-space model. We study and improve the
inference algorithm in the variational Bayesian blind source separation
model introduced by Valpola and Karhunen in 2002. As comparison
methods we use extensions of the Kalman filter that are widely used in-
ference methods in tracking and control theory. The results in stability,
speed, and accuracy favour our method especially in difficult inference
problems.

1 Introduction

Many applications of source separation methods involve data with some kind of
relations between consecutive observations. Examples include relations between
neighbouring pixels in images and time series data. Using information on these
relations improves the quality of separation results, especially in difficult non-
linear separation problems. Nonlinear modelling of relations may also be useful
in linear mixing problems as the dynamics of the time series, for instance, may
well be nonlinear.

A method for blind source separation using a nonlinear state-space model is
described in [1]. In this paper we study and improve ways of estimating the
sources or states in this framework. Efficient solution of the state estimation
problem requires taking into account the nonlinear relations between consecutive
samples, making it significantly more difficult than source separation in static
models. Standard algorithms based on extensions of the Kalman smoother work
rather well in general, but may fail to converge when estimating the states over
a long gap or when used together with learning the model. We propose solving
the problem by improving the variational Bayesian technique proposed in [1] by
explicitly using the information on the relation between consecutive samples to
speed up convergence.

To tackle just the state estimation (or source separation) part, we will simplify
the blind problem by fixing the model weights and other parameters. In [2],
linear and nonlinear state-space models are used for blind and semi-blind source
separation. Also there the problem is simplified by fixing part of the model.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 222-229, 2006.
© Springer-Verlag Berlin Heidelberg 2006

State Inference in Variational Bayesian Nonlinear State-Space Models 223

2 Nonlinear State-Space Models

In nonlinear state-space models, the observation vectors x(¢), t = 1,2,...,T, are
assumed to have been generated from unobserved state (or source) vectors s(t).
The model equations are

x(t) = £(s(t)) + n(t) (1)
s(t) = g(s(t = 1)) + m(2), (2)

Both the mixing mapping f and the process mapping g are nonlinear. The noise
model for both mixing and dynamical process is often assumed to be Gaussian

p(n(t)) = N [n(t); 0;] (3)
p(m(t)) = N'[m(t); 0; 2], (4)

where 3, and X, are the noise covariance matrices. In blind source separation,
the mappings f and g are assumed to be unknown [1] but in this paper we
concentrate on the case where they are known.

2.1 Inference Methods

The task of estimating a sequence of sources s(1),...,s(T) given a sequence
of observations x(1),...,x(T") and the model is called inference. In case f and
g in Egs. (1) and (2) are linear, the state can be inferred analytically with
an algorithm called the Kalman filter [3]. In a filter phase, evidence from the
past is propagated forward, and in a smoothing phase, evidence from the future
is propagated backwards. Only the most recent state can be inferred using the
Kalman filter, otherwise the algorithm should be called the Kalman smoother. In
[4], the Kalman filter is extended for blind source separation from time-varying
noisy mixtures.

The idea behind iterated extended Kalman smoother [3] (IEKS) is to linearise
the mappings f and g around the current state estimates using the first terms
of the Taylor series expansion. The algorithm alternates between updating the
state estimates by Kalman smoothing and renewing the linearisation. When the
system is highly nonlinear or the initial estimate is poor, the IEKS may diverge.

The iterative unscented Kalman smoother [5,6] (IUKS) replaces the local lin-
earisation of IEKS by a deterministic sampling technique. The sampled points
are propagated through the nonlinearities, and a Gaussian distribution is fitted
to them. The use of nonlocal information improves convergence and accuracy at
the cost of doubling the computational complexity!. Still there is no guarantee
of convergence.

A recent variant called backward-smoothing extended Kalman filter [8] searches
for the maximum a posteriori solution to the filtering problem by a guarded
Gauss-Newton method. It increases the accuracy further and guarantees conver-
gence at the cost of about hundredfold increase in computational burden.

! An even better way of replacing the local linearisation when a multilayer perceptron
network is used as a nonlinearity, is described in [7].

224 T. Raiko et al.

Particle filter [9] uses a set of particles or random samples to represent the
state distribution. It is a Monte Carlo method developed especially for sequences.
The particles are propagated through nonlinearities and there is no need for
linearisation nor iterating. Given enough particles, the state estimate approaches
the true distribution. Combining the filtering and smoothing directions is not
straightforward but there are alternative methods for that. In [10], particle filters
are used for non-stationary ICA.

2.2 Variational Bayesian Method

Nonlinear dynamical factor analysis (NDFA) [1] is a variational Bayesian method
for learning nonlinear state-space models. The mappings f and g in Egs. (1) and
(2) are modelled with multilayer perceptron (MLP) networks whose parameters
can be learned from the data. The parameter vector 6 include network weigths,
noise levels, and hierarchical priors for them. The posterior distribution over the
sources S = [s(1),...,s(T)] and the parameters 0 is approximated by a Gaussian
distribution ¢(S, @) with some further independency assumptions. Both learning
and inference are based on minimising a cost function Ckr,

_ , 45,0
CKLf/G/Sq(S,O)l x5 1508 (5)

where p(X, S, 0) is the joint probability density over the data X =[x(1),...,x(T)],
sources S, and parameters 8. The cost function is based on Kullback-Leibler
divergence between the approximation and the true posterior. It can be split into
terms, which helps in studying only a part of the model at a time. The variational
approach is less prone to overfitting compared to maximum a posteriori estimates
and still fast compared to Monte Carlo methods. See [1] for details.

The variational Bayesian inference algorithm in [1] uses the gradient of the
cost function w.r.t. state in a heuristic manner. We propose an algorithm that
differs from it in three ways. Firstly, the heuristic updates are replaced by a
standard conjugate gradient algorithm [11]. Secondly, the linearisation method
from [7] is applied. Thirdly, the gradient is replaced by a vector of approximated
total derivatives, as described in the following section.

2.3 Total Derivatives

When updates are done locally, information spreads around slowly because the
states of different time slices affect each other only between updates. It is possible
to predict this interaction by a suitable approximation. We get a novel update
algorithm for the posterior mean of the states by replacing partial derivatives of
the cost function w.r.t. state means s(t) by (approximated) total derivatives

dCKL _ X 8CKL 88(7’) (6)
ds(t) 4= 0s(r) Os(t)

They can be computed efficiently using the chain rule and dynamic program-

ming, given that we can approximate the terms Bsaft(i)l) and Bf(ff(f-)l)‘

State Inference in Variational Bayesian Nonlinear State-Space Models 225

Before going into details, let us go through the idea. The posterior distribution
of the state s(t) can be factored into three potentials, one from s(t — 1) (the past),
one from s(t+1) (the future), and one from x() (the observation). We will linearise
the nonlinear mappings so that the three potentials become Gaussian. Then also
the posterior of s(t) becomes Gaussian with a mean that is the weighted average of
the means of the three potentials, where the weights are the inverse (co)variances
of the potentials. A change in the mean of a potential results in a change of the
mean of the posterior inversely proportional to their (co)variances.

The terms of the cost function (See Equation (5.6) in [1], although the notation
is somewhat different) that relate to s(t) are

m 1 1
Cuas(0) = 3 (=5 5 + 50 (i) — ulste ~ DI + 50})

i=1

+Zl ;Zb_J; {[gj(s(t)) *Sj(t+1)]2+§j(s(t))} (7)

#3057 { [Fuls) — () + Futste)
k=1

where a and @ denote the mean and (co)variance of a over the posterior ap-
proximation ¢ respectively and n and m are the dimensionalities of x and s
respectively. Note that we assume diagonal noise covariances 3. Nonlinearities
f and g are replaced by the linearisations

£(s(t)) = f(scur(t)) + I () [s(£) — Scur(t)] (8)
g(s(t)) = g(scur(t)) + Jg(t) [s(t) — scur ()], 9)
where the subscript cur denotes a current estimate that is constant w.r.t. further
changes in s(t). The minimum of (7) with linearisations can be found at the zero
of the gradient:
1

Sopt(t) =[B!+ T, () TETN (1) + I (0)TE1 I (0)] (10)
Sopt () = Sopt (1) {B7" [8(Scur(t — 1)) + Tg(t = 1)(s(t — 1) — seur(t — 1))]
+ 3OS s(t + 1) — g(seur(1))] (11)

+Jf (t)TE;1 [X(t) - f(scur(t))] } .

The optimum mean reacts to changes in the past and in the future by

aSop'c(t) = -1
o) =B 0213, 1) (12)
Oson(t) _5 (03,075 (13)

Os(t +1) vt

Finally, we assume that the Equations (12) and (13) apply approximately even
in the nonlinear case when the subscripts opt are dropped out. The linearisation
matrices J need to be computed anyway [7] so the computational overhead is
rather small.

226 T. Raiko et al.
3 Experiments

To experimentally measure the performance of our proposed new method, we
used two different data sets. The first data set was generated using a simulated
double inverted pendulum system with known dynamics. As the second data set
we used real-world speech data with unknown dynamics.

In all the experiments, IEKS and IUKS were run for 50 iterations and NDFA
algorithm for 500 iterations. In most cases this was long enough for the algo-
rithms to converge to a local minimum. For comparison purposes, the NDFA
experiments were also repeated without using the total derivatives.

Even with a relatively high number of particles, particle smoother performed
poorly compared to the iterative algorithms. The results for particle smoother
are therefore omitted from the figures. They are however discussed where appro-
priate. Even though the particle smoother performed relatively poorly, it should
be noted that many different schemes exists to improve the performance of par-
ticle filters [9], and therefore direct comparison between the iterative algorithms
and the plain particle filter algorithm used in these experiments may be some-
what unjustified. The experiments were also repeated with the original NDFA
algorithm presented in [1]. The results were quite poor, as was to be excepted,
as the heuristic update rules are optimized for learning.

3.1 Double Inverted Pendulum

The double inverted pendulum system [6] (see Figure 1) is a standard bench-
mark in the field of control. The system consists of a cart and a two-part pole
attached to the cart. The system has six states which are cart position on a
track, cart velocity, and the angles and the angular velocities of the two at-
tached pendulums. The single control signal is the lateral force applied to the
cart. The dynamical equations for the double inverted pendulum system can
be found e.g. in [6], in this experiment a discrete system with a time step of
At = 0.05 s was simulated using the MATLAB ordinary differential equation
solver ode23.

To make sure that the learning scheme did not favour the proposed algorithm,
standard backpropagation algorithm was used to learn an MLP network to model
the system dynamics using a relatively small sample of 2000 input-output pairs.
To make this problem more challenging, only the velocity and position of the
cart and the angle of the upper pendulum were available as observations, and
the rest of the state had to be inferred from these. Experiments were run on
ten different data sets with 50 samples each using 5 different initialisations. The
final results can be seen in Figure 1.

TEKS suffered from quite serious convergence problems with this data set.
These problems were especially bad during the early iterations, but several
runs failed to converge to a meaningful result even after the iteration limit
was reached. IUKS performed somewhat better, but suffered from some sta-
bility problems too. The proposed method was much more robust and did not
suffer from stability issues and also performed better on average than the two

State Inference in Variational Bayesian Nonlinear State-Space Models 227

NDFA + TD
! - - - IEKS
IUKS
- — NDFA

Fig. 1. Inference with the double inverted pendulum system. On the left the schematic
of the system, on the right root mean square error plotted against computation time.

Kalman filter based algorithms. It should be noted, however, that in some ex-
periments both IEKS and IUKS converged in only a few iterations, resulting in
a superior performance compared to the proposed method. Therefore the prob-
lem with IEKS and TUKS may at least partially be related to poor choice of
initialisations.

3.2 Speech Spectra

As a real world data set we used speech spectra. The data set consisted of 11200
21 dimensional samples which corresponds to 90 seconds of continuous human
speech. The first 10000 samples were used to train a seven dimensional state-
space model with the method from [1] and the rest of the data was used in
the experiments. This data set poses a somewhat different problem from the
double inverted pendulum system. The nonlinearities are not as strong as in the
first experiment but the dimensionality of the observation and state spaces are
higher, which emphasises the scalability of the methods.

sample

——NDFA+TD —— NDFA + TD
10y, — — —IEKS 1 — — —IEKS

IUKS
—— NDFA

RMSE

Fig. 2. Inference with the speech data and missing values. On the top one of the data
sets used in the experiments (missing values marked in black), on the bottom root
mean square error plotted against computation time. Left side figures use a small gap
size, right side figures a large gap size.

228 T. Raiko et al.

The test data set was divided into three parts each consisting of 300 samples and
all the algorithms were run for each data set with four random initialisations. The
final results represent an average over both the different data sets and initialisations.

Since the true state is unknown in this experiment, the mean square error of
the reconstruction of missing data was used to compare the different algorithms.
Experiments were done with sets of both 3 and 30 consecutive missing samples.
The ability to cope with missing values is very important when only partial
observations are available or in the case of failures in the observation process. It
also has interesting applications in the field of control as reported in [12].

Results can be seen in Figure 2. When missing values are present, especially
in the case of the large gap size, the proposed algorithm performs clearly better
than the rest of the compared algorithms. Compared to the double inverted
pendulum data set, the stability issues with TEKS and IUKS were not as severe,
but neither method could cope very well with long gaps of missing values.

4 Discussion and Conclusions

We proposed an algorithm for inference in nonlinear state-space models and
compared it to some of the existing methods. The algorithm is based on min-
imising a variational Bayesian cost function and the novelty is in propagating
the gradient through the state sequence. The results were slightly better than
any of the comparison methods (IEKS and IUKS). The difference became large
in a high-dimensional problem with long gaps in observations.

Our current implementation requires that the nonlinear mappings are mod-
elled as multilayer perceptron networks. Part of the success of our method is due
to a linearisation that is specialised to that case [7]. The idea presented in this
paper applies in general.

When an algorithm is based on minimising a cost function, it is fairly easy
to guarantee convergence. While the Kalman filter is clearly the best choice for
inference in linear Gaussian models, the problem with many of the nonlinear
generalisation (e.g. IEKS and IUKS) is that they cannot guarantee convergence.
Even when the algorithms converge, convergence can be slow. A recent fix for
convergence comes with a large computational cost [8] but this paper shows that
stable inference can be fast, too.

While this paper concentrates on the case where nonlinear mappings and other
model parameters are known, we aim at the case where they should be learned
from the data [1]. Blind source separation involves a lot more iterations than the
basic source separation. The requirements of a good inference algorithm change,
too: There is always the previous estimate of the sources available and most of
the time it is already quite accurate.

Acknowledgements

This work was supported in part by the Finnish Centre of Excellence Pro-
gramme (2000-2005) under the project New Information Processing Principles

State Inference in Variational Bayesian Nonlinear State-Space Models 229

and by the IST Programme of the European Community under the PASCAL
Network of Excellence, IST-2002-506778. This publication only reflects the au-
thors’ views.

References

1.

10.

11.

12.

H. Valpola and J. Karhunen, “An unsupervised ensemble learning method for non-
linear dynamic state-space models,” Neural Computation, vol. 14, no. 11, pp. 2647—
2692, 2002.

. A. Cichocki, L. Zhang, S. Choi, and S.-I. Amari, “Nonlinear dynamic independent

component analysis using state-space and neural network models,” in Proc. of
the 1st Int. Workshop on Independent Component Analysis and Signal Separation
(ICA’99), (Aussois, France, January 11-15), pp. 99-104, 1999.

. B. Anderson and J. Moore, Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall,

1979.

. V. Koivunen, M. Enescu, and E. Oja, “Adaptive algorithm for blind separation

from noisy time-varying mixtures,” Neural Computation, vol. 13, pp. 2339-2357,
2001.

. S. Julier and J. Uhlmann, “A new extension of the Kalman filter to nonlinear

systems,” in Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, 1997.

. E. A. Wan and R. van der Merwe, “The unscented Kalman filter,” in Kalman

Filtering and Neural Networks (S. Haykin, ed.), pp. 221-280, New York: Wiley,
2001.

. A. Honkela and H. Valpola, “Unsupervised variational Bayesian learning of non-

linear models,” in Advances in Neural Information Processing Systems 17 (L. Saul,
Y. Weiss, and L. Bottou, eds.), pp. 593-600, Cambridge, MA, USA: MIT Press,
2005.

. M. Psiaki, “Backward-smoothing extended Kalman filter,” Journal of Guidance,

Control, and Dynamics, vol. 28, Sep—Oct 2005.

. A. Doucet, N. de Freitas, and N. J. Gordon, Sequential Monte Carlo Methods in

Practice. Springer Verlag, 2001.

R. Everson and S. Roberts, “Particle filters for non-stationary ICA,” in Advances in
Independent Component Analysis (M. Girolami, ed.), pp. 23-41, Springer-Verlag,
2000.

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,”
The Computer Journal, vol. 7, pp. 149-154, 1964.

T. Raiko and M. Tornio, “Learning nonlinear state-space models for control,”
in Proc. Int. Joint Conf. on Neural Networks (IJCNN’05), (Montreal, Canada),
pp. 815-820, 2005.

Publication 6

T. Raiko. Nonlinear Relational Markov Networks with an Application
to the Game of Go. In the Proceedings of the International Conference
on Artificial Neural Networks (ICANN 2005), pp. 989-996, Warsaw,
Poland, September 11-15, 2005.

(© 2005 Springer-Verlag. With kind permission of Springer Science and
Business Media.

Nonlinear Relational Markov Networks
with an Application to the Game of Go

Tapani Raiko

Neural Networks Research Centre, Helsinki University of Technology,
P.O.Box 5400, FI-02015 HUT, Espoo, FINLAND
Tapani.Raiko@hut.fi

Abstract. It would be useful to have a joint probabilistic model for a general
relational database. Objects in a database can be related to each other by indices
and they are described by a number of discrete and continuous attributes. Many
models have been developed for relational discrete data, and for data with nonlin-
ear dependencies between continuous values. This paper combines two of these
methods, relational Markov networks and hierarchical nonlinear factor analysis,
resulting in joining nonlinear models in a structure determined by the relations in
the data. The experiments on collective regression in the board game go suggest
that regression accuracy can be improved by taking into account both relations
and nonlinearities.

1 Introduction

Growing amount of data is collected every day in all fields of life. For the purpose
of automatic analysis, prediction, denoising, classification etc. of data, a huge number
of models have been created. It is natural that a specific model for a specific purpose
works often the best, but still, a general method to handle any kind of data would be
very useful. For instance, if an artificial brain has a large number of completely sepa-
rate modules for different tasks, the interaction between the modules becomes difficult.
Probabilistic modelling provides a well-grounded framework for data analysis. This pa-
per describes a probabilistic model that can handle data with relations as well as discrete
and continuous values with nonlinear dependencies.

Terminology: Using Prolog notation, we write knows(alex, bob) for stating a fact
that the knows relation holds between the objects alex and bob, that is, Alex knows
Bob. The arity of the relation tells how many objects are involved. The knows relation
is binary, that is, between two objects, but in general relations can be of any arity. The
atom knows(alex, B) matches all the instances where the variable B represents an ob-
ject known by Alex. In this paper, the terms are restricted to constants and variables,
that is, compound terms such as thinks(A, knows(B, A)) are not considered. For every
relation that is logically true, there are associated attributes x, say a class label or a
vector of real numbers. The attributes x(knows(A, B)) describe how well A knows B
and whether A likes or dislikes B. The attribute vector x(con(A)) describes what kind
of a consumer the person A is. Given a relational database describing relationships be-
tween people and their consuming habits, we might study the dependencies that might
be found. For instance, some people cloth like their idols, and nonsmokers tend to be

»
KNOWS CONSUMER Bob Bob
consumer consumer,
who whom how who smoker ...
knows,
Alex Bob friend Alex no knows A A
>
ex \
umer <\ '

Bob Carl neighbour Bob no Alex \ Al
consumer cons
Carl Alex colleague Carl no Carl N Carl)
consumer consumer

~—

Fig. 1. Consider a relational database describing the relationships and consumer habits of three
people. The two tables are shown on the left. On the right, the database is represented graphically,
with the occurrences of the template (con(A), knows(A, B), con(B)) marked with ovals on the
very right.

friends with nonsmokers. The modelling can be done for instance by finding all oc-
currences of the template (con(A), knows(A, B), con(B)) in the data and studying the
distribution of the corresponding attributes. The situation is depicted in Figure 1.

Bayesian networks[6] are popular statistical models based on a directed graph. The
graph has to be acyclic, which is in line with the idea that the arrows represent causal-
ity: an occurrence cannot be its own cause. In relational generalisations of Bayesian
networks [7], the graphical structure is determined by the data. Often it can be assumed
that the data does not contain cycles, for instance in the case when the direction of
the arrows is always from the past to the future. Sometimes the data has cycles, like
in Figure 1. Markov networks [6], on the other hand, are based on undirected graphi-
cal models. A Markov network does not care whether A caused B or vice versa, it is
interested only whether there is a dependency or not.

2 Model Description

This section describes the models that are combined into nonlinear relational Markov
networks.

2.1 Hierarchical Nonlinear Factor Analysis (HNFA)

In (linear) factor analysis, continuous valued observation vectors x(t) are generated
from unknown factors (or sources) s(t), a bias vector b, and noise n(t) by x(t) =
As(t) + b + n(t). The factors and noise are assumed to be Gaussian and independent.
The index ¢ may represent time or the object of the observation. The mapping A, the
factors, and parameters such as the noise variances are found using Bayesian learning.
Factor analysis is close to principal component analysis (PCA). The unknown factors
may represent some real phenomena, or they may just be auxillary variables for induc-
ing a dependency between the observations.

Hierarchical nonlinear factor analysis (HNFA) [11] generalises factor analysis by
adding more layers of factors that form a multi-layer perceptron type of a network. In
this paper, there are two layers of factors h and s, and the mappings are:

h(t) = Bs(t) + b+ ny(t) (D
x(t) = Af[h(t)] + Cs(t) + a + n,(t),)

where the nonlinearity f(£) = exp(—&?2) operates on each element separately. HNFA
can easily be implemented using the Bayes Blocks software library [10, 12]. The update
rules are automatically derived in a manner shortly described below.

The unknown variables @ (factors, mappings, and the parameters) are learned from
data with variational Bayesian learning [4]. A parametric distribution ¢(8) over the
unknown variables 6 is fitted to the true posterior distribution p(6@ | X) where the
matrix X contains all the observations x(¢). The misfit is measured by Kullback-Leibler
divergence D(- || -). An additional term — log p(X) is included to avoid calculation of
the model evidence term p(X') = [p(X, 6)d@. The cost function is

()
¢ = Da(6) | p61) ~ ogp(X) = (tog L) ®
where (-) denotes the expectation over distribution ¢(8). Note that since D(q || p) > 0,
it follows that the cost function provides a lower bound for the model evidence p(X) >
exp(—C). The posterior approximation ¢(@) is chosen to be Gaussian with a diagonal
covariance matrix.

It is possible, though slightly impractical, to model also discrete values in HNFA by
using the discrete variable with a soft-max prior [12]. In the binary case, the ith com-
ponent of x(t) is left as a latent auxiliary variable, and an observed binary variable y ()

is conditioned by p(y(t) = 1| x;(t)) = 1?‘#%. The general discrete case follows
analogously requiring more than one auxiliary component of x(¢). The experiments in
Section 3 use a thousand copies of a binary variable having the same conditional prob-
ability. They can be united into one variable by multiplying its cost by one thousand.
Observing 800 ones and 200 zeros corresponds to fixing the variable to a distribution

of 0.8 times one and 0.2 times zero.

2.2 Relational Markov Networks (RMN)

A relational Markov network (RMN) [9] is a model for data with relations and discrete
attributes. It is specified by a set of clique templates C and corresponding potentials
@. Using the example in the introduction, a model can be formed by defining a single
clique template C' = (con(A), knows(A, B), con(B)) and the corresponding potential
¢c over x(C') which is (a subset of) the concatenation of attribute vectors x(con(A)),
x(knows(A, B)), and x(con(B)). Given a relational database, the RMN produces an
unrolled Markov network over all the attributes X . The cliques ¢ € C(Z) instantiated
by a template C' share the same clique potential ¢. The combined probabilistic model
is p(X) = 2 Tlcec [lccc(z) ¢c(x(c)), where Z is a normalisation constant and
C(Z) contains all the instantiations of the template C' In general, a template can be any
boolean formula over the relations.

The general inference task is to compute the posterior distribution over all the vari-
ables X . The network induced by data can be very large and densely connected, so exact
inference is often intractable [9]. The belief propagation (BP) algorithm [6] is guaran-
teed to converge to the correct marginal probabilities only for singly connected Markov
networks, but it is used as a good approximation also in the loopy case. The learning
task, or the estimation of the potentials @ is done using the maximum a posteriori cri-
terion. It requires an iterative algorithm alternating between updating the parameters of
the potentials and running the inference algorithm on the unrolled Markov network.

2.3 Nonlinear Relational Markov Networks (NRMN)

In nonlinear relational Markov networks (NRMN), the clique potentials are replaced by
a probability density function for continuous values, in this case HNFA'! The combi-
nation of these two methods is not completely straightforward. For instance, marginal-
isation required by the BP algorithm is often difficult with nonlinear models. Also,
algorithmic complexity needs to be considered, since the model will be quite demand-
ing. One of the key points is to use probability densities p in place of potentials D.
Then, overlapping templates give multiple probability functions for some variable and
they are combined using the product-of-experts combination rule described below.

Combination Rules: One of the non-trivialities in making relational extensions
of probabilistic models is the so called combination rule [7]. When the structure of the
graphical model is determined by the data, one cannot know in advance how many links
there are for each node. One solution is to use combination rules such as the noisy-or.
Combination rule transforms a number of probability functions into one. Noisy-or does
not generalise well to continuous values, but two alternatives are introduced below.

Using a Markov network and the BP algorithm corresponds to using probability
densities as potentials and the maximum entropy combination rule. The probability den-
sities po(x(C)) are combined to form the joint probability distribution by maximising
the entropy of p(X') given that all instantiations of pc(x(C')) coalesce with the corre-
sponding marginals of p(X). For singly connected networks, this means that the joint
distribution is p(X) = [[.pc(x(c))/ [], pr(x(k)), where k runs over pairs of instan-
tiations of templates and x(k) contains the shared attributes in those pairs. Marginali-
sation of nonlinear models cannot usually be done exactly and therefore one should be
very careful with the denominator. Also, one should take care in handling loops.

In the product-of-experts (PoE) combination rule, the logarithm of the probability
density of each variable is the average of the logarithms of the probability functions that

the variable is included in: p(z) T\‘/Hcec [l.cc) polz) forallz € X, where only

those n instantiated templates c that contain z, are considered. PoE is easy to implement
in the variational Bayesian framework because the term in the cost function (3) can be
split into familiar looking terms. Consider the combination of two probability functions
p1(x) and pa(z) (that are assumed to be independent):

log Q(ﬂcx) + {log Q(ﬂfx)
<10g q(z) >:<° p1<>> <° pz(>>_ @
p1(z)p2() 2

A characteristic of PoE is that implicit weighting happens in some sense automatically.
When one of the experts gives a distribution with a large variance and another one with
a small variance, the combination is close to the one with small variance.

Inference in Loopy Networks: Inferring unobserved attributes in a database is in
this case an iterative process which should end up in a cohesive whole. Information
can traverse through multiple relations. > The basic element in the inference algorithm

! One could also think in terms of e.g. a mixture model.

% In mixture of experts (MoE), it is enough when only one of the experts explains the data even
if all the other disagree. The ignored experts will not pass information on. This explains why
the author did not consider MoE as a combination rule.

of Bayes Blocks is the update of the posterior approximation ¢(-) of a single unknown
variable, assuming the rest of the distribution fixed. The update is done such that the cost
function (3) is minimised. One should note that when the distribution over the Markov
blanket of a variable is fixed, the local update rules apply, regardless of any loops in the
network. Therefore the use of local update rules is well founded, that is, local inference
in a loopy network does not bring any additional heuristicity to the system. Also, since
the inference is based on minimising a cost function, the convergence is guaranteed,
unlike in the BP algorithm.

Learning: The learning or parameter estimation problem is to find the probability
functions associated with the given clique templates C. Now that we use probability
functions instead of potentials, it is possible in some cases to separate the learning
problem into parts. For each template C' € C, find the appropriate instantiations ¢ €
C(Z) and collect the associated attributes x(c) into a table. Learn a HNFA model for
this table ignoring the underlying relations. This divide-and-conquer strategy makes
learning comparatively fast, because all the interaction is avoided. There are some cases
that forbid this. If the data contains missing values, they need to be inferred using the
method in the previous paragraph. Also, it is possible to train experts cooperatively
rather than separately [3].

Clique Templates: In data mining, so called frequent sets are often mined from
binary data. Frequent sets are groups of binary variables that get the value 1 together
often enough to be called frequent. The generalisation of this concept to continuous
values could be called the interesting sets. An interesting set contains variables that
have such strong mutual dependencies that the whole is considered interesting. The
methodology of inductive logic programming could be applied to finding interesting
clique templates. The definition of a measure for interestingness is left as future work.
Note that the divide-and-conquer strategy described in the previous paragraph becomes
even more important if one needs to consider different sets of templates. One can either
learn a model for each template separately and then try combinations with the learned
models, or try a combination of templates and learn cooperatively the models for them.
Naturally the number of templates is much smaller than the number of combinations
and thus the first option is computationally much cheaper.

So what are meaningful candidates for clique templates? For instance, the template
(con(A), con(B)) does not make much sense. Variables A and B are not related to each
other, so when all pairs are considered, con(A) and con(B) are always independent and
thus uninteresting by definition. In general, a template is uninteresting, if it can be split
into two parts that do not share any variables. When considering large templates, the
number of involved attributes grows large as well, which makes learning more involved.
An interesting possibility is to make a hierarchical model. When a large template con-
tains others as subtemplates, one can use the factors s in Eq. (1, 2) of the subtemplate
as the attributes for the large template. The factors already capture the internal structure
of the subtemplates and thus the probabilistic model of the large template needs only to
concentrate on the structure between its subtemplates.

3 Experiments with the Game of Go

Game of Go: Go is an ancient oriental board game. Two players, black and white,
alternately place stones on the empty points of the board until they both pass. The
standard board is 19 by 19 (i.e. the board has 19 lines by 19 lines), but 13-by-13 and
9-by-9 boards can also be used. The game starts with an empty board and ends when it
is divided into black and white areas. The one who has the larger area wins. Stones of
one colour form a block when they are 4-connected. Empty points that are 4-connected
to a block are called its liberties. When a block loses its last liberty, it is removed from
the board. After each move, surrounded opponent blocks are removed and only after
that, it is checked whether the block of the played move has liberties or not. There are
different rulesets that define more carefully what a “larger area” is, whether suicide is
legal or not, and how infinite repetitions are forbidden.

Computer Go: Of all games of skill, go is second only to chess in terms of research
and programming efforts spent. While go programs have advanced considerably in the
last 10-15 years, they can still be beaten easily by human players of moderate skill.
[5] One of the reasons behind the difficulty of static board evaluation is the fact that
there are stones on board that will eventually be captured, but not in near future. In
many cases experienced go players can classify these dead stones with ease, but using a
simple look-ahead to determine the status of stones is not always feasible since it might
take dozens of moves to actually capture the stones.

Experiment Setting: The goal of the experiments was to learn to determine the
status of the stones without any lookahead. An example situation is given in Figure 2.
The data was generated using a go-playing program called Go81 [8] set on level 1 and
using randomness to have variability. By playing the game from the current position
to the end a thousand times, one gets an estimate of who is going to own each point
on the board. Information on the board states was saved to a relational database with
two tables for learning an NRMN. The x(block(A)) contains the colour, the number of
liberties, the size, distances from the edges, influence features in the spirit of [1], and
finally the count of how many times the block survives in the 1000 possible futures. The
ally(A, B) and enemy (A, B) contain a measure of strength of the connection between
the blocks A and B estimated using similar influence features [1]. Only the pairs with a
strong enough influence on each other (> 0.02) were included. One thousand 13-by-13
board positions after playing 2 to 60 moves were used for learning.

Two clique templates, ((block(A), ally(A, B), block(B)) and an analogous one for
enemy, were used. HNFA models were taught with 28 attributes of the two blocks and
the pair. The dimensionality of the s layer was 8. The learning algorithm pruned the
dimensionality of the h layer to 41 for allies and to 47 for enemies. The models were
learned for 500 sweeps through the data. A linear factor analysis model was learned
with the same data for comparison. A separate collection of 81 board positions with
1576 blocks was used for testing. The status of each block was now hidden from the
model and only the other attributes were known. With inference in the network, the sta-
tus were collectively regressed. As a comparison experiment, the inferences were also
done separately, and combined only in the end. Inference required from four to thirty
iterations to converge. As a postprocessing step, the regressed survival probabilities &

Fig. 2. The leftmost subfigure shows the board of a go game in progress. In the middle, the
expected owner of each point is visualised with the shade of grey. For instance, the two white
stones in the upper right corner are very likely to be captured. The rightmost subfigure shows the
blocks with their expected owner as the colour of the square. Pairs of related blocks are connected
with a line which is dashed when the blocks are of opposing colours.

were modified with a simple three-parameter function 2, = a#® + ¢ and the three
parameters that gave the smallest error for each setting, were used.

Results: The table below shows the root mean square (rms) errors for inferring the
survival probabilities of the blocks in test cases. They can be compared to the standard
deviation 0.2541 of the probabilities.

rms error |Linear |N0nlinear
Separate regression | 0.2172| 0.2052
Collective regression | 0.2171 | 0.2037
As expected, nonlinear models were better than linear ones and collective regression
was better than separate regression.

4 Discussion and Conclusion

A traditional Markov network was applied for statically determining the status of the
go board in [2]. Games played by people were used as data. Humans play the game
better, but still, this approach has an important downside. The data contains only one
possible future for each board position whereas a computer player can produce many
possible futures. At the learning stage, all those futures can be used together for the
computational price of one. Also, stones that are provably determined to be captured
under optimal play (dead), might still be useful: By threathening to revive them, the
player can gain elsewhere. When data is gathered with unoptimal play, the stones are
marked as not quite dead, which might be desirable.

NRMN includes a probabilistic model only for the attributes and not for the logical
relations. Link uncertainty means that one models the possibility of a certain relation to
exist or not. Actually one can model link uncertainty using just the proposed method-
ology. All the uncertain relations are assumed to be logically true and an additional
binary attribute is included to mark whether the link exists or not. One only needs to
take into account that when this binary attribute gets the value zero, the dependencies
between the other attributes are not modelled. Also, time series data can be represented
using relations obs(T") for the observations at time 7" and ensues(7T'1,72) to denote

that the time indices 7'1 and 7'2 are adjacent. These two examples give light to the gen-
erality of the proposed method. In [12], HNFA is augmented with a variance model.
Modelling variances would be important also in the NRMN setting, because then each
expert would produce an estimate of its accuracy and thus implicitly a weight compared
to other experts. In [9], relational Markov networks were constructed to be discrimina-
tive so that the model is specialised to classification. The same could be applied here.

Conclusion: A model was proposed for data containing both relations and nonlin-
ear dependencies. The model was built by combining two state-of-the art probabilistic
models, hierarchical nonlinear factor analysis and relational Markov networks by using
the product-of-experts combination rule. Many simplifying assumptions were made,
such as diagonality of the posterior covariance matrix, and separate learning of experts.
Also, learning the model structure (the set of clique templates) was left as future work.
Experiments with the game of go give promise for the proposed methodology.

Acknowledgements: The author thanks Kristian Kersting, Harri Valpola, Markus
Harva, and Alexander Ilin for useful discussions and comments. This research has been
funded by the Finnish Centre of Excellence Programme (2000-2005) under the project
New Information Processing Principles, and by the IST Programme of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778. This pub-
lication only reflects the author’s views.

References

1. B. Bouzy. Mathematical morphology applied to computer go. IJPRAI, 17(2), 2003.

2. T. Graepel D. Stern and D. MacKay. Modelling uncertainty in the game of Go. In Proc. of
the Conference on Neural Information Processing Systems, Vancouver, December 2004.

3. G.E. Hinton. Modelling high-dimensional data by combining simple experts. In Proc. AAAI-
2000, Austin, Texas.

4. M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods
for graphical models. In M. Jordan, editor, Learning in Graphical Models, pages 105-161.
The MIT Press, Cambridge, MA, USA, 1999.

5. M. Miiller. Computer Go. Special issue on games of Artificial Intelligence Journal, 2001.

6. 1. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

7. L. De Raedt and K. Kersting. Probabilistic logic learning. ACM-SIGKDD Explorations,
special issue on Multi-Relational Data Mining, 5(1):31-48, July 2003.

8. T. Raiko. The go-playing program called Go81. In Proceedings of the Finnish Artificial
Intelligence Conference, STeP 2004, pages 197-206, Helsinki, Finland, 2004.

9. B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational data.
In Proc. Conference on Uncertainty in Artificial Intelligence (UAI02), Edmonton, 2002.

10. H. Valpola, A. Honkela, M. Harva, A. Ilin, T. Raiko, and T. Ostman. Bayes blocks software
library. http://www.cis.hut.fi/projects/bayes/software/,2003.

11. H. Valpola, T. Ostman, and J. Karhunen. Nonlinear independent factor analysis by hierar-
chical models. In Proc. ICA2003, pages 257-262, Nara, Japan, 2003.

12. H. Valpola, T. Raiko, and J. Karhunen. Building blocks for hierarchical latent variable mod-
els. In Proc. ICA2001, pages 710-715, San Diego, USA, 2001.

Publication 7

K. Kersting, L. De Raedt, and T. Raiko. Logical Hidden Markov Mod-
els. In the Journal of Artificial Intelligence Research, Volume 25, pp.
425-456, April, 2006.

(© 2006 AT Access Foundation, Inc. Reprinted with permission.

Journal of Artificial Intelligence Research 25 (2006) 425-456 Submitted 12/04; published 4/06

Logical Hidden Markov Models

Kristian Kersting KERSTING@INFORMATIK.UNI-FREIBURG.DE
Luc De Raedt DERAEDT@INFORMATIK.UNI-FREIBURG.DE
Institute for Computer Science

Albert- Ludwigs- Universitit Freiburg

Georges-Koehler-Allee 079

D-79110 Freiburg, Germany

Tapani Raiko TAPANI.RAIKO@QHUT.FI
Laboratory of Computer and Information Science

Helsinki University of Technology

P.O. Box 5400

FIN-02015 HUT, Finland

Abstract

Logical hidden Markov models (LOHMMSs) upgrade traditional hidden Markov models
to deal with sequences of structured symbols in the form of logical atoms, rather than flat
characters.

This note formally introduces LOHMMs and presents solutions to the three central in-
ference problems for LOHMMs: evaluation, most likely hidden state sequence and param-
eter estimation. The resulting representation and algorithms are experimentally evaluated
on problems from the domain of bioinformatics.

1. Introduction

Hidden Markov models (HMMs) (Rabiner & Juang, 1986) are extremely popular for an-
alyzing sequential data. Application areas include computational biology, user modelling,
speech recognition, empirical natural language processing, and robotics. Despite their suc-
cesses, HMMs have a major weakness: they handle only sequences of flat, i.e., unstruc-
tured symbols. Yet, in many applications the symbols occurring in sequences are struc-
tured. Consider, e.g., sequences of UNIX commands, which may have parameters such
as emacs lohmms.tex, ls, latex lohmms.tex,...Thus, commands are essentially structured.
Tasks that have been considered for UNIX command sequences include the prediction of
the next command in the sequence (Davison & Hirsh, 1998), the classification of a command
sequence in a user category (Korvemaker & Greiner, 2000; Jacobs & Blockeel, 2001), and
anomaly detection (Lane, 1999). Traditional HMMs cannot easily deal with this type of
structured sequences. Indeed, applying HMMs requires either 1) ignoring the structure of
the commands (i.e., the parameters), or 2) taking all possible parameters explicitly into
account. The former approach results in a serious information loss; the latter leads to a
combinatorial explosion in the number of symbols and parameters of the HMM and as a
consequence inhibits generalization.

The above sketched problem with HMMs is akin to the problem of dealing with struc-
tured examples in traditional machine learning algorithms as studied in the fields of in-
ductive logic programming (Muggleton & De Raedt, 1994) and multi-relational learn-

(©2006 AI Access Foundation. All rights reserved.

KERSTING, DE RAEDT, & RAIKO

ing (Dzeroski & Lavra¢, 2001). In this paper, we propose an (inductive) logic programming
framework, Logical HMMs (LOHMMs), that upgrades HMMs to deal with structure. The
key idea underlying LOHMMs is to employ logical atoms as structured (output and state)
symbols. Using logical atoms, the above UNIX command sequence can be represented
as emacs(lohmms.tex),1s, latex(lohmms.tex), ... There are two important motivations for
using logical atoms at the symbol level. First, variables in the atoms allow one to make
abstraction of specific symbols. E.g., the logical atom emacs(X,tex) represents all files X
that a IXTEX user tex could edit using emacs. Second, unification allows one to share in-
formation among states. E.g., the sequence emacs(X, tex), latex(X, tex) denotes that the
same file is used as an argument for both Emacs and ETEX.

The paper is organized as follows. After reviewing the logical preliminaries, we introduce
LOHMMs and define their semantics in Section 3; in Section 4, we upgrade the basic
HMM inference algorithms for use in LOHMMSs; we investigate the benefits of LOHMMs in
Section 5: we show that LOHMMs are strictly more expressive than HMMs, that they can
be — by design — an order of magnitude smaller than their corresponding propositional
instantiations, and that unification can yield models, which better fit the data. In Section 6,
we empirically investigate the benefits of LOHMMSs on real world data. Before concluding,
we discuss related work in Section 7. Proofs of all theorems can be found in the Appendix.

2. Logical Preliminaries

A first-order alphabet ¥ is a set of relation symbols r with arity m > 0, written r/m, and a
set of functor symbols f with arity n > 0, written £/n. If n = 0 then f is called a constant,
if m = 0 then p is called a propositional variable. (We assume that at least one constant
is given.) An atom r(t,,...,t,) is a relation symbol r followed by a bracketed n-tuple of
terms t;. A termt is a variable V or a functor symbol £(t,,...,t;) immediately followed by
a bracketed k-tuple of terms t;. Variables will be written in upper-case, and constant, func-
tor and predicate symbols lower-case. The symbol _ will denote anonymous variables which
are read and treated as distinct, new variables each time they are encountered. An iterative
clause is a formula of the form H «— B where H (called head) and B (called body) are logical
atoms. A substitution 0 = {V;/t1,...,V,/t,}, e.g. {X/tex}, is an assignment of terms t;
to variables V;. Applying a substitution o to a term, atom or clause e yields the instanti-
ated term, atom, or clause ec where all occurrences of the variables V; are simultaneously
replaced by the term t;, e.g. 1s(X) < emacs(F,X){X/tex} yields 1s(tex) « emacs(F, tex).
A substitution o is called a unifier for a finite set .S of atoms if So is singleton. A unifier 8
for S is called a most general unifier (MGU) for S if, for each unifier o of S, there exists a
substitution - such that o = . A term, atom or clause E is called ground when it contains
no variables, i.e., vars(E) = (). The Herbrand base of 3, denoted as hby, is the set of all
ground atoms constructed with the predicate and functor symbols in 3. The set Gx(A) of
an atom A consists of all ground atoms Af that belong to hbsy.

3. Logical Hidden Markov Models

The logical component of a traditional HMM corresponds to a Mealy machine (Hopcroft
& Ullman, 1979), i.e., a finite state machine where the output symbols are associated with

426

LogGicAL HIDDEN MARKOV MODELS

transitions. This is essentially a propositional representation because the symbols used to
represent states and output symbols are flat, i.e. not structured. The key idea underlying
LOHMMs is to replace these flat symbols by abstract symbols. An abstract symbol A is —
by definition — a logical atom. It is abstract in that it represents the set of all ground, i.e.,
variable-free atoms of A over the alphabet 3, denoted by Gx(A). Ground atoms then play
the role of the traditional symbols used in a HMMs.

Example 1 Consider the alphabet %1 which has as constant symbols tex, dvi, hmml,
and lohmml, and as relation symbols emacs/2, 1s/1, xdvi/1, latex/2. Then the atom
emacs(File, tex) represents the set {emacs(hmmi, tex),emacs(lohmmi, tex)}. We assume
that the alphabet is typed to avoid useless instantiations such as emacs(tex,tex)).

The use of atoms instead of flat symbols allows us to analyze logical and structured sequences
such as emacs(hmml, tex), latex(hmml, tex), xdvi(hmmi,dvi).

Definition 1 Abstract transition are expressions of the form p : H &< B where p € [0,1],
and H, B and 0 are atoms. All variables are implicitly assumed to be universally quantified,
i.e., the scope of variables is a single abstract transition.

The atoms H and B represent abstract states and 0 represents an abstract output symbol.
The semantics of an abstract transition p : H <2 Bis that if one is in one of the states in
Gx(B), say Bfg, one will go with probability p to one of the states in Gx(H0g), say HOg0y,
while emitting a symbol in Gx(00g0y), say 00g046;.

Example 2 Consider ¢ = 0.8 : xdvi(File,dvi) Qatex(file) latex(File, tex). In general
H, B and 0 do not have to share the same predicate. This is only due to the na-
ture of our running example. Assume now that we are in state latex(hmml,tex), i.e.
0p = {File/hmm1}. Then c specifies that there is a probability of 0.8 that the next state
will be in Gy, (xdvi(hmml, dvi)) = {xdvi(hmmi,dvi)} (i.e., the probability is 0.8 that the
next state will be xdvi(hmmi,dvi)), and that one of the symbols in Gy, (latex(hmml)) =
{latex(hmm1)} (i.e., latex(hmml)) will be emitted. Abstract states might also be more
complex such as latex(file(FileStem,FileExtension), User)

The above example was simple because 0y and 6y were both empty. The situation be-
comes more complicated when these substitutions are not empty. Then, the resulting

state and output symbol sets are not necessarily singletons. Indeed, for the transi-

tion 0.8 : emacs(File’,dvi) Latex(File) latex(File, tex) the resulting state set would be

Gy, (emacs(File’,dvi)) = {emacs(hmml,tex), emacs(lohmml,tex)}. Thus the transition
is non-deterministic because there are two possible resulting states. We therefore need a
mechanism to assign probabilities to these possible alternatives.

Definition 2 The selection distribution p specifies for each abstract state and observation
symbol A over the alphabet ¥ a distribution u(- | A) over Gx(A).

To continue our example, let p(emacs(hmml,tex) | emacs(File’,tex)) = 0.4 and
p(emacs(lohmml, tex) | emacs(File’,tex)) = 0.6. Then there would be a probabil-
ity of 0.4 x 0.8 = 0.32 that the next state is emacs(hmml,tex) and of 0.48 that it is
emacs(lohmml, tex).

427

KERSTING, DE RAEDT, & RAIKO

Taking p into account, the meaning of an abstract transition p : H & B can be sum-
marized as follows. Let Bfg € Gx(B), HOpfy € Gx(HOp) and 00pbyby € Gx(06050y). Then the
model makes a transition from state Bfg to Hfgfy and emits symbol 00g0y0y with probability

p- M(HQBHH‘ HQB) 'M<09B6H00| OQBHH). (1)

To represent pu, any probabilistic representation can - in principle - be used, e.g. a Bayesian
network or a Markov chain. Throughout the remainder of the present paper, however,
we will use a naive Bayes approach. More precisely, we associate to each argument of a
relation r/m a finite domain Df/ " of constants and a probability distribution Pir/ " over

Df/m. Let vars(A) = {Vy,...,V;} be the variables occurring in an atom A over r/m, and

let 0 = {Vi/s1,...V;/s;} be a substitution grounding A. Each V; is then considered a

random variable over the domain D x/m g (V) of the argument arg(V;) it appears first in. Then,

w(Ao | A) = HJ 1 Parr/gn;)(j). E.g. p(emacs(hmmil, tex) | emacs(F,E)), is computed as the

product of PemaCS/Q(hmml) and P;macs/Q(tex).
Thus far the semantics of a single abstract transition has been defined. A LOHMM
usually consists of multiple abstract transitions and this creates a further complication.

Fil
Example 3 Consider 0.8 : latex(File, tex) (Smace(File) emacs(File, tex) and
L emacs(File) .
0.4 : dvi(File) «————— emacs(File,User). These two abstract transitions make

conflicting statements about the state resulting from emacs(hmml,tex). Indeed, according
to the first transition, the probability is 0.8 that the resulting state is latex(hmml, tex) and
according to the second one it assigns 0.4 to xdvi(hmml).

There are essentially two ways to deal with this situation. On the one hand, one might want
to combine and normalize the two transitions and assign a probability of % respectively % .
On the other hand, one might want to have only one rule firing. In this paper, we chose the
latter option because it allows us to consider transitions more independently, it simplifies
learning, and it yields locally interpretable models. We employ the subsumption (or gen-
erality) relation among the B-parts of the two abstract transitions. Indeed, the B-part of
the first transition B; = emacs(File, tex) is more specific than that of the second transi-
tion By = emacs(File, User) because there exists a substitution § = {User/tex} such that
Byf = By, i.e., By subsumes By. Therefore Gy, (B1) C Gy, (B2) and the first transition can
be regarded as more informative than the second one. It should therefore be preferred over
the second one when starting from emacs(hmmi, tex). We will also say that the first tran-
sition is more specific than the second one. Remark that this generality relation imposes a
partial order on the set of all transitions. These considerations lead to the strategy of only
considering the maximally specific transitions that apply to a state in order to determine
the successor states. This implements a kind of exception handling or default reasoning
and is akin to Katz’s (1987) back-off n-gram models. In back-off n-gram models, the most
detailed model that is deemed to provide sufficiently reliable information about the current
context is used. That is, if one encounters an n-gram that is not sufficiently reliable, then
back-off to use an (n — 1)-gram; if that is not reliable either then back-off to level n — 2, etc.

The conflict resolution strategy will work properly provided that the bodies of all max-
imally specific transitions (matching a given state) represent the same abstract state. This

428

LogGicAL HIDDEN MARKOV MODELS

1s: 0.4 o

OV
emacs(F) : 0.
¢4>

O
emacs(F) : 0.6

latex(F) : 0.6

Figure 1: A logical hidden Markov model.

can be enforced by requiring the generality relation over the B-parts to be closed under the
greatest lower bound (glb) for each predicate, i.e., for each pair By, By of bodies, such that
0 = mgu(B1,B2) exists, there is another body B (called lower bound) which subsumes B;6
(therefore also Byfl) and is subsumed by Bj, By, and if there is any other lower bound then
it is subsumed by B. E.g., if the body of the second abstract transition in our example is
emacs(hmml, User) then the set of abstract transitions would not be closed under glb.

Finally, in order to specify a prior distribution over states, we assume a finite set T of
clauses of the form p : H + start using a distinguished start symbol such that p is the
probability of the LOHMM to start in a state of Gx(H).

By now we are able to formally define logical hidden Markov models.

Definition 3 A logical hidden Markov model (LOHMM) is a tuple (3, u, A, Y) where ¥ is
a logical alphabet, p a selection probability over 3, A is a set of abstract transitions, and T
is a set of abstract transitions encoding a prior distribution. Let B be the set of all atoms
that occur as body parts of transitions in A. We assume B to be closed under glb and require

VBE B : Zp:HABeAp =1.0 (2)

and that the probabilities p of clauses in T sum up to 1.0 .

HMMs are a special cases of LOHMMs in which ¥ contains only relation symbols of arity
zero and the selection probability is irrelevant. Thus, LOHMMs directly generalize HMMs.

LOHMMs can also be represented graphically. Figure 1 contains an example. The under-
lying language Yo consists of 1 together with the constant symbol other which denotes a
user that does not employ ITEX. In this graphical notation, nodes represent abstract states
and black tipped arrows denote abstract transitions. White tipped arrows are used to repre-
sent meta knowledge. More precisely, white tipped, dashed arrows represent the generality or
subsumption ordering between abstract states. If we follow a transition to an abstract state
with an outgoing white tipped, dotted arrow then this dotted arrow will always be followed.
Dotted arrows are needed because the same abstract state can occur under different cir-

latex(Fil
cumstances. Consider the transition p : latex(File’, User’) Levex(File) latex(File,User).

429

KERSTING, DE RAEDT, & RAIKO

06
em(f1)

10
start>E em(F,U) iem(f17t)~>em(F,t) ——" la(F,t) —=1la(f1,t)

abstract state state abstract state abstract state state 0.6
04 07 la(f1)

1s K em(f
~—1s(t)— 1s(U’) <—(2)em(fg,o)<'i em(F,U) < em(F/,U)

state abstract state state abstract state abstract state

Figure 2: Generating the observation sequence emacs(hmml), latex(hmm1),
emacs(lohmml),1s by the LOHMM in Figure 1. The command emacs is
abbreviated by em, £1 denotes the filename hmm1, f5 represents lohmm1, t denotes
a tex user, and o some other user. White tipped solid arrows indicate selections.

Even though the atoms in the head and body of the transition are syntactically different they
represent the same abstract state. To accurately represent the meaning of this transition we

cannot use a black tipped arrow from latex(File,User) to itself, because this would actu-

- . latex(File) .
ally represent the abstract transition p : latex(File,User) «———— latex(File, User).

Furthermore, the graphical representation clarifies that LOHMMSs are generative mod-
els. Let us explain how the model in Figure 1 would generate the observation sequence
emacs(hmm1), latex(hmm1), emacs(lohmml),1s (cf. Figure 2). It chooses an initial ab-
stract state, say emacs(F,U). Since both variables F and U are uninstantiated, the model
samples the state emacs(hmml,tex) from Gy, using pu. As indicated by the dashed ar-
row, emacs(F, tex) is more specific than emacs(F,U). Moreover, emacs(hmm1, tex) matches
emacs(F,tex). Thus, the model enters emacs(F,tex). Since the value of F was already
instantiated in the previous abstract state, emacs(hmmil, tex) is sampled with probability
1.0. Now, the model goes over to latex(F, tex), emitting emacs(hmm1) because the abstract
observation emacs(F) is already fully instantiated. Again, since F' was already instantiated,
latex(hmml, tex) is sampled with probability 1.0. Next, we move on to emacs(F’,U), emit-
ting latex(hmml). Variables F/ and U in emacs(F’,U) were not yet bound; so, values, say
lohmml and others, are sampled from p. The dotted arrow brings us back to emacs(F,U).
Because variables are implicitly universally quantified in abstract transitions, the scope of
variables is restricted to single abstract transitions. In turn, F' is treated as a distinct,
new variable, and is automatically unified with F’, which is bound to lohmm1. In contrast,
variable U is already instantiated. Emitting emacs(lohmml), the model makes a transition
to 1s(U’). Assume that it samples tex for U. Then, it remains in 1s(U’) with probability
0.4 . Considering all possible samples, allows one to prove the following theorem.

Theorem 1 (Semantics) A logical hidden Markov model over a language ¥ defines a
discrete time stochastic process, i.e., a sequence of random variables (Xy)i—12 .., where the
domain of X; is hb(X) x hb(X). The induced probability measure over the Cartesian product
®, hb(X) x hb(X) ezists and is unique for each t > 0 and in the limit t — oo.

Before concluding this section, let us address some design choices underlying LOHMMs.
First, LOHMMSs have been introduced as Mealy machines, i.e., output symbols are

associated with transitions. Mealy machines fit our logical setting quite intuitively as they

directly encode the conditional probability P(0,S’|S) of making a transition from S to S’

430

LogGicAL HIDDEN MARKOV MODELS

emitting an observation 0. Logical hidden Markov models define this distribution as

P(0,5'ls) = Z v P - (S [Hog) - pu(0|0'ogon)

p:H<——B

where the sum runs over all abstract transitions H & B such that B is most specific for S.
Observations correspond to (partially) observed proof steps and, hence, provide information
shared among heads and bodies of abstract transitions. In contrast, HMMs are usually
introduced as Moore machines. Here, output symbols are associated with states implicitly
assuming 0 and 8’ to be independent. Thus, P(0,8’ | 8) factorizes into P(0 | S) - P(S’ | 8).
This makes it more difficult to observe information shared among heads and bodies. In
turn, Moore-LOHMMs are less intuitive and harder to understand. For a more detailed
discussion of the issue, we refer to Appendix B where we essentially show that — as in the
propositional case — Mealy- and Moore-LOHMMSs are equivalent.

Second, the naive Bayes approach for the selection distribution reduces the model com-
plexity at the expense of a lower expressivity: functors are neglected and variables are
treated independently. Adapting more expressive approaches is an interesting future line of
research. For instance, Bayesian networks allow one to represent factorial HMMs (Ghahra-
mani & Jordan, 1997). Factorial HMMs can be viewed as LOHMMs, where the hidden
states are summarized by a 2 - k-ary abstract state. The first k& arguments encode the k
state variables, and the last k arguments serve as a memory of the previous joint state. u
of the i-th argument is conditioned on the ¢ 4+ k-th argument. Markov chains allow one to
sample compound terms of finite depth such as s(s(s(0))) and to model e.g. misspelled
filenames. This is akin to generalized HMMs (Kulp, Haussler, Reese, & Eeckman, 1996), in
which each node may output a finite sequence of symbols rather than a single symbol.

Finally, LOHMMSs — as introduced in the present paper — specify a probability distri-
bution over all sequences of a given length. Reconsider the LOHMM in Figure 1. Al-
ready the probabilities of all observation sequences of length 1, i.e., 1s, emacs(hmml), and
emacs(lohmm1)) sum up to 1. More precisely, for each ¢ > 0 it holds that >, P(X; =
x1,...,Xy =ax¢) = 1.0 . In order to model a distribution over sequences of variable length,
Ley D02 (X1 =21,..., Xy = 2¢) = 1.0 we may add a distinguished end state.
The end state is absorbing in that whenever the model makes a transition into this state,
it terminates the observation sequence generated.

4. Three Inference Problems for LOHMMs

As for HMMs, three inference problems are of interest. Let M be a LOHMM and let
0 =041,09,...,0p, T > 0, be a finite sequence of ground observations:

(1) Evaluation: Determine the probability P(O | M) that sequence O was generated by
the model M.

(2) Most likely state sequence: Determine the hidden state sequence S* that has most
likely produced the observation sequence O, i.e. S* = argmaxs P(S| O, M) .

(3) Parameter estimation: Given a set O = {O1,..., 0y} of observation sequences, de-
termine the most likely parameters A* for the abstract transitions and the selection
distribution of M, i.e. A* = argmaxy P(O | A) .

431

KERSTING, DE RAEDT, & RAIKO

abstract selection abstract selection abstract selection

transition transition transition
| |
- S(O)\Ns(o C)
|s(u'< Is(t)>< Is()
Is(t
/ Is(t U S &u)
start 2.0
/em(fl' em(e 72O A e Uy
em(F,U)\§ ’ L>< ’
emf EMF0) Semaif [em(F.0)
latex(f1,ty= latex(fL,t) latex(f2,t)
./ \ / \ /
So S1 So

Figure 3: Trellis induced by the LOHMM in Figure 1. The sets of reachable states at time
0,1,... are denoted by Sg, S1,... In contrast with HMMs, there is an additional
layer where the states are sampled from abstract states.

We will now address each of these problems in turn by upgrading the existing solutions for
HMMs. This will be realized by computing a grounded trellis as in Figure 3. The possible
ground successor states of any given state are computed by first selecting the applicable
abstract transitions and then applying the selection probabilities (while taking into account
the substitutions) to ground the resulting states. This two-step factorization is coalesced
into one step for HMMs.

To evaluate O, consider the probability of the partial observation sequence 01, 0o, ..., 0;
and (ground) state S at time ¢, 0 < ¢ < T, given the model M = (3, u, A, T)

Oét<S) = P(Ol,OQ,...,Ot,qt:S|M)

where ¢; = S denotes that the system is in state S at time ¢. As for HMMSs, a(S) can be com-
puted using a dynamic programming approach. For ¢ = 0, we set a(S) = P(qo =S| M),
i.e., ap(8) is the probability of starting in state S and, for ¢ > 0, we compute a4(S) based
on ay_1(8):

1: Sp:={start} /* initialize the set of reachable states™/

2: fort=1,2,...,T do

3: Sy =10 /* initialize the set of reachable states at clock t*/

4: foreach S € 5;_1 do

5: foreach maximally specific p : H L BeAUT st o = mgu(S,B) exists do
6: foreach S’ = Hopoy € Gy (Hog) s.t. 0;—; unifies with Oogoy do

7: ifS ¢S5, then

8: St = St U {S/}

9: a(8") :=0.0

10: ar(8') == ay(8') + a—1(S) -p- |u(S' |Hog) - w(04—1 | Oopon)

11: return P(O | M) =} 5. g ar(S)

432

LogGicAL HIDDEN MARKOV MODELS

where we assume for the sake of simplicity 0 = start for each abstract transition p : H «
start € Y. Furthermore, the boxed parts specify all the differences to the HMM formula:
unification and p are taken into account.

Clearly, as for HMMs P(O | M) = } Jscg. ar(S) holds. The computational complexity
of this forward procedure is O(T - s- (|B|+0-g)) = O(T - s*) where s = max;—12,. 1 |St ,
o0 is the maximal number of outgoing abstract transitions with regard to an abstract state,
and g is the maximal number of ground instances of an abstract state. In a completely

analogous manner, one can devise a backward procedure to compute

Be(S) = P(O¢41,0¢42,...,07 | ¢ =S, M) .

This will be useful for solving Problem (3).

Having a forward procedure, it is straightforward to adapt the Viterbi algorithm as a
solution to Problem (2), i.e., for computing the most likely state sequence. Let §,(S)
denote the highest probability along a single path at time ¢ which accounts for the first ¢
observations and ends in state S, i.e.,

515(3): max P(So,Sl,...,Stfl,St:S,Ol,...,ot,ﬂM).
80,S1,-8t—1
The procedure for finding the most likely state sequence basically follows the forward pro-
cedure. Instead of summing over all ground transition probabilities in line 10, we maximize
over them. More precisely, we proceed as follows:

1:Sp := {start} /* initialize the set of reachable states*/

2: fort=1,2,...,T do

3 Sy =10 /* initialize the set of reachable states at clock t*/
4 foreach S € S;_; do

5: foreach maximally specific p : H L BeEAUT st 0= mgu(8, B) exists do
6: foreach S’ = Hogoy € Gyx(Hop) s.t. 0;—1 unifies with Oogoy do

T if 8’ ¢ S; then

8 St = St U {S,}

9: 0:(8,8) := 0.0

10: 0¢(8,8) :=64(8,8") + 6:—1(S) - p - (S’ |Hog) - 1(04—1 | Oopoy)
11: | foreach S’ € S; do

12: 6t(S’) = IMaXges, (515(8, S,)

13: (8') = argmaxses, , ¥i(S,S')

Here, 64(8,8’) stores the probability of making a transition from S to S’ and ¢(S’) (with
1(S) = start for all states S) keeps track of the state maximizing the probability along
a single path at time ¢ which accounts for the first ¢ observations and ends in state S’. The
most likely hidden state sequence S* can now be computed as

Sh = arg max 9§ S
T+1 gseST+1 T7+1(8)
and 8 = (Sf;q) fort=T,T—-1,...,1.

One can also consider problem (2) on a more abstract level. Instead of considering all
contributions of different abstract transitions T to a single ground transition from state S

433

KERSTING, DE RAEDT, & RAIKO

to state S’ in line 10, one might also consider the most likely abstract transition only. This
is realized by replacing line 10 in the forward procedure with

a¢(8') := max(a(8'), az—1(8) - p- (S’ | Hog) - p(0;—1 | Oopoy)) -

This solves the problem of finding the (2') most likely state and abstract transition
sequence:

Determine the sequence of states and abstract transitions GT* =
S0, To,S1,T1,82, .. .,S1, T1, St+1 Where there exists substitutions 6; with S; 1 «—
S; = T;6; that has most likely produced the observation sequence O, i.e.
GT* = argmaxget P(GT | O, M) .

Thus, logical hidden Markov models also pose new types of inference problems.

For parameter estimation, we have to estimate the maximum likelihood transition
probabilities and selection distributions. To estimate the former, we upgrade the well-known
Baum-Welch algorithm (Baum, 1972) for estimating the maximum likelihood parameters
of HMMs and probabilistic context-free grammars.

For HMMs, the Baum-Welch algorithm computes the improved estimate p of the tran-

sition probability of some (ground) transition T =p : H L by taking the ratio

§(T)

o’
H/ «—BeAUY

> €m) ¥
between the expected number £(T) of times of making the transitions T at any time given
the model M and an observation sequence O, and the total number of times a transitions
is made from B at any time given M and O.

Basically the same applies when T is an abstract transition. However, we have to be
a little bit more careful because we have no direct access to £(T). Let &(gcl,T) be the

probability of following the abstract transition T via its ground instance gcl = p : GH &2 cB
at time t, i.e.,

&i(gel, T) = at(GB;('g '| f\%l(GH) | 11(GH | Hog) - 11(0;_1 | Do)

(4)

where og, oy are as in the forward procedure (see above) and P(O | M) is the probability
that the model generated the sequence O. Again, the boxed terms constitute the main
difference to the corresponding HMM formula. In order to apply Equation (3) to compute
improved estimates of probabilities associated with abstract transitions, we set

T T
&(T) = th(T) = Z th(gCLT)
t=1 t=1 gcl

where the inner sum runs over all ground instances of T.
This leads to the following re-estimation method, where we assume that the sets S; of
reachable states are reused from the computations of the a- and S-values:

434

LogGicAL HIDDEN MARKOV MODELS

/* initialization of expected counts */
foreachTe AUY do
’ E(T) :=m /* or 0 if not using pseudocounts */
/* compute expected counts */
fort=0,1,...,7 do
foreach S € S; do

foreach max. specific T=p:H<>B€ AUTY s.t. op = mgu(S, B) exists do

foreach S’ = Hopoy € Gy (Hop) s.t. S’ € Sy A mgu(0y, 0ogoy) exists do
E(T) = £(T) + a2(S) -p - Froa(S)/ P(O | M) [alS | Hom) - l0r 1 | Omor)

Here, equation (4) can be found in line 9. In line 3, we set pseudocounts as small sample-
size regularizers. Other methods to avoid a biased underestimate of probabilities and even
zero probabilities such as m-estimates (see e.g., Mitchell, 1997) can be easily adapted.

To estimate the selection probabilities, recall that p follows a naive Bayes scheme. There-
fore, the estimated probability for a domain element d € D for some domain D is the ratio
between the number of times d is selected and the number of times any d’ € D is selected.
The procedure for computing the £-values can thus be reused.

Altogether, the Baum-Welch algorithm works as follows: While not converged, (1) es-
timate the abstract transition probabilities, and (2) the selection probabilities. Since it is
an instance of the EM algorithm, it increases the likelihood of the data with every update,
and according to McLachlan and Krishnan (1997), it is guaranteed to reach a stationary
point. All standard techniques to overcome limitations of EM algorithms are applicable.
The computational complexity (per iteration) is O(k - (o +d)) = O(k - T - s*> + k - d) where
k is the number of sequences, « is the complexity of computing the a-values (see above),
and d is the sum over the sizes of domains associated to predicates. Recently, Kersting
and Raiko (2005) combined the Baum-Welch algorithm with structure search for model
selection of logical hidden Markov models using inductive logic programming (Muggleton
& De Raedt, 1994) refinement operators. The refinement operators account for different
abstraction levels which have to be explored.

5. Advantages of LOHMMs

In this section, we will investigate the benefits of LOHMMs: (1) LOHMMs are strictly
more expressive than HMMs, and (2), using abstraction, logical variables and unification
can be beneficial. More specifically, with (2), we will show that

(B1) LOHMMs can be — by design — smaller than their propositional instantiations, and
(B2) unification can yield better log-likelihood estimates.

5.1 On the Expressivity of LOHMMs

Whereas HMMs specify probability distributions over regular languages, LOHMMs specify
probability distributions over more expressive languages.

435

KERSTING, DE RAEDT, & RAIKO

Theorem 2 For any (consistent) probabilistic context-free grammar (PCFG) G for some
language L there exists a LOHMM M s.t. Pg(w) = Py(w) for all w € L.

The proof (see Appendix C) makes use of abstract states of unbounded ’depth’. More
precisely, functors are used to implement a stack. Without functors, LOHMMSs cannot
encode PCFGs and, because the Herbrand base is finite, it can be proven that there always
exists an equivalent HMM.

Furthermore, if functors are allowed, LOHMMs are strictly more expressive than PCFGs.
They can specify probability distributions over some languages that are context-sensitive:

1.0: stack(s(0),s(0)) <« start

0.8: stack(s(X),s(X)) < stack(X, X)

0.2: unstack(s(X),s(X)) < stack(X,X)

1.0: unstack(X,Y) Ll unstack(s(X),Y)
1.0: unstack(s(0),Y) < unstack(s(0),s(Y))
1.0: end &2 unstack(s(0),s(0))

The LOHMM defines a distribution over {a"0"c¢™ | n > 0}.

Finally, the use of logical variables also enables one to deal with identifiers. Identifiers
are special types of constants that denote objects. Indeed, recall the UNIX command
sequence emacs lohmms.tex, 1s, latex lohmms.tex, ... from the introduction. The filename
lohmms.tex is an identifier. Usually, the specific identifiers do not matter but rather the
fact that the same object occurs multiple times in the sequence. LOHMMSs can easily deal
with identifiers by setting the selection probability u to a constant for the arguments in
which identifiers can occur. Unification then takes care of the necessary variable bindings.

5.2 Benefits of Abstraction through Variables and Unification

Reconsider the domain of UNIX command sequences. UNIX users oftenly reuse a newly cre-
ated directory in subsequent commands such as in mkdir(vt100x), cd(vt100x), 1s(vt100x) .
Unification should allow us to elegantly employ this information because it allows us to spec-
ify that, after observing the created directory, the model makes a transition into a state
where the newly created directory is used:

p1 : cd(Dir,mkdir) < mkdir(Dir,com) and ps:cd(.,mkdir) < mkdir(Dir,com)

If the first transition is followed, the cd command will move to the newly created directory;
if the second transition is followed, it is not specified which directory cd will move to. Thus,
the LOHMM captures the reuse of created directories as an argument of future commands.
Moreover, the LOHMM encodes the simplest possible case to show the benefits of unifica-
tion. At any time, the observation sequence uniquely determines the state sequence, and
functors are not used. Therefore, we left out the abstract output symbols associated with
abstract transitions. In total, the LOHMM U, modelling the reuse of directories, consists
of 542 parameters only but still covers more than 451000 (ground) states, see Appendix D
for the complete model. The compression in the number of parameters supports (B1).

To empirically investigate the benefits of unification, we compare U with the variant N
of U where no variables are shared, i.e., no unification is used such that for instance the

436

LogGicAL HIDDEN MARKOV MODELS

first transition above is not allowed, see Appendix D. N has 164 parameters less than U.
We computed the following zero-one win function

#(0) = {1 if [log Py(O) — log Py (0)] > 0

0 otherwise

leave-one-out cross-validated on UNIX shell logs collected by Greenberg (1988). Overall,
the data consists of 168 users of four groups: computer scientists, nonprogrammers, novices
and others. About 300000 commands have been logged with an average of 110 sessions
per user. We present here results for a subset of the data. We considered all computer
scientist sessions in which at least a single mkdir command appears. These yield 283 logical
sequences over in total 3286 ground atoms. The LOO win was 81.63%. Other LOO statistics
are also in favor of U:

training test
log P(O) | log gx%g% log P(O) | log sz((gg
U | —11361.0 —42.8
N | —13157.0 1795.3 -50.7 791

Thus, although U has 164 parameters more than N, it shows a better generalization per-
formance. This result supports (B2). A pattern often found in U was !

0.15 : cd(Dir,mkdir) «— mkdir(Dir,com) and 0.08: cd(_,mkdir) < mkdir(Dir, com)
favoring changing to the directory just made. This knowledge cannot be captured in N
0.25: cd(_,mkdir) <« mkdir(Dir,com).

The results clearly show that abstraction through variables and unification can be beneficial
for some applications, i.e., (B1) and (B2) hold.

6. Real World Applications

Our intentions here are to investigate whether LOHMMSs can be applied to real world
domains. More precisely, we will investigate whether benefits (B1) and (B2) can also be
exploited in real world application domains. Additionally, we will investigate whether

(B3) LOHMMs are competitive with ILP algorithms that can also utilize unification and
abstraction through variables, and

(B4) LOHMMs can handle tree-structured data similar to PCFGs.

To this aim, we conducted experiments on two bioinformatics application domains: protein
fold recognition (Kersting, Raiko, Kramer, & De Raedt, 2003) and mRNA signal structure
detection (Horvath, Wrobel, & Bohnebeck, 2001). Both application domains are multiclass
problems with five different classes each.

1. The sum of probabilities is not the same (0.15+ 0.08 = 0.23 # 0.25) because of the use of pseudo counts
and because of the subliminal non-determinism (w.r.t. abstract states) in U, i.e., in case that the first
transition fires, the second one also fires.

437

KERSTING, DE RAEDT, & RAIKO

6.1 Methodology

In order to tackle the multiclass problem with LOHMMSs, we followed a plug-in estimate
approach. Let {c1,¢a,..., ¢k} be the set of possible classes. Given a finite set of training
examples {(z;,yi)}my € X x {c1,¢2,...,¢n}, one tries to find f: X — {c1,¢2,..., ¢k}
f(z)=arg max P(x|M,\))-P(c). (5)
ce{c1,c2,..5Ck }
with low approximation error on the training data as well as on unseen examples. In
Equation (5), M denotes the model structure which is the same for all classes, A} denotes
the maximum likelihood parameters of M for class ¢ estimated on the training examples
with y; = ¢ only, and P(c) is the prior class distribution.

We implemented the Baum-Welch algorithm (with pseudocounts m, see line 3) for maxi-
mum likelihood parameter estimation using the Prolog system Yap-4.4.4. In all experiments,
we set m = 1 and let the Baum-Welch algorithm stop if the change in log-likelihood was
less than 0.1 from one iteration to the next. The experiments were ran on a Pentium-IV
3.2 GHz Linux machine.

6.2 Protein Fold Recognition

Protein fold recognition is concerned with how proteins fold in nature, i.e., their three-
dimensional structures. This is an important problem as the biological functions of proteins
depend on the way they fold. A common approach is to use database searches to find pro-
teins (of known fold) similar to a newly discovered protein (of unknown fold). To facilitate
protein fold recognition, several expert-based classification schemes of proteins have been
developed that group the current set of known protein structures according to the similarity
of their folds. For instance, the structural classification of proteins (Hubbard, Murzin, Bren-
ner, & Chotia, 1997) (SCOP) database hierarchically organizes proteins according to their
structures and evolutionary origin. From a machine learning perspective, SCOP induces a
classification problem: given a protein of unknown fold, assign it to the best matching group
of the classification scheme. This protein fold classification problem has been investigated
by Turcotte, Muggleton, and Sternberg (2001) based on the inductive logic programming
(ILP) system PROGOL and by Kersting et al. (2003) based on LOHMMs.

The secondary structure of protein domains? can elegantly be represented as logical se-
quences. For example, the secondary structure of the Ribosomal protein L4 is represented as

st(null,2),he(right, alpha, 6),st(plus,2),he(right, alpha, 4), st(plus,2),
he(right, alpha,4), st(plus, 3),he(right,alpha,4), st(plus, 1), he(hright, alpha, 6)

Helices of a certain type, orientation and length he(HelizType, HelixOrientation, Length),
and strands of a certain orientation and length st(StrandOrientation, Length) are atoms over
logical predicates. The application of traditional HMMs to such sequences requires one to
either ignore the structure of helices and strands, which results in a loss of information, or to
take all possible combinations (of arguments such as orientation and length) into account,
which leads to a combinatorial explosion in the number of parameters

2. A domain can be viewed as a sub-section of a protein which appears in a number of distantly related
proteins and which can fold independently of the rest of the protein.

438

LogGicAL HIDDEN MARKOV MODELS

‘

Block B of length 3 Block s(B) of length 2
Dynamics within block Dynamics within block
block(B, s(P)) block(s(B), s(P))
L2 I Vs
b1ock(a(8) P
) <) AN
: Tr\ausition to next block : Trénsition to next block

A
: block(B, s(s(s(0)))) : block(s(B), s(0))

Figure 4: Scheme of a left-to-right LOHMM block model.

The results reported by Kersting et al. (2003) indicate that LOHMMs are well-suited
for protein fold classification: the number of parameters of a LOHMM can by an order of
magnitude be smaller than the number of a corresponding HMM (120 versus approximately
62000) and the generalization performance, a 74% accuracy, is comparable to Turcotte
et al.’s (2001) result based on the ILP system Progol, a 75% accuracy. Kersting et al.
(2003), however, do not cross-validate their results nor investigate — as it is common in
bioinformatics — the impact of primary sequence similarity on the classification accuracy. For
instance, the two most commonly requested ASTRAL subsets are the subset of sequences
with less than 95% identity to each other (95 cut) and with less than 40% identity to each
other (40 cut). Motivated by this, we conducted the following new experiments.

The data consists of logical sequences of the secondary structure of protein domains. As
in the work of Kersting et al. (2003), the task is to predict one of the five most populated
SCOP folds of alpha and beta proteins (a/b): TIM beta/alpha-barrel (fold 1), NAD(P)-
binding Rossmann-fold domains (fold 2), Ribosomal protein L4 (fold 23), Cysteine hydrolase
(fold 37), and Phosphotyrosine protein phosphatases I-like (fold 55). The class of a/b
proteins consists of proteins with mainly parallel beta sheets (beta-alpha-beta units). The
data have been extracted automatically from the ASTRAL dataset version 1.65 (Chandonia,
Hon, Walker, Lo Conte, P.Koehl, & Brenner, 2004) for the 95 cut and for the 40 cut. As
in the work of Kersting et al. (2003), we consider strands and helices only, i.e., coils and
isolated strands are discarded. For the 95 cut, this yields 816 logical sequences consisting
of in total 22210 ground atoms. The number of sequences in the classes are listed as 293,
151, 87, 195, and 90. For the 40 cut, this yields 523 logical sequences consisting of in total
14986 ground atoms. The number of sequences in the classes are listed as 182, 100, 66, 122,
and 53.

LOHMM structure: The used LOHMM structure follows a left-to-right block topology,
see Figure 4, to model blocks of consecutive helices (resp. strands). Being in a Block of
some size s, say 3, the model will remain in the same block for s = 3 time steps. A similar
idea has been used to model haplotypes (Koivisto, Perola, Varilo, Hennah, Ekelund, Lukk,
Peltonen, Ukkonen, & Mannila, 2002; Koivisto, Kivioja, Mannila, Rastas, & Ukkonen,
2004). In contrast to common HMM block models (Won, Priigel-Bennett, & Krogh, 2004),

439

KERSTING, DE RAEDT, & RAIKO

the transition parameters are shared within each block and one can ensure that the model
makes a transition to the next state s(Block) only at the end of a block; in our example
after exactly 3 intra-block transitions. Furthermore, there are specific abstract transitions
for all helix types and strand orientations to model the priori distribution, the intra- and
the inter-block transitions. The number of blocks and their sizes were chosen according
to the empirical distribution over sequence lengths in the data so that the beginning and
the ending of protein domains was likely captured in detail. This yield the following block
structure

I e | N (I I R I | | | |

1 2 19 20 27 28 40 41 46 47 61 62 76 77

where the numbers denote the positions within protein domains. Furthermore, note that
the last block gathers all remaining transitions. The blocks themselves are modelled using
hidden abstract states over

he(HelizType, HelizOrientation, Length, Block) and sc(StrandOrientation, Length, Block) .

Here, Length denotes the number of consecutive bases the structure element consists of.
The length was discretized into 10 bins such that the original lengths were uniformally
distributed. In total, the LOHMM has 295 parameters. The corresponding HMM without
parameter sharing has more than 65200 parameters. This clearly confirms (B1).

Results: We performed a 10-fold cross-validation. On the 95 cut dataset, the accuracy was
76% and took approx. 25 minutes per cross-validation iteration; on the 40 cut, the accuracy
was 73% and took approx. 12 minutes per cross-validation iteration. The results validate
Kersting et al.’s (2003) results and, in turn, clearly show that (B3) holds. Moreover, the
novel results on the 40 cut dataset indicate that the similarities detected by the LOHMMs
between the protein domain structures were not accompanied by high sequence similarity.

6.3 mRNA Signal Structure Detection

mRNA sequences consist of bases (guanine, adenine, uracil, cytosine) and fold intramolec-
ularly to form a number of short base-paired stems (Durbin, Eddy, Krogh, & Mitchison,
1998). This base-paired structure is called the secondary structure, cf. Figures 5 and 6. The
secondary structure contains special subsequences called signal structures that are responsi-
ble for special biological functions, such as RNA-protein interactions and cellular transport.
The function of each signal structure class is based on the common characteristic binding
site of all class elements. The elements are not necessarily identical but very similar. They
can vary in topology (tree structure), in size (number of constituting bases), and in base
sequence.

The goal of our experiments was to recognize instances of signal structures classes in
mRNA molecules. The first application of relational learning to recognize the signal struc-
ture class of mRNA molecules was described in the works of Bohnebeck, Horvath, and
Wrobel (1998) and of Horvath et al. (2001), where the relational instance-based learner
RIBL was applied. The dataset 3 we used was similar to the one described by Horvath

3. The dataset is not the same as described in the work by Horvéth et al. (2001) because we could not obtain
the original dataset. We will compare to the smaller data set used by Horvath et al., which consisted of

440

LogGicAL HIDDEN MARKOV MODELS

et al. (2001). It consisted of 93 mRNA secondary structure sequences. More precisely, it was
composed of 15 and 5 SECIS (Selenocysteine Insertion Sequence), 27 IRE (Iron Responsive
Element), 36 TAR (Trans Activating Region) and 10 histone stem loops constituting five
classes.

The secondary structure is composed of different building blocks such as stacking region,
hairpin loops, interior loops etc. In contrast to the secondary structure of proteins that forms
chains, the secondary structure of mRNA forms a tree. As trees can not easily be handled
using HMMs, mRNA secondary structure data is more challenging than that of proteins.
Moreover, Horvath et al. (2001) report that making the tree structure available to RIBL
as background knowledge had an influence on the classification accuracy. More precisely,
using a simple chain representation RIBL achieved a 77.2% leave-one-out cross-validation
(LOO) accuracy whereas using the tree structure as background knowledge RIBL achieved
a 95.4% LOO accuracy.

We followed Horvath et al.’s experimental setup, that is, we adapted their data repre-
sentations to LOHMMSs and compared a chain model with a tree model.

Chain Representation: In the chain representation (see also Figure 5),
signal structures are described by single(TypeSingle, Position, Acid) or
helical(TypeHelical, Position, Acid, Acid). Depending on its type, a structure el-
ement is represented by either single/3 or helical/4. Their first argument
TypeSingle (resp. TypeHelical) specifies the type of the structure element, i.e.,
single,bulge3,bulge5, hairpin (resp. stem). The argument Position is the posi-
tion of the sequence element within the corresponding structure element counted down,
i.e.t, {n'3(0),n'?(0),...,n'(0)}. The maximal position was set to 13 as this was the
maximal position observed in the data. The last argument encodes the observed nucleotide

(pair).

The used LOHMM structure follows again the left-to-right block structure shown in
Figure 4. Its underlying idea is to model blocks of consecutive helical structure ele-
ments. The hidden states are modelled using single(TypeSingle, Position, Acid, Block)
and helical(TypeHelical, Position, Acid, Acid, Block). Being in a Block of consecutive he-
lical (resp. single) structure elements, the model will remain in the Block or transition to a
single element. The transition to a single (resp. helical) element only occurs at Position
n(0). At all other positions n(Position), there were transitions from helical (resp. single)
structure elements to helical (resp. single) structure elements at Position capturing the dy-
namics of the nucleotide pairs (resp. nucleotides) within structure elements. For instance,

66 signal structures and is very close to our data set. On a larger data set (with 400 structures) Horvath
et al. report an error rate of 3.8% .
4. n™(0) is shorthand for the recursive application of the functor n on 0 m times, i.e., for position m.

441

KERSTING, DE RAEDT, & RAIKO

[single(hairpin, n(n(n(0))), a).
helical(stem, n(0), c, g). u single(hairpin, n(n(0)), u).

helical(stem, n(n(0)),c,g). a u single(hairpin, n(0), u).

helical(stem,n(n(n(0))),c, g). —

c—g
. c—g
single(bulge5,n(0), a). c—g
single(bulge5,n(n(0)),a). | [a
single(bulge5, n(n(n(0))), g). a ~
7 single(bulge3,n(0),a).
9 a] (bulge3, n(0), a)

helical(stem, n(0),c, g).

helical(stem,n(n(0)), c, g) .74[c—g

c—g

. a
single(bulge5,n(0),a).| L a a
u—a

helical(stem, n(0), a, a).
helical(stem,n(n(0)),u,a). u—g

helical(stem, n(n(n(0))),u, g). g:g
helical(stem, n(n(n(n(0)))),u, a). U—a
helical(stem, n(n(n(n(n(0))))), c, a). a—u

helical(stem, n(n(n(n(n(n(0)))))),u, a).
helical(stem, n(n(n(n(n(n(n(0))))))), a, u)L

Figure 5: The chain representation of a SECIS signal structure. The ground atoms are
ordered clockwise starting with helical(stem, n(n(n(n(n(n(n(0))))))), a,u) at the
lower left-hand side corner.

the transitions for block n(0) at position n(n(0)) were

Pa:he(stem,n(0),X,Y)

a: he(stem,n(0),X,Y,n(0)) he(stem,n(n(0)),X,Y,n(0)))
b: he(stemn(0),Y,X,n(0)) &L2EreRr@XY o stem n(n(0)),X, Y,n(0)))
¢: he(stem n(0),X, ,n(0)) LeEeEremrOXD o tem n(n(0)),X, Y,n(0)))
d: he(stemn(0), ,Y,n(0)) KFLEEre2OXD p o stem n(n(0)),X,Y,n(0)))
¢: he(stemn(0), , ,n(0)) LeREEmROX y tem n(n(0)),X,Y,n(0)))

In total, there were 5 possible blocks as this was the maximal number of blocks of consecutive
helical structure elements observed in the data. Overall, the LOHMM has 702 parameters.
In contrast, the corresponding HMM has more than 16600 transitions validating (B1).

Results: The LOO test log-likelihood was —63.7, and an EM iteration took on average
26 seconds.
Without the unification-based transitions b-d, i.e., using only the abstract transitions

a: he(stem,n(0),X,Y,n(0)) Ppathe(stem,n(0),X,Y)

e: he(stem,n(0),_,_,n(0))

the model has 506 parameters. The LOO test log-likelihood was —64.21, and an EM iter-
ation took on average 20 seconds. The difference in LOO test log-likelihood is statistically
significant (paired t-test, p = 0.01).

Omitting even transition a, the LOO test log-likelihood dropped to —66.06, and the
average time per EM iteration was 18 seconds. The model has 341 parameters. The
difference in average LOO log-likelihood is statistically significant (paired t-test, p = 0.001).

The results clearly show that unification can yield better LOO test log-likelihoods, i.e.,
(B2) holds.

he(stem,n(n(0)),X, Y,n(0)))

pehelstennlORY) e (stem, n(n(0)),X, Y, n(0))),

442

LogGicAL HIDDEN MARKOV MODELS

nucleotide_pair((c, g)). | [single(s(s(s(s(s(s(0)))))), s(s(s(s(s(0)))))

nucleotide_pair((c, g)). u) [], hairpin, n(n(n(0)))).
nucleotide_pair((c, g)). a u nucleot?de(a).
helical(s(s(s(s(s(0))))),s(s(s(0))), [c], stem, n(n(n(O)))).:f’ c—g nucleot:}de(u).
nucleotide(a). c—g 7nucleot1de(u)_
nucleotide(a). c—g
nucleotide(g). | [a

““g”“‘s(s(“"””’S“(S(‘”>l‘u[i‘ll’iifiiig‘ifﬁ?éi’;ii:: a a | [FimEe(s(a(a(a(a(a(a(0))))))). s(s((0))),
nucleotide_pair((c, g)). 9 [], bulge3, n(0)).

helical(s(s(s(0))),s(0), [c, c, c], stem, n(n(0))). 4[c—g 7nucleotide(a).

nucleotide(a).]
single(s(s(0)), 8(0), [, budges, a(0)) | 1 2 .
nucleotide_pair((a, a)).
nucleotide_pair((u,a)).
nucleotide_pair((u, g)). — u—g /S(O)\
nucleotide_pair((u,a)). s(s(0))s(s(s(0)))
nucleotide_pair((c,a)). FE RN
nucleotide pair((n,a)). U—a s(s(s(s(0))) | s(s(s(s(s(s(s(0)))))))
nucleotide_pair((a,u)).| - a—u s(s(s(s(s(0))))
helical(s(0), 0, [c, c], stem, n(n(n(n(n(n(n(o)))))))).7 .
r002(0, ro0t, [c]). s(s(s(s(s((0)))))

u—a ‘

Figure 6: The tree representation of a SECIS signal structure. (a) The logical sequence,
i.e., the sequence of ground atoms representing the SECIS signal structure. The
ground atoms are ordered clockwise starting with root(0,root, [c]) in the lower
left-hand side corner. (b) The tree formed by the secondary structure elements.

Tree Representation: In the ¢ree representation (see Figure 6 (a)), the idea is to capture
the tree structure formed by the secondary structure elements, see Figure 6 (b). Each
training instance is described as a sequence of ground facts over

root(0, root, # Children),

helical(ID, ParentID, # Children, Type, Size),
nucleotide pair(BasePair),

single(ID, ParentID, # Children, Type, Size),

nucleotide(Base) .

Here, ID and ParentID are natural numbers 0,s(0),s(s(0)),... encoding the child-
parent relation, # Children denotes the number® of children [],[c],[c,c],..., Type is the
type of the structure element such as stem hairpin,..., and Size is a natural number
0,n(0),n(n(0)),... Atoms root(0,root,# Children) are used to root the topology. The
maximal # Children was 9 and the maximal Size was 13 as this was the maximal value
observed in the data.

As trees can not easily be handled using HMMs, we used a LOHMM which basically
encodes a PCFG. Due to Theorem 2, this is possible. The used LOHMM structure can be
found in Appendix E. It processes the mRNA trees in in-order. Unification is only used for
parsing the tree. As for the chain representation, we used a Position argument in the hidden
states to encode the dynamics of nucleotides (nucleotide pairs) within secondary structure

5. Here, we use the Prolog short hand notation [-] for lists. A list either is the constant [] representing the
empty list, or is a compound term with functor ./2 and two arguments, which are respectively the head
and tail of the list. Thus [a, b, ¢] is the compound term .(a, .(b,.(c,[]))).

443

KERSTING, DE RAEDT, & RAIKO

elements. The maximal Position was again 13. In contrast to the chain representation,
nucleotide pairs such as (a,u) are treated as constants. Thus, the argument BasePair
consists of 16 elements.

Results: The LOO test log-likelihood was —55.56. Thus, exploiting the tree structure
yields better probabilistic models. On average, an EM iteration took 14 seconds. Overall,
the result shows that (B4) holds.

Although the Baum-Welch algorithm attempts to maximize a different objective func-
tion, namely the likelihood of the data, it is interesting to compare LOHMMs and RIBL in
terms of classification accuracy.

Classification Accuracy: On the chain representation, the LOO accuracies of all
LOHMMs were 99% (92/93). This is a considerable improvement on RIBL’s 77.2% (51/66)
LOO accuracy for this representation. On the tree representation, the LOHMM also
achieved a LOO accuracy of 99% (92/93). This is comparable to RIBL’s LOO accuracy of
97% (64/66) on this kind of representation.

Thus, already the chain LOHMMs show marked increases in LOO accuracy when com-
pared to RIBL (Horvéath et al., 2001). In order to achieve similar LOO accuracies, Horvath
et al. (2001) had to make the tree structure available to RIBL as background knowledge.
For LOHMMs, this had a significant influence on the LOO test log-likelihood, but not on
the LOO accuracies. This clearly supports (B3). Moreover, according to Horvath et al.,
the mRNA application can also be considered a success in terms of the application domain,
although this was not the primary goal of our experiments. There exist also alternative
parameter estimation techniques and other models, such as covariance models (Eddy &
Durbin, 1994) or pair hidden Markov models (Sakakibara, 2003), that might have been
used as well as a basis for comparison. However, as LOHMMSs employ (inductive) logic pro-
gramming principles, it is appropriate to compare with other systems within this paradigm
such as RIBL.

7. Related Work

LOHMMs combine two different research directions. On the one hand, they are related to
several extensions of HMMs and probabilistic grammars. On the other hand, they are also
related to the recent interest in combining inductive logic programming principles with
probability theory (De Raedt & Kersting, 2003, 2004).

In the first type of approaches, the underlying idea is to upgrade HMMs and probabilistic
grammars to represent more structured state spaces.

Hierarchical HMMs (Fine, Singer, & Tishby, 1998), factorial HMMs (Ghahramani &
Jordan, 1997), and HMMs based on tree automata (Frasconi, Soda, & Vullo, 2002) decom-
pose the state variables into smaller units. In hierarchical HMMs states themselves can be
HMDMs, in factorial HMMs they can be factored into k state variables which depend on one
another only through the observation, and in tree based HMMs the represented probability
distributions are defined over tree structures. The key difference with LOHMMs is that
these approaches do not employ the logical concept of unification. Unification is essential

444

LogGicAL HIDDEN MARKOV MODELS

because it allows us to introduce abstract transitions, which do not consist of more detailed
states. As our experimental evidence shows, sharing information among abstract states by
means of unification can lead to more accurate model estimation. The same holds for re-
lational Markov models (RMMs) (Anderson, Domingos, & Weld, 2002) to which LOHMMs
are most closely related. In RMMs, states can be of different types, with each type described
by a different set of variables. The domain of each variable can be hierarchically structured.
The main differences between LOHMMs and RMMs are that RMMSs do not either support
variable binding nor unification nor hidden states.

The equivalent of HMMs for context-free languages are probabilistic context-free gram-
mars (PCFGs). Like HMMs, they do not consider sequences of logical atoms and do not
employ unification. Nevertheless, there is a formal resemblance between the Baum-Welch
algorithms for LOHMMs and for PCFGs. In case that a LOHMM encodes a PCFG both
algorithms are identical from a theoretical point of view. They re-estimate the parameters
as the ratio of the expected number of times a transition (resp. production) is used and the
expected number of times a transition (resp. production) might have been used. The proof
of Theorem 2 assumes that the PCFG is given in Greibach normal form® (GNF) and uses a
pushdown automaton to parse sentences. For grammars in GNF, pushdown automata are
common for parsing. In contrast, the actual computations of the Baum-Welch algorithm
for PCFGs, the so called Inside-Outside algorithm (Baker, 1979; Lari & Young, 1990), is
usually formulated for grammars in Chomsky normal form”. The Inside-Outside algorithm
can make use of the efficient CYK algorithm (Hopcroft & Ullman, 1979) for parsing strings.

An alternative to learning PCFGs from strings only is to learn from more structured data
such as skeletons, which are derivation trees with the nonterminal nodes removed (Levy &
Joshi, 1978). Skeletons are exactly the set of trees accepted by skeletal tree automata (STA).
Informally, an STA, when given a tree as input, processes the tree bottom up, assigning a
state to each node based on the states of that node’s children. The STA accepts a tree iff
it assigns a final state to the root of the tree. Due to this automata-based characterization
of the skeletons of derivation trees, the learning problem of (P)CFGs can be reduced to
the problem of an STA. In particular, STA techniques have been adapted to learning tree
grammars and (P)CFGs (Sakakibara, 1992; Sakakibara et al., 1994) efficiently.

PCFGs have been extended in several ways. Most closely related to LOHMMs are
unification-based grammars which have been extensively studied in computational linguis-
tics. Examples are (stochastic) attribute-value grammars (Abney, 1997), probabilistic fea-
ture grammars (Goodman, 1997), head-driven phrase structure grammars (Pollard & Sag,
1994), and lexical-functional grammars (Bresnan, 2001). For learning within such frame-
works, methods from undirected graphical models are used; see the work of Johnson (2003)
for a description of some recent work. The key difference to LOHMMs is that only nonter-
minals are replaced with structured, more complex entities. Thus, observation sequences of
flat symbols and not of atoms are modelled. Goodman’s probabilistic feature grammars are
an exception. They treat terminals and nonterminals as vectors of features. No abstraction
is made, i.e., the feature vectors are ground instances, and no unification can be employed.

6. A grammar is in GNF iff all productions are of the form A < aV where A is a variable, a is exactly one
terminal and V is a string of none or more variables.

7. A grammar is in CNF iff every production is of the form A < B, C or A «+ a where A, B and C are variables,
and a is a terminal.

445

KERSTING, DE RAEDT, & RAIKO

mkdir mv 1s cd

vt100x newx vt100x | | vt100x vt100x
news vt100x 8

(a) (b) v£100x v£100x

Figure 7: (a) Each atom in the logical sequence mkdir(vt100x), mv(newk,vt100x),
1s(vt100x), cd(vt100x) forms a tree. The shaded nodes denote shared labels
among the trees. (b) The same sequence represented as a single tree. The pred-
icate con/2 represents the concatenation operator.

Therefore, the number of parameters that needs to be estimated becomes easily very large,
data sparsity is a serious problem. Goodman applied smoothing to overcome the problem.

LOHMMs are generally related to (stochastic) tree automata (see e.g., Car-
rasco, Oncina, and Calera-Rubio, 2001). Reconsider the UNIX command sequence
mkdir(vt100x), mv(news, vt100x), 1s(vt100x), cd(vt100x) . Each atom forms a tree, see
Figure 7 (a), and, indeed, the whole sequence of atoms also forms a (degenerated) tree,
see Figure 7 (b). Tree automata process single trees vertically, e.g., bottom-up. A state in
the automaton is assigned to every node in the tree. The state depends on the node label
and on the states associated to the siblings of the node. They do not focus on sequential
domains. In contrast, LOHMMs are intended for learning in sequential domains. They
process sequences of trees horizontally, i.e., from left to right. Furthermore, unification
is used to share information between consecutive sequence elements. As Figure 7 (b)
illustrates, tree automata can only employ this information when allowing higher-order
transitions, i.e., states depend on their node labels and on the states associated to
predecessors 1,2,... levels down the tree.

In the second type of approaches, most attention has been devoted to developing highly
expressive formalisms, such as e.g. PCUP (Eisele, 1994), PCLP (Riezler, 1998), SLPs (Mug-
gleton, 1996), PLPs (Ngo & Haddawy, 1997), RBNs (Jaeger, 1997), PRMs (Friedman,
Getoor, Koller, & Pfeffer, 1999), PRISM (Sato & Kameya, 2001), BLPs (Kersting & De
Raedt, 2001b, 2001a), and DPRMs (Sanghai, Domingos, & Weld, 2003). LOHMMs can be
seen as an attempt towards downgrading such highly expressive frameworks. Indeed, apply-
ing the main idea underlying LOHMMs to non-regular probabilistic grammar, i.e., replacing
flat symbols with atoms, yields — in principle — stochastic logic programs (Muggleton, 1996).
As a consequence, LOHMMS represent an interesting position on the expressiveness scale.
Whereas they retain most of the essential logical features of the more expressive formalisms,
they seem easier to understand, adapt and learn. This is akin to many contemporary consid-

446

LogGicAL HIDDEN MARKOV MODELS

erations in inductive logic programming (Muggleton & De Raedt, 1994) and multi-relational
data mining (Dzeroski & Lavrag¢, 2001).

8. Conclusions

Logical hidden Markov models, a new formalism for representing probability distributions
over sequences of logical atoms, have been introduced and solutions to the three central
inference problems (evaluation, most likely state sequence and parameter estimation) have
been provided. Experiments have demonstrated that unification can improve generalization
accuracy, that the number of parameters of a LOHMM can be an order of magnitude smaller
than the number of parameters of the corresponding HMM, that the solutions presented
perform well in practice and also that LOHMMs possess several advantages over traditional
HMDMs for applications involving structured sequences.

Acknowledgments The authors thank Andreas Karwath and Johannes Horstmann for
interesting collaborations on the protein data; Ingo Thon for interesting collaboration on
analyzing the UNIX command sequences; and Saul Greenberg for providing the UNIX com-
mand sequence data. The authors would also like to thank the anonymous reviewers for com-
ments which considerably improved the paper. This research was partly supported by the
European Union IST programme under contract numbers IST-2001-33053 and FP6-508861
(Application of Probabilistic Inductive Logic Programming (APrIL) I and IT). Tapani Raiko
was supported by a Marie Curie fellowship at DAISY, HPMT-CT-2001-00251.

Appendix A. Proof of Theorem 1

Let M = (X, u,A,T) be a LOHMM. To show that M specifies a time discrete stochastic
process, i.e., a sequence of random variables (X¢)¢—; 2 ., where the domains of the random
variable X; is hb(X), the Herbrand base over X, we define the immediate state operator
Tyr-operator and the current emission operator Ejr-operator.

Definition 4 (Th-Operator, Epr-Operator) The operators Ty : ohbs _, obbs gnd Eyy -
ohbs _, ohbs e

Ty(I) = {Hopoy | 3p: H < B)e M : Bop € I, Hopoy € Gs(H)}

En(I) ={Ocpogoo | I(p: H L B)e M :Bog €1, Hopog € Gx(H)
and Ocgogoo € Gx(0)}

For each i = 1,2,3,..., the set Tif'({start}) = Tu(Ti({start})) with
Ti,({start}) := T ({start}) specifies the state set at clock ¢ which forms a random vari-
able Y;. The set Ui, ({start}) specifies the possible symbols emitted when transitioning
from i to i + 1. It forms the variable U;. Each Y; (resp. U;) can be extended to a random
variable Z; (resp. U;) over hby:

0.0 : z¢Ti({start})
P(Y; =2z) : otherwise

KERSTING, DE RAEDT, & RAIKO

Figure 8: Discrete time stochastic process induced by a LOHMM. The nodes Z; and U;
represent random variables over hby.

Figure 8 depicts the influence relation among Z; and U;. Using standard arguments from
probability theory and noting that

P(Zit1 = zip1, Ui = u; | Z)

PU; =Ui | Ziy1 = zi41, Zi = zi) = >ouy P(Zi1,ui | Zs)
" i+1, Ug g

and P(ZZ'+1 | Zl) = ZP(ZZ'Jrl,ui ’ Zz)
Us

where the probability distributions are due to equation (1), it is easy to show that Kol-
mogorov’s extension theorem (see Bauer, 1991; Fristedt and Gray, 1997) holds. Thus, M
specifies a unique probability distribution over ®:_,(Z; x U;) for each t > 0 and in the
limit ¢ — oc. O

Appendix B. Moore Representations of LOHMMs

For HMMs, Moore representations, i.e., output symbols are associated with states and Mealy
representations, i.e., output symbols are associated with transitions, are equivalent. In this
appendix, we will investigate to which extend this also holds for LOHMMs.

Let L be a Mealy-LOHMM according to definition 3. In the following, we will derive
the notation of an equivalent LOHMM L’ in Moore representation where there are abstract
transitions and abstract emissions (see below). Each predicate b/n in L is extended to b/n+
1 in L. The domains of the first n arguments are the same as for b/n. The last argument
will store the observation to be emitted. More precisely, for each abstract transition

p:h(wy,...,w1) ove, %) b(ug,...,up)
in L, there is an abstract transition
p:h(wy, ... w0V, .., v)) < b(ug, ..., un,)
in I/. The primes in o(v}, ..., vy) denote that we replaced each free ® variables o(vy, ..., vy)

by some distinguished constant symbol, say #. Due to this, it holds that

puh(wy, ... w1)) = plh(wy, ... w0V, ..., v)))), (6)

8. A variable X € vars(o(vy, ..., vk)) is free iff X & vars(h(wy,...,w1)) Uvars(b(us,...,u)).

448

LogGicAL HIDDEN MARKOV MODELS

and L”’s output distribution can be specified using abstract emissions which are expressions
of the form
1.0 : o(vy, ..., vg) < h(wy,...,wy,0(vh, ..., v})) - (7)

The semantics of an abstract transition in L’ is that being in some
state S} € Gy(b(ug,...,up,-)) the system will make a transition into state
Sii; € Gsr(h(wy,...,wi,0(vy,...,vy))) with probability

p-u(S’t+1 ’h(W17"'7w17O(V/17"'7V{<)) ’US’t) (8)
where oy = mgu(S},b(uy, ..., un,-)). Due to Equation (6), Equation (8) can be rewritten
as

p- (St | h(wi,. .. w1) | og;) -
Due to equation (7), the system will emit the output symbol o447 € Gxy(o(vy,...,vx)) in

state S}, ; with probability

p(ot1 | o(vi, ..., Vk)og Us;)

t+1
where o = mgu(h(wy,...,w1,0(v,...,v})), S, ;). Due to the construction of L', there
exists a triple (S¢,8441,0¢41) in L for each triple (8},8},;,0¢47), t > 0, in L' (and vise
versa). Hence,both LOHMMs assign the same overall transition probability.

L and L' differ only in the way the initialize sequences ((8},S}, ;,0¢41)i=0,2...7 (resp.
((S¢,8¢41,0¢41)1=0,2...7). Whereas L starts in some state So and makes a transition to Sy
emitting 01, the Moore-LOHMM L/ is supposed to emit a symbol O in Sf before making a
transition to S}. We compensate for this using the prior distribution. The existence of the
correct prior distribution for L’ can be seen as follows. In L, there are only finitely many
states reachable at time ¢ = 1, i.e, Pr(go = S) > 0 holds for only a finite set of ground
states S. The probability Pr(go = s) can be computed similar to a1 (S). We set ¢ = 1 in line
6, neglecting the condition on 0;—; in line 10, and dropping (0;—1 | Ocgoy) from line 14.
Completely listing all states S € S; together with Pr(qo = S), i.e., Pp(qo = S) : S < start
constitutes the prior distribution of L.

The argumentation basically followed the approach to transform a Mealy machine into
a Moore machine (see e.g., Hopcroft and Ullman, 1979). Furthermore, the mapping of a
Moore-LOHMM - as introduced in the present section — into a Mealy-LOHMM is straight-
forward.

Appendix C. Proof of Theorem 2

Let T be a terminal alphabet and N a nonterminal alphabet. A probabilistic context-free
grammar (PCFG) G consists of a distinguished start symbol S € N plus a finite set of
productions of the form p : X — a, where X € N, a € (NUT)* and p € [0,1]. For all
X eN,> x_,p=1. APCFG defines a stochastic process with sentential forms as states,
and leftmost rewriting steps as transitions. We denote a single rewriting operation of the
grammar by a single arrow —. If as a result of one ore more rewriting operations we are
able to rewrite § € (N UT)* as a sequence v € (N UT)* of nonterminals and terminals,
then we write § =* . The probability of this rewriting is the product of all probability

449

KERSTING, DE RAEDT, & RAIKO

values associated to productions used in the derivation. We assume G to be consistent, i.e.,
that the sum of all probabilities of derivations S =* 3 such that g € T sum to 1.0.

We can assume that the PCFG G is in Greibach normal form. This follows from Abney
et al.’s (1999) Theorem 6 because G is consistent. Thus, every production P € G is of
the form p : X — aYy...Y, for some n > 0. In order to encode G as a LOHMM M, we
introduce (1) for each non-terminal symbol X in G a constant symbol nX and (2) for each
terminal symbol ¢ in G a constant symbol t. For each production P € G, we include an
abstract transition of the form p : stack([nYy,...,nY,|S]) < stack([nX|S]), if n > 0, and
p: stack(S) < stack([nX|S]), if n = 0. Furthermore, we include 1.0 : stack([s]) + start

and 1.0 : end <= stack([]). It is now straightforward to prove by induction that M and G
are equivalent. O

Appendix D. Logical Hidden Markov Model for Unix Command
Sequences

The LOHMMs described below model UNIX command sequences triggered by mkdir. To
this aim, we transformed the original Greenberg data into a sequence of logical atoms over
com,mkdir(Dir,LastCom), 1s(Dir, LastCom), cd(Dir,Dir,LastCom), cp(Dir,Dir,LastCom)
and mv(Dir,Dir, LastCom). The domain of LastCom was {start, com,mkdir,1s, cd, cp, mv}.
The domain of Dir consisted of all argument entries for mkdir, 1s, cd, cp, mv in the original
dataset. Switches, pipes, etc. were neglected, and paths were made absolute. This yields
212 constants in the domain of Dir. All original commands, which were not mkdir, 1s, cd,
cp, or mv, were represented as com. If mkdir did not appear within 10 time steps before a
command C € {1s,cd, cpmv}, C' was represented as com. Overall, this yields more than
451000 ground states that have to be covered by a Markov model.

The “unification” LOHMM U basically implements a second order Markov model, i.e.,
the probability of making a transition depends upon the current state and the previous
state. It has 542 parameters and the following structure:

com +« start. com <« com.
mkdir(Dir,start) <« start. mkdir(Dir,com) <« com.
end <« com.

Furthermore, for each C € {start, com} there are

mkdir(Dir, com) <« mkdir(Dir,C). cd(-,mkdir) <« mkdir(Dir,C')
mkdir(_,com) <« mkdir(Dir,C). cp(., D1r ,mkdir) <« mkdir(Dir,C).
com <« mkdir(Dir,C'). cp(Dir,_,mkdir) <« mkdir(Dir,C).

end « mkdir(Dir,C). cp(., ,mkdir) <« mkdir(Dir,C).

ls(Dlr mkdir) <« mkdir(Dir,C). mv(_,Dir,mkdir) <« mkdir(Dir,C).
1s(_,mkdir) <« mkdir(Dir,C). mv(Dir,_,mkdir) <« mkdir(Dir,C).
cd(Dir,mkdir) <« mkdir(Dir,C). mv (-, ,mkdir) « mkdir(Dir,C).

450

LogGicAL HIDDEN MARKOV MODELS

together with for each C € {mkdir,1s,cd,cp,mv} and for each Ci € {cd,1s} (resp.
Cy € {cp,mv})

mkdir(Dir,com) <« C(Dir,C'). mkdir(_,com) <« C3(From,To,C)
mkdir(_,com) <« C1(Dir,C) com <« Cy(From,To,C)
com «— (q(Dir,C) end «— C(y(From,To,C).

end < (C1(Dir,0) 1s(From,C3) <« C5(From,To,C).
1s(Dir,Cy) <« C1(Dir,C) ls(To C3) « Cy(From,To,C).
1s(.,C1) « C1(Dir,C) 1s(.,C3) « Cy(From,To,C).
cd(Dir,Cy) « C4(Dir,C). cd(From,C3) <« Cy(From,To,C).
cd(.,C1) « Ci(Dir,C). cd(To, Cg) — (Cy(From, To,C).
cp(-,Dir,Cy) « Cq(Dir,C) cd(.,Cy) <« Cy(From,To,C).
cp(Dir,_,Cy) «— Cy(Dir,C) cp(From, -Cy) «— Cy(From,To,C).
cp(.,.,C1) «— C1(Dir,C) cp(,To,C2) «— C(From,To,C)
mv(_,Dir,Cy) « C(Dir,C) cp(-,-,C2) « Cy(From,To,C).
mv(Dir, ,Cy) « C1(Dir,C). mv From7 ,Cg) — (5(From,To,C).
mv(_,_,C;) «— Ci(Dir,C) mv(_, To,C2) <« Cy(From,To,C).
mv(-, ,C9) <« Co(From, To,C)

Because all states are fully observable, we omitted the output symbols associated with
clauses, and, for the sake of simplicity, we omitted associated probability values.

The “no unification” LOHMM N is the variant of U where no variables were shared
such as

mkdir(-,com) <« cp(From, To,C'). 1s(.cp
com <« cp(From, To,C). cd(.cp

end « cp(From,To,C). cp(.,_,cp

mv (-, -, cp

TT 11

— — — —

Because only transitions are affected, N has 164 parameters less than U, i.e., 378.

Appendix E. Tree-based LOHMM for mRNA Sequences

The LOHMM processes the nodes of mRNA trees in in-order. The structure of the LOHMM
is shown at the end of the section. There are copies of the shaded parts. Terms are
abbreviated using their starting alphanumerical; tr stands for tree, he for helical, si for
single, nuc for nucleotide, and nuc_p for nucleotide_ pair.

The domain of # Children covers the maximal branching factor found in the data, i.e.,
{[c], [e, ¢y -y [c,cycyc,¢c,c,c,cl}; the domain of Type consists of all types occurring in
the data, i.e., {stem,single,bulge3,bulgeb, hairpin}; and for Size, the domain covers
the maximal length of a secondary structure element in the data, i.e., the longest sequence
of consecutive bases respectively base pairs constituting a secondary structure element.
The length was encoded as {n'(0),n2(0),...,n!3(0)} where n™(0) denotes the recursive
application of the functor n m times. For Base and BasePair, the domains were the 4 bases
respectively the 16 base pairs. In total, there are 491 parameters.

451

S9JOULJIdJOY

'819-L64

444
¥)&e ‘sousibur puoyvinduioy) ‘SIRTIUIRIY) ONTe A -0INqII1)Y d1ISeT201S "(L661) 'S ‘Louqy
‘ated-epTgosTonu 10j d-onuU pue ‘epT108TONU 10 onu ‘©TJUTS I0] TS

‘TedTToY I0] oY ‘QUeWSTe 9INQONILS I0J 8S ‘9919 I0J Spue)s 11 {Teorrewnuerdre

Surjress 101y Suisn pojeradiqqe ore suty], -jred popeys oyj jo sordod daIe I T,
OIYM SO[(RLIBA SNOWATOUE S9J0UAP ~ [OQUIAS O], "oINoNIs ININHOT VNHW o1 [, :6 010511

‘POIOJUNOOUS oI AJY) SUWII) UORD SO[CRLIBA MOU ‘JOUIISIP SB POYeaI) pUR pedl aIe

¢

root (0, root, X)

Copies for tr(1d, [c], [Pa — [C]|R]), tr(Id, [c, c], [Pa — [C]|R]), Copies for tr(Id, [c], [Pa — [C1, C2|Cs]|R]), tr(I4, [c, c], [Pa — [C1, C2|Cs][R]),
and tr(14, [c, <, c], [Pa — [c][R]) and tr(14, [c, <, c], [Pa — [c1, C2|Cs] [R])
: tree
H model
! Copies for each type single, bulge3, bulges : : -
|| \Gopies for each length of sequence n(a(0)), a(a(a(6)})sin(ata(a(o)))) ;
: , Se(stem, n(4), Id, B, 5) !
H v H
: Glyaron o mrsl(d), @), el @) 2 Copies for nuic_p(a. g), . . ., nuc_p(u, u) ! | sequence
! 0.25 : nuc(a} | [_/0.0625 : nucp(a, a) i | model
i |
: 1 v . |
sa(nmpm,n(o® Se(stem, (0), 5(=), -,) Se(stem, n(0), Id, B, 5) '
‘ 0.25 uucm\ 0.25 : nuc(a) H ‘ 0.0625 : nucp(a, a) 0.0625 : nucp(a, a
Copies for mc(g), mc(c), and nuc(m\cv/j Topies for mcp(a, 8), - muc-p(u, u) :
nd H

OMIVY 29 ‘Ladvy A ‘ONLLSHHM

LogGicAL HIDDEN MARKOV MODELS

Abney, S., McAllester, D., & Pereira, F. (1999). Relating probabilistic grammars and au-
tomata. In Proceedings of 37th Annual Meeting of the Association for Computational
Linguistics (ACL-1999), pp. 542-549. Morgan Kaufmann.

Anderson, C., Domingos, P., & Weld, D. (2002). Relational Markov Models and their Ap-
plication to Adaptive Web Navigation. In Proceedings of the Eighth International
Conference on Knowledge Discovery and Data Mining (KDD-2002), pp. 143-152 Ed-
monton, Canada. ACM Press.

Baker, J. (1979). Trainable grammars for speech recognition. In Speech communication
paper presented at th 97th Meeting of the Acoustical Society of America, pp. 547-550
Boston, MA.

Bauer, H. (1991). Wahrscheinlichkeitstheorie (4. edition). Walter de Gruyter, Berlin, New
York.

Baum, L. (1972). An inequality and associated maximization technique in statistical esti-
mation for probabilistic functions of markov processes. Inequalities, 3, 1-8.

Bohnebeck, U., Horvéth, T., & Wrobel, S. (1998). Term comparison in first-order similarity
measures. In Proceedings of the Eigth International Conference on Inductive Logic
Programming (ILP-98), Vol. 1446 of LNCS, pp. 65-79. Springer.

Bresnan, J. (2001). Lezical-Functional Syntaz. Blackwell, Malden, MA.

Carrasco, R., Oncina, J., & Calera-Rubio, J. (2001). Stochastic inference of regular tree
languages. Machine Learning, 44(1/2), 185-197.

Chandonia, J., Hon, G., Walker, N., Lo Conte, L., P.Koehl, & Brenner, S. (2004). The
ASTRAL compendium in 2004. Nucleic Acids Research, 32, D189-D192.

Davison, B., & Hirsh, H. (1998). Predicting Sequences of User Actions. In Predicting the
Future: Al Approaches to Time-Series Analysis, pp. 5—12. AAAT Press.

De Raedt, L., & Kersting, K. (2003). Probabilistic Logic Learning. ACM-SIGKDD FEzplo-
rations: Special issue on Multi-Relational Data Mining, 5(1), 31-48.

De Raedt, L., & Kersting, K. (2004). Probabilistic Inductive Logic Programming. In
Ben-David, S., Case, J., & Maruoka, A. (Eds.), Proceedings of the 15th International
Conference on Algorithmic Learning Theory (ALT-2004), Vol. 3244 of LNCS, pp.
19-36 Padova, Italy. Springer.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press.

Dzeroski, S., & Lavra¢, N. (Eds.). (2001). Relational data mining. Springer-Verlag, Berlin.

Eddy, S., & Durbin, R. (1994). RNA sequence analysis using covariance models. Nucleic
Acids Res., 22(11), 2079-2088.

453

KERSTING, DE RAEDT, & RAIKO

Eisele, A. (1994). Towards probabilistic extensions of contraint-based grammars. In
Dérne, J. (Ed.), Computational Aspects of Constraint-Based Linguistics Decription-I1.
DYNA-2 deliverable R1.2.B.

Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden markov model: analysis
and applications. Machine Learning, 32, 41-62.

Frasconi, P., Soda, G., & Vullo, A. (2002). Hidden markov models for text categorization
in multi-page documents. Journal of Intelligent Information Systems, 18, 195-217.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational
models. In Proceedings of Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI-1999), pp. 1300-1307. Morgan Kaufmann.

Fristedt, B., & Gray, L. (1997). A Modern Approach to Probability Theory. Probability and
its applications. Birkhauser Boston.

Ghahramani, Z., & Jordan, M. (1997). Factorial hidden Markov models. Machine Learning,
29, 245-273.

Goodman, J. (1997). Probabilistic feature grammars. In Proceedings of the Fifth Interna-
tional Workshop on Parsing Technologies (IWPT-97) Boston, MA, USA.

Greenberg, S. (1988). Using Unix: collected traces of 168 users. Tech. rep., Dept. of
Computer Science, University of Calgary, Alberta.

Hopcroft, J., & Ullman, J. (1979). Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company.

Horvéth, T., Wrobel, S., & Bohnebeck, U. (2001). Relational Instance-Based learning with
Lists and Terms. Machine Learning, 43(1/2), 53-80.

Hubbard, T., Murzin, A., Brenner, S., & Chotia, C. (1997). SCOP: a structural classification
of proteins database. NAR, 27(1), 236-239.

Jacobs, N., & Blockeel, H. (2001). The Learning Shell: Automated Macro Construction. In
User Modeling 2001, pp. 34-43.

Jaeger, M. (1997). Relational Bayesian networks. In Proceedings of the Thirteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pp. 266—273. Morgan Kaufmann.

Katz, S. (1987). Estimation of probabilities from sparse data for hte language model com-
ponent of a speech recognizer. IEEE Transactions on Acoustics, Speech, and Signal
Processing (ASSP), 35, 400-401.

Kersting, K., & De Raedt, L. (2001a). Adaptive Bayesian Logic Programs. In Rouveirol,

C., & Sebag, M. (Eds.), Proceedings of the 11th International Conference on Inductive
Logic Programming (ILP-01), Vol. 2157 of LNAI, pp. 118-131. Springer.

454

LogGicAL HIDDEN MARKOV MODELS

Kersting, K., & De Raedt, L. (2001b). Towards Combining Inductive Logic Programming
with Bayesian Networks. In Rouveirol, C., & Sebag, M. (Eds.), Proceedings of the
11th International Conference on Inductive Logic Programming (ILP-01), Vol. 2157
of LNAI pp. 118-131. Springer.

Kersting, K., & Raiko, T. (2005). 'Say EM’ for Selecting Probabilistic Models for Logical
Sequences. In Bacchus, F., & Jaakkola, T. (Eds.), Proceedings of the 21st Conference
on Uncertainty in Artificial Intelligence, UAI 2005, pp. 300-307 Edinburgh, Scotland.

Kersting, K., Raiko, T., Kramer, S., & De Raedt, L. (2003). Towards discovering struc-
tural signatures of protein folds based on logical hidden markov models. In Altman,
R., Dunker, A., Hunter, L., Jung, T., & Klein, T. (Eds.), Proceedings of the Pa-
cific Symposium on Biocomputing (PSB-03), pp. 192-203 Kauai, Hawaii, USA. World
Scientific.

Koivisto, M., Kivioja, T., Mannila, H., Rastas, P., & Ukkonen, E. (2004). Hidden Markov
Modelling Techniques for Haplotype Analysis. In Ben-David, S., Case, J., & Maruoka,

A. (Eds.), Proceedings of 15th International Conference on Algorithmic Learning The-
ory (ALT-04), Vol. 3244 of LNCS, pp. 37-52. Springer.

Koivisto, M., Perola, M., Varilo, T., Hennah, W., Ekelund, J., Lukk, M., Peltonen, L.,
Ukkonen, E.; & Mannila, H. (2002). An MDL method for finding haplotype blocks
and for estimating the strength of haplotype block boundaries. In Altman, R., Dunker,
A., Hunter, L., Jung, T., & Klein, T. (Eds.), Proceedings of the Pacific Symposium
on Biocomputing (PSB-02), pp. 502-513. World Scientific.

Korvemaker, B., & Greiner, R. (2000). Predicting UNIX command files: Adjusting to user
patterns. In Adaptive User Interfaces: Papers from the 2000 AAAI Spring Symposium,
pp. 59-64.

Kulp, D., Haussler, D., Reese, M., & Eeckman, F. (1996). A Generalized Hidden Markov
Model for the Recognition of Human Genes in DNA. In States, D., Agarwal, P.,
Gaasterland, T., Hunter, L., & Smith, R. (Eds.), Proceedings of the Fourth Interna-
tional Conference on Intelligent Systems for Molecular Biology,(ISMB-96), pp. 134—
142 St. Louis, MO, USA. AAAIL

Lane, T. (1999). Hidden Markov Models for Human/Computer Interface Modeling. In
Rudstrom, A. (Ed.), Proceedings of the IJCAI-99 Workshop on Learning about Users,
pp- 3544 Stockholm, Sweden.

Lari, K., & Young, S. (1990). The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language, 4, 35-56.

Levy, L., & Joshi, A. (1978). Skeletal structural descriptions. Information and Control,
2(2), 192-211.

McLachlan, G., & Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley, New
York.

455

KERSTING, DE RAEDT, & RAIKO

Mitchell, T. M. (1997). Machine Learning. The McGraw-Hill Companies, Inc.

Muggleton, S. (1996). Stochastic logic programs. In De Raedt, L. (Ed.), Advances in
Inductive Logic Programming, pp. 254-264. 10S Press.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19(20), 629-679.

Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171, 147-177.

Pollard, C., & Sag, 1. (1994). Head-driven Phrase Structure Grammar. The University of
Chicago Press, Chicago.

Rabiner, L., & Juang, B. (1986). An Introduction to Hidden Markov Models. IEEE ASSP
Magazine, 3(1), 4-16.

Riezler, S. (1998). Statistical inference and probabilistic modelling for constraint-based
nlp. In Schrder, B., Lenders, W., & und T. Portele, W. H. (Eds.), Proceedings of
the 4th Conference on Natural Language Processing (KONVENS-98). Also as CoRR
¢s.CL/9905010.

Sakakibara, Y. (1992). Efficient learning of context-free grammars from positive structural
examples. Information and Computation, 97(1), 23—-60.

Sakakibara, Y. (2003). Pair hidden markov models on tree structures. Bioinformatics,
19(Suppl.1), i232-1240.

Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjolander, K., & Underwood, R. (1994).
Stochastic context-free grammars for tRNA modelling. Nucleic Acids Research,
22(23), 5112-5120.

Sanghai, S., Domingos, P., & Weld, D. (2003). Dynamic probabilistic relational models.
In Gottlob, G., & Walsh, T. (Eds.), Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), pp. 992-997 Acapulco, Mexico. Mor-
gan Kaufmann.

Sato, T., & Kameya, Y. (2001). Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research (JAIR), 15, 391-454.

Scholkopf, B., & Warmuth, M. (Eds.). (2003). Learning and Parsing Stochastic Unification-
Based Grammars, Vol. 2777 of LNCS. Springer.

Turcotte, M., Muggleton, S., & Sternberg, M. (2001). The effect of relational background
knowledge on learning of protein three-dimensional fold signatures. Machine Learning,
43(1/2), 81-95.

Won, K., Priigel-Bennett, A., & Krogh, A. (2004). The Block Hidden Markov Model for Bi-
ological Sequence Analysis. In Negoita, M., Howlett, R., & Jain, L. (Eds.), Proceedings
of the Eighth International Conference on Knowledge-Based Intelligent Information
and Engineering Systems (KES-04), Vol. 3213 of LNCS, pp. 64-70. Springer.

456

Publication 8

K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards Discov-
ering Structural Signatures of Protein Folds based on Logical Hidden
Markov Models. In the Proceedings of the Pacific Symposium on Bio-
computing (PSB-2003), pp. 192-203, Kauai, Hawaii, January 3-7, 2003.

Towards Discovering Structural Signatures of Protein Folds based
on Logical Hidden Markov Models

Kristian Kersting!, T. Raiko!'?, S. Kramer!, L. De Raedt!
! Institute for Computer Science 2 Helsinki University of Technology

Machine Learning Lab Laboratory of Computer and

University of Freiburg Information Science,
Georges-Koehler-Allee 079 P.O. Boz 5400,
79112 Freiburg, Germany 02015 HUT, Finland

With the growing number of determined protein structures and the availability
of classification schemes, it becomes increasingly important to develop computer
methods that automatically extract structural signatures for classes of proteins.
In this paper, we introduce and apply a new Machine Learning technique, Logical
Hidden Markov Models (LOHMMs), to the task of finding structural signatures
of folds according to the classification scheme SCOP. Our results indicate that
LOHMDMs are applicable to this task and possess several advantages over other
approaches.

1 Introduction

In recent years, the number of proteins with determined structure has been
growing rapidly due to large-scale structural genomics projects. Consequently,
the Protein Data Bank (PDB) is growing at high rates. In parallel, researchers
have developed classification schemes of proteins based on their sequence,
structure and function. The development of classification schemes is a com-
mon scientific activity to make sense and gain a deeper understanding of ex-
perimental data. Given the determined structures and classification schemes,
the discovery of structural characteristics of protein classes becomes an im-
portant topic. The primary interest there is to gain insights into structural
characteristics of fold classes, but ultimately structural signatures should also
be useful for the prediction of protein folds. In fact, some successful approaches
in the CASP predictive exercises made use of knowledge about structural sig-
natures. So far, most signatures have been discovered by human experts based
on extensive manual/visual inspection of the data. However, few experts in the
world are in a position to find/provide these signatures, and few systematic
attempts exist to catalog known signatures. So, there is a need to develop com-
puter methods that automatically extract structural signatures in a systematic
way 1.

Recently, Hidden Markov Models (HMM) have been used to analyze classes
in SCOP . HMMs are among the most widely and successfully used tools

for the analysis of sequence data in bioinformatics. Despite their successes,
however, it is well-known that HMMs have a number of weaknesses. One of
the major weaknesses is that HMMSs handle only flat sequences, i.e. sequences
of unstructured symbols. In this paper we will overcome this weakness by
introducing Logical Hidden Markov Models (LOHMMs).

This paper is organized as follows. In Section 2, we present the task and the
dataset. In Section 3, we introduce LOHMMs. Section 4 describes experiments
with LOHMMs for the discovery of structural signatures. Subsequently, we
discuss related work and conclude.

2 Task and Dataset

In this section, we describe the task of finding structural signatures of protein
folds and the dataset used. The basis of our study is the SCOP (Structural
Clagsification of Proteins) database due to A. Murzin and maintained by the
MRC Laboratory of Molecular Biology. Our goal was to find structural char-
acteristics of the domains at the second level of the SCOP hierarchy, i.e., the
level of folds. In our study, we focused on alpha and beta proteins (a/b), a
class consisting of domains with mainly parallel beta sheets (beta-alpha-beta
units). From this class, we chose the five most populated subclasses, that is,
folds: TIM beta/alpha-barrel, NAD(P)-binding Rossmann-fold domains, Ri-
bosomal protein L4, glucosamine 6-phosphate deaminase/isomerase and and
leucine aminopeptidas. The overall set-up is quite similar to the one in 2!,
The data have been extracted automatically from the PDB release #96 and
SCOP version 1.57.

Information for domains from the above five folds was extracted in the
form of “logical sequences” of secondary structure elements. Logical sequences
are sequences of logical atoms. An example of such a sequence (corresponding
to a Ribosomal protein L4) is:

st(null, 2), he(h(right, alpha), 6), st(plus, 2), he(h(right, alpha), 4), st(plus, 2),
he(h(right, alpha),4), st(plus, 3), he(h(right, alpha), 4),
st(plus, 1), he(h(right, alpha), 6).

There are two predicates he and st. Atoms he(Type, Length) model he-
lices of a certain type and length, whereas atoms st(Orientation, Length)
model strands of a certain orientation and length. The helix
types are: h(left, alpha), h(right, alpha), h(left, gamma), h(right, gamma),
h(left, omega), h(right, omega), h(right, pi), h(right, 3to10), 27ribbon and
polyproline. The orientation of strands can be null (the beginning of a
sheet), plus (a parallel strand of a sheet), or minus (an anti-parallel strand of

st(0, L) : 0.6

st(O, L) : 0.5

'
05 . . ,
he(T, L) : 0.5 sg(‘o, {,;); 0.5

05 T -

he(T, L) : 0.4
he(T, L) : 0.5

Figure 1: A logical hidden Markov model encoding default reasoning. The dashed edge
represents a more general than relation.

a sheet). The length is defined as the number of acids and was quantized in
the experiments (see below).

For each of the above five folds, we are modelling their domains in terms
of their secondary structure using a logical variant of HMMs. So, what can be
expected from an application of LOHMMs to this task? First of all, it should
be clear that we do not obtain structural signatures for each of these classes
immediately. What we obtain instead, is a model for each fold. Each model
provides a precise probabilistic and logical characterization of the respective
fold. Structural signatures can then be found by a comparison of models. As
will be shown below, it is quite easy to find characteristics upon inspection of
the trained models.

3 Logical (Hidden) Markov Models

Logical (hidden) Markov models (LOHMM) extend the unstructured model
representation of HMMs '%? by incorporating complex, internal structure into
the specification of transitions (and therefore of emissions) between states.

Sets of states are summarized by abstract states, which are represented by
logical atoms. A logical atom then represents all states that can be obtained
by instantiating the atoms (i.e. by replacing the variables by terms). E.g. the
abstract state he(X), where X is a variable, could represent the set of states
{hc(1), he(2)} depending on the terms (1 and 2 in this case) in the LOHMM.
If the logical atom does not contain any variables such as he(1), it represents
a singleton set. Abstract states are connected by abstract transitions, which
summarize sets of transitions between states. When a transition is made, a state
is sampled from the encompassing abstract state. Subsequently an observation
symbol is generated in the same manner. We will explain these concepts on an
example. For more details, we refer to”.

3.1 An Example of a LOHMM

Fig. 1 shows an example of a LOHMM. The vertices in the model represent
abstract (hidden) states where the predicate he(ID) (resp. sc(ID)) represents
a block ID of consecutive helices (resp. strands). In such models, we find three
different types of edges:

Solid edges between abstract states specify the abstract transitions. Tran-
sition probabilities and emission symbols are associated to them. An example

transition from Fig. 1 is se(X) HUQLY0 he(Y'). Such a solid edge expresses
that if one is in one of the states represented by he(Y) one will go to one of
the states in sc¢(X) with probability 0.5 while emitting a symbol in st(O, L).
Dotted edges indicate that two abstract states behave in exactly the same
way. If we follow a transition to an abstract state with an outgoing dotted edge,
we will automatically follow that edge. Consider the dotted edge going from
se(Z) to se(X) in Fig 1. The two abstract states are identical. The dotted
edge is needed in this case because the variables appearing in the abstract
states are different. We could not have written this using solid edges alone as

the meaning of the solid edge sc(X) UL sc¢(X) is different from that of

se(Z) UL s¢(X). Whereas the first transition only allows a transition
between the same state say sc(1) (because the X is identical), the second one
allows transition between different states such as sc(1) and s¢(2). In a logical
sense, dotted edges implement a kind of recursion.

Dashed edges represent a kind of default reasoning. This is often used
to model exceptions. Consider the dashed edge in Fig. 1 connecting he(Y') and
he(2). This dashed edge denotes that he(2) is a more specific state than he(Y).
This implies that the set of states represented by the more specific (abstract)
state is a subset of that represented by the more general one. Logically
speaking, the more specific state he(2) can be obtained by substituting ¥ by
2 in the more general state he(Y). Dashed edges and default reasoning are
useful because they represent exceptions. Indeed, in our current example, the
outgoing probability labels associated to he(2) are different from those for
he(Y). This actually implies that the he(2) acts as an exception to the states
represented by he(Y). So for Y = 2 we employ the transitions from he(2) and
for Y # 2 we follow those indicated by he(Y).

Let us now explain how the model in Fig. 1 generates the sequence of ob-
servations he(h(right, 3to10), 10), st(plus, 10), st(plus, 15), he(h(right, alpha),9),
(cf. Fig. 2). Starting from the artificial state start, it chooses an initial abstract
state, say he(1). Forced to follow the dotted edge, it enters the abstract state
he(Y). In each abstract state, the model samples values for all variables that

he(T, L)—N> he(h(right, 3t010),10)

start —s hc(l) - = hc(Y)—+>* he(l)—m he(Y)—& he(1)
.5 abstract abstract 1.0 state abstract 1,0 state
state state state

0.5

st(plus, 15)<t—st(O, L) st(plus,10)<—st(O, L)

sc(X) = 5¢(2)<—— sc(Z) =+—sc(2) <—— s¢(X)
abstract tate M abstract 0.5 jtate M abstract
state state state state

he(T, L)—M> he(h(right, alpha),9)
=50(2)—> pe(Y) ———= he(2) - - - he(2) — .o

1.0 state - abstract 14 state abstract

Hohe state

Figure 2: Generating the observation sequence he(h(right, 3to10), 10), st(plus, 10), st(plus, 15),
he(h(right, alpha),9) by the LOHMM in Fig. 1 (* p = 1.0 due to unification).

are not instantiated yet according to a selection distribution p.

The function p specifies for each abstract state a distribution over the
possible instantiations of the abstract state. E.g. u(he(h(right, alpha),4) |
he(h(T, alpha),4)) = 0.5 says that the model samples he(h(right, alpha),4)
with probability 0.5 from he(h(T, alpha),4) whereas u(he(h(right, alpha),4) |
he(h(T, A),4)) = 0.05 specifies that he(h(right, alpha), 4) is sampled with prob-
ability 0.05 from he(h(T, A),4). In general, any probabilistic representation
such as Markov chains or Bayesian networks might be used to represent u.
In our experiments, we followed a naive Bayes approach, i.e. each argument
of a predicate is assumed to be independent of the other arguments. E.g.,
to compute p(he(h(right, alpha),4) | he(T, L)), we compute the product of
Pr(h(right, alpha)) and Pr,(4).

Since the value of Y was already instantiated in the previous abstract
state he(1), the model samples with probability 1.0 the state he(1). It se-
lects the transition to he(Y) observing he(T, L). Since Y is shared among the
head and the body, the state he(1) is selected with probability 1.0. The ob-
servation he(h(right, 3t010),10) is sampled from he(T, L) using the selection
distribution u. Now, the model goes over to the abstract state s¢(X), emitting
st(plus, 10) which in turn was sampled from st(O, L). Variable X in s¢(X) is
not yet bound; so, a value, say 2, is sampled using p. Next, we move on to
abstract state sc(Z), emitting st(plus, 15). The variable Z is sampled to be 3.
The dotted edge brings us back to s¢(X) and automatically unifies X with Z,
which is bound to 3. Emitting he(h(right, alpha),9), the model returns to ab-
stract state he(Y"). Assume that it samples 2 for variable Y, it has to follow the
dashed outgoing edge to he(2), which represents an exception to he(Y'). This
process is similar to unrolling dynamic Bayesian networks? and to grounding

logic programs?.

o1 02

se(1) —e sc(1) —» ¢(2) se(1) se(2) sc(1)

start< s¢(X) s5c(2) se(X) sc(2)
he(l) —= he(1)

he(Y) he(1) he(Y) he(1)

he(1) he(2) he(1) he(2)

Ciate state SR sae abitract state

Figure 3: Illustration of the trellis induced by the LOHMM in Fig. 1. In contrast with HMMs,
there is an additional layer where the states are sampled from abstract states.

3.2 Semantics and Fvaluation

Each HMM is a LOHMM consisting of propositional, logical transitions only.
Having the described grounding/unrolling process in mind, it is clear that a
LOHMM defines a HMM given a selection distribution p. There are a finite
set of abstract transitions and each domain associated to an argument of a
predicate is finite. Thus, the set of states and, therefore, the set of (ground)
transitions is finite. To summarize, there are two primary differences to HMMs.
First, transition probabilities are defined by a product of abstract transition
probabilities and the selection probability. Second, the set of states represented
by an abstract state can vary with the domains associated to predicates.

A trellis can be built as follows: After selecting an abstract transition,
1t generates the relevant states from the head of the abstract transition
(cf. Fig. 3). Based on the trellis, it is easy to adapt the forward- back-
ward, the Viterbi and the Baum-Welch algorithms for HMMs to LOHMMs.
E.g. in the forward-backward procedure, the probabilities « and § are com-
puted for each reachable state (sets S;) recursively. The ay(s) is the prob-
ability of the partial observation sequence o1,...,0;—1 and state s at time
t given the LOHMM. The f;(s) is the probability of the partial obser-
vation sequence o¢,...,or given a state s at time ¢ and the LOHMM.
Set ag(start) = 1.0 and Br(s) = 1.0 for every s € Sr. Recursive
formulae are ay(h) = Y, s, , @-1(0)papud(cl,b,h,0;) and B:(b) =
Dl Ehestﬂ Bit1(h)papud(cl, b, h,o.), where ¢l is a transition in the LOHMM,
Dei is the transition probability and p, is the selection probability given by u.
The indicator function §(cl, b, h,0;) = 1 whenever transition ¢l can take from
state b to h observing o; and the transition ¢/ has the most specific body for b.
The other algorithms can be adapted analogously.

4 Experiments

The aim of the experiments described below is to put the following hypotheses
to test:

H1 LOHMMs are capable of distinguishing between different folds based on
a logical representation of the secondary structure of domains.

H2 The inspection of LOHMMs reveal distinguishing features of folds.
H3 LOHMMs can be applied to real-world problems.

H4 In some applications in computational biology, LOHMMs are by at least
an order of magnitude smaller than their instantiations which are HMMs.

We implemented the EM algorithm (with pseudocounts) using the Prolog
system Sicstus-3.8.6. The experiments were ran on a Pentium-I11-600 MHz
machine. Our task was to classify sequences representing protein secondary
structures into one of five folds. To do so, we followed the standard approach
to classification based on HMMs. We chose a LOHMM (see Fig. 5), fixed
its structure, and randomly generated for each fold a set of initial abstract
transition probabilities and domain distributions. From each fold dataset @
described in Section 2, we randomly sampled a training set consisting of 200
sequences. The remaining sequences were used as a test set. Then, we trained
these five LOHMMSs, one per fold. We used a simple, but common stopping
criterion: EM stops if a change in log-likelihood is less than 10~! from one
iteration to the next. To evaluate the learned models, we computed the log-
likelihood that each model gave to a sequence in the test sets. If the i-th model
was the most likely one, then we classified the sequence as a member of class i.

The used LOHMM structure is given in Fig. 5. The hidden states are mod-
elled using he(ID, T, L) and se(ID, O, L) representing blocks of consecutive he-
lices and strands. Being in a block ID of consecutive helices (resp. strands), the
model will remain in the block or transition to a new block s(ID) of strands
(resp. helices). This model takes into account type 7', length L and orienta-
tion O information. Moreover, there are specific abstract transitions for helices
of types h(right, alpha) and h(right, 3to10), and for parallel and anti-parallel
strands, and for being at the beginning of a sheet. This enabled us to model the
“process” within blocks of consecutive helices quite detailed, and of transitions
from blocks of consecutive helices to strands and vice versa. The ID enables

%For the extraction of the Prolog facts from the PDB, we adapted the program
secondary.c made available by the Learning and Planning group of the University of Texas
at Arlington (http://cygnus.uta.edu/subdue/databases/db/proteins.tar.gz).

Table 1: Confusion matrix showing actual vs. predicted fold classification.

actual \ predicted | foldl fold2 fold23 fold37 fold55
fold1 736 61 51 62 30
fold2 49 291 53 31 11
fold23 18 23 166 11 15
fold37 55 44 27 282 19
fold55 0 1 1 3 147

Table 2: Precision and recall for each fold rounded to second decimal.

foldl fold2 fold23 fold37 fold55
Precision | 0.86 0.69 0.56 0.72 0.66
Recall 0.78 0.67 0.71 0.66 0.96

us to have general directed transitions from one block to exactly one successor
block.

Results

Our implementation of EM took at most five iterations and approximately
5 minutes to estimate the maximum-likelihood parameters per fold. Given
our quantization of the helix and strand lengths, the LOHMM consisted of
74 abstract transition and 46 domain distribution probabilities, whereas the
corresponding HMM would consist of over 62,000 transition probabilities. So,
the abstract representation of states and transitions in LOHMMs achieves, by
design, a remarkable compression of the model, which supports hypothesis H4.

The classification results are summarized by the confusion matrix in Ta-
ble 1. In this section, the TIM beta/alpha-barrel fold will be denoted as foldl,
the NAD(P)-binding Rossmann-fold as fold2, the Ribosomal protein L4 fold
as fold23, the glucosamine 6-phosphate deaminase/isomerase fold as fold37,
and the leucine aminopeptidas fold as fold55. In total, 74% (1622 out of 2187)
sequences were correctly classified. This result is in the same range as the one
reported by 1! (75%). However, we have to emphasize that the datasets are not
completely comparable. In contrast to this result, a learner predicting always
the majority class would achieve an predictive accuracy of 43%. These results
suggest that hypothesis H1 holds. In Table 2, we also give our results in terms
of the recall and precision. Recall is defined as the sum of true positives di-
vided by the sum of true positives and false negatives. Precision is defined as
the sum of true positives divided by the sum of true positives and false posi-
tives. As can be seen, the recall and precision figures vary among the folds, but
within the folds recall and precision are well balanced. In other words, a good

fold1

03 6
035 5 [
02 4
0.15 3
0.1 2
Sl %]
[[
ht(r.a) ht(r.3) 0246810121416 0246810121416 0 +
fold2
0 6
02! 5 —
0. .4
0.1 3
0 2
o M e ¢ 801 B
[
h(r.a) ht(r.3) 0246810121416 0246810121416 - 0 +
fold23
0 6
02! 5
0 4
0.1 3
0 2
0.0 1
[
ht(r,a) ht(r,3) 02 46 810121416 0 2 4 6 810121416 - o +
fold37
0 6
02! 5
0. 4
0.1 3
0. 2
0.0 1
o
h(r.a) ht(r.3) 0246810121416 0246810121416 - 0 +
fold55
03 6
035 5
02 4
015 3
0.1 2
005 1
0 L1 0
ht(r.a) ht(r.3) 0246810121416 0246810121416 - 0 +

Figure 4: Estimated selection distributions for the five folds (from left to right: helix types,
helix lengths, strand lengths, and strand orientations). The distributions specify the proba-
bility that a state is sampled from an abstract state (if needed) using a naive Bayes scheme.
The distribution over helix types shows, that only the types hi(right, alpha) (shortly hi(r,a))
and ht(right, 3to10) (shortly hi(r,3)) occurred in the data. Due to pseudocounts, no proba-
bility value is zero.

precision is not bought at the expense of a good recall, and vice versa. The
relatively low precision values for fold23 and fold55 are explained by a smaller
number of test examples for these two folds. Finally, we inspected the trained
LOHMM for characteristic differences. More precisely, we plotted for each of
the five estimated LOHMMSs the probability distributions implicitly defining
i (see Fig. 4) following a naive Bayes scheme. Please note that p defines the
probability of sampling a state from an abstract state taking variable binding
into account, i.e. that x4 and therefore the distributions in Fig. 4 depend on
the logical structure of the LOHMM. Upon visual inspection, differences can
be found as follows (hypothesis H2):

e Regarding the helix types, fold23 differs from the others in that the
probability of selecting right-handed alpha helices seems to be lower.
Also, the probability of right-handed 3t010 helices to be selected seems
to be higher than for the other folds.

e According to the strand lengths, we can group the first three and the last

two folds.

e As for strand orientations, we have uniform “patterns” for foldl, fold2
and fold23, but characteristic patterns for fold37 and fold55.

To summarize, we believe that the results obtained in our experiments are
quite promising also for what concerns the application domain. Therefore, they
indicate that the answer to hypothesis H3 should be positive.

5 Related Work

Gough et al. % presented an approach to sequence annotation based on profile
HMMs trained on the primary structure of domains for each superfamily in
SCOP. The present study is at a different level of abstraction: Firstly, we are
working with a secondary structure representation, and not a primary structure
representation. Secondly, we are dealing with SCOP folds, not SCOP superfam-
ilies. It might be interesting to apply our approach also at the (more detailed)
superfamily level. The goal in® was to annotate sequences based on a library of
HMDMs that represent all proteins of known structure. In contrast, our short-
term goal was to give a proof of the principle, with the intermediate-term goal
of providing a tool that helps to gain insights into structural characteristics.

Turcotte et al. 121! applied the Machine Learning and Inductive Logic
Programming (ILP) tool Progol to a similar task as the one tackled in this
paper. The task there was also to predict SCOP folds based on a high-level
logical representation. The difference is that we are working with a larger, more
recent dataset, a different representation, and that we are applying a different
Machine Learning approach based on probability theory.

HMMs have been extended in a number of different ways e.g. hierachichal
HMMs 2, factorial HMMs ® and based on tree automata *. Non of them uti-
lize logical representations. Relational Markov Models (RMMs), which were
recently introduced and applied to web navigation by Anderson et. al!, are
an exception. RMMs do not allow for variable binding, unification nor hidden
states.

6 Conclusion

In this paper, we have introduced Logical Hidden Markov Models (LOHMMs)
and applied them to the task of finding structural signatures of protein folds.
LOHMNMs offer the possibility to specify states and transitions at an abstract
level, and thereby offer a significant reduction in model size compared to regular
HMMs. Our experiments show that the learning performance of LOHMMs is

good. We have also shown that it is easy to extract characteristic patterns from
the learned models.

In the future, we will conduct more experiments on more folds in SCOP.

Furthermore, we are currenlty developing algorithms for learning the (logical)
structure of LOHMMs.

Acknowledgements This research was partly supported by the Euro-
pean Union IST programme under contract number IST-2001-33053, APrIL.
T. Raiko was supported by a Marie Curie fellowship at DAISY, HPMT-CT-
2001-00251.

1.

oo

10.

11.

12.

C. R. Anderson, P. Domingos, and D. S. Weld. Relational Markov Models
and their Application to Adaptive Web Navigation. In Proceedings of
KDD-2002, July 2002.

. T. Dean and K. Kanazawa. Probabilistic temporal reasoning. In Pro-

ceedings of AAAI-88, 1988.

. S.Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model:

analysis and applications. Machine Learning, 32, 1998.

. P. Frasconi, G. Soda, and A. Vullo. Hidden markov models for text cat-

egorization in multi-page documents. Journal of Intelligent Information
Systems, 18(2/3):195-217, 2002.

. Z. Ghahramani and M. Jordan. Factorial hidden Markov models. Ma-

chine Learning, 29:245-273, 1997.

. J. Gough, K. Karplus, R. Hughey, and C. Chothia. Assignment of homol-

ogy to genome sequences using a library of hidden markov models that
represent all proteins of known structure. Journal of Molecular Biology,
313(4):903-919, 2001.

. K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards discovering

structural signatures of protein folds based on logical hidden markov
models. Tech. Rep. 175, University of Freiburg, June 2002.

. J. W. Lloyd. Foundations of Logic Programming. Springer, 1989.
. L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Ap-

plications in Speech Recognition. Proceedings of the IEEE, 77(2), 1989.
L. R. Rabiner and B. H. Juang. An Introduction to Hidden Markov
Models. IEEE ASSP Magazine, January:4-16, 1986.

M. Turcotte, S. Muggleton, and M. J. E. Sternberg. Discovery of struc-
tural signatures of protein fold and function. Journal of Molecular Biol-
ogy, 306(3):591-605, 2001.

M. Turcotte, S. Muggleton, and M. J. E. Sternberg. The effect of re-
lational background knowledge on learning of protein three-dimensional
fold signatures. Machine Learning, 43(1/2):81-95, 2001.

¢ 1.0
he(h(r,), L) : 0.22 st(p, L) : 0.18

he(h(r,3),L) :0.16

" 'he(T,L):0.56

he(h(r, 8), L) : 0.19

' he(T,L): 0.5 g
N he(T, L) :0.37 st(O,L):0.62 -

> (5c(s(0), 0, D))

st(0, L) : 0.5

Figure 5: The estimated logical (hidden) Markov model of fold 1. The end state is omitted.
If probabilities do not sum to 1.0, then there is a transition to end. The symbol _ denotes
anonymous variables which are read and treated as distinct, new variables each time they
are encountered. There are copies of the shaded part for he(s2(0),T,L),...,he(s7(0), T, L).
Terms are abbreviated using their starting alphanumerical and « for alpha.

Publication 9

K. Kersting and T. Raiko. ’Say EM’ for Selecting Probabilistic Models
for Logical Sequences. In the Proceedings of the 21st Conference on Un-
certainty in Artificial Intelligence (UAI 2005), pp. 300-307, Edinburgh,
Scotland, July 2629, 2005.

(© 2005 AUAI Reprinted with permission.

’Say EM” for Selecting Probabilistic Models for Logical Sequences

Kristian Kersting
Machine Learning Laboratory
University of Freiburg

Georges-Koehler-Allee 079, 79112 Freiburg, Germany

Abstract

Many real world sequences such as protein sec-
ondary structures or shell logs exhibit a rich in-
ternal structures. Traditional probabilistic mod-
els of sequences, however, consider sequences of
flat symbols only. Logical hidden Markov mod-
els have been proposed as one solution. They
deal with logical sequences, i.e., sequences over
an alphabet of logical atoms. This comes at
the expense of a more complex model selec-
tion problem. Indeed, different abstraction lev-
els have to be explored. In this paper, we pro-
pose a novel method for selecting logical hid-
den Markov models from data called SAGEM.
SAGEM combines generalized expectation max-
imization, which optimizes parameters, with
structure search for model selection using in-
ductive logic programming refinement operators.
We provide convergence and experimental re-
sults that show SAGEM’s effectiveness.

1 Introduction

Hidden Markov models [21] (HMMs) are extremely pop-
ular for analyzing sequential data. Areas of applica-
tion include computational biology, user modeling, and
robotics. Despite their successes, HMMs have a major
weakness: they handle only sequences of flat, i.e., un-
structured symbols. In many applications the symbols
occurring in sequences are structured. Consider, e.g.,
the sequence of UNIX commands emacs lohmms.tex, 1s,
latex lohmms.tex, ... Such data have been used to train
HMMs for anomaly detection [15]. However, as the above
command sequence shows, UNIX commands may have
parameters. Thus, commands are essentially structured
symbols. HMMs cannot easily deal with this type of struc-
tured sequences. Typically, the application of HMMs re-
quires either 1) ignoring the structure of the commands
(i.e., the parameters), or 2) taking all possible parameters

Tapani Raiko
Laboratory of Computer and Information Science
Helsinki University of Technology
P.O. Box 5400, 02015 HUT, Finland

explicitly into account. The former approach results in se-
rious information loss; the latter in a combinatorial explo-
sion in the number of parameters and, as a consequence,
inhibits generalization.

The above sketched problem with HMMs is akin to
the problem of dealing with structured examples in
traditional machine learning algorithms as studied in
the field of inductive logic programming (ILP) [17].
Recently, Kersting et al. [12] proposed logical HMM:s
(LOHMMs) as an probabilistic ILP [4] framework that
upgrades HMMs to deal with structure. The key idea
is to employ logical atoms. Using logical atoms, the
above UNIX command sequence can be represented
as emacs(lohmms.tex), ls, latex(lohmms.tex), . ..
LOHMMSs have been proven to be useful within bioin-
formatics domains. For instance in [12], the LOHMMs
used to discover structural signatures of protein folds were
simpler but more effective compared to corresponding
HMMs (120 vs. > 62000 parameters). The compactness
and comprehensibility, however, comes at the expense of
a more complex model selection problem. So far, model
selection for LOHMMs has not been investigated. Our
main contribution is SAGEM, German for ’say EM’, a
novel method for selecting LOHMM structures from data.
Selecting a structure is a significant problem for many
reasons. First, eliciting LOHMMSs from experts can be
a laborious and expensive process. Second, HMMs are
commonly learned by estimating the maximum likelihood
parameters of a fixed, fully connected model. Such an ap-
proach is not feasible for LOHMMs as different abstraction
levels have to be explored. Third, LOHMMs are strictly
more expressive than HMMs. In [11], LOHMMs are
used to classify tree-structured mRNA data. Finally, the
parameter estimation of a LOHMM is a costly nonlinear
optimization problem, so the naive search is infeasible.

SAGEM adapts Friedman’s structural EM [6]. It com-
bines a generalized expectation maximization (GEM) algo-
rithm, which optimizes parameters, with structure search
for model selection using ILP refinement operators. Thus,
SAGEM explores different abstraction levels due to ILP re-

finement operators, and, due to a GEM approach, it reduces
the selection problem to a more efficiently solvable one.

The outline of the paper is as follows. Section 2 reviews
LOHMMs and their underlying logical concepts; Section 3
formalizes the model selection problem; in Section 4, we
present a naive learning algorithm; in Section 5, we intro-
duce a structural, generalized EM — called SAGEM - for
learning LOHMMSs. SAGEM is experimentally evaluated
in Section 6. Before concluding we discuss related work.

2 Probabilistic Models for Logical
Sequences

We will briefly review logical Hidden Markov models
(LOHMMs) [12, 13, 11]. The logical component of HMMs
corresponds to a Mealy machine, i.e., to a finite state ma-
chine where the output symbols are associated with tran-
sitions. The key idea to develop probabilistic models for
structured sequences is to replace these flat symbols by ab-
stract symbols, more precisely logical atoms.

First-Order Predicate Logic: A first-order logic alpha-
bet ¥ is a set of relation symbols r with arity m > 0,
written r/m, and a set of function symbols £ with arity
n > 0, written £/n. An atom r(ty,...,t,) is a rela-
tion symbol r followed by a bracketed m-tuple of terms
ti. A term is a variable V or a function symbol f of
arity » immediately followed by a bracketed n-tuple of
terms sj, i.e., £(sy,...,sn). A definite clause A — B con-
sists of atoms A and B and can be read as A is true if
B is true. A substitution § = {V;/tq,...,Vi/ty}, e.g
{X/tex}, is an assignment of terms t; to variables V;. Ap-
plying a substitution 6 to a term, atom or clause e yields
the instantiated term, atom, or clause ef where all oc-
currences of the variables V; are simultaneously replaced
by the term t;, e.g. 1s(X) <« emacs(F,X){X/tex} yields
1s(tex) « emacs(F,tex). A term, atom or clause e is
called ground when it contains no variables, i.e., vars(e) =
(0. The Herbrand base of ¥, denoted as hby;, is the set of all
ground atoms constructed with the predicate and function
symbols in X. The set Gx(A) of an atom A consists of all
ground atoms A6 belonging to hbsy;.

Our running example will be user modeling. For example,
emacs(readme, other) means that the user of type other
writes a command emacs readme to a shell.

Logical Hidden Markov Models (LOHMMs): The se-
quences generated by LOHMMs are sequences of ground
atoms rather than flat symbols. Within LOHMMs,
the flat symbols employed in traditional HMMs are re-
placed by logical atoms such as emacs(F,tex). Each
atom emacs(F,tex) there represents the set of ground
atoms Gy(emacs(F,tex)), e.g. emacs(readme,tex) €
Gx (emacs(F, tex)).

Additionally, we assume that the alphabet is typed which in
our case means that there is a function mapping every pred-
icate r /mand number 1 < ¢ < m to the set of ground terms
allowed as the i-th argument of predicate r/m. This set is
called the domain of the i-th argument of predicate r/m.

Figure 1 shows a LOHMM graphically. The states, obser-
vations, and transitions of LOHMMs are abstract in the
sense that every abstract state or observation A represents
all possible concrete states in Gx(A). In Figure 1 solid
edges encode abstract transitions. Let H and B be log-
ical atoms representing abstract states, let O be a logical
atom representing an abstract output symbol. An abstract
transition from state B with probability p to state H and

omitting O is denoted by p : H LB oIf H, B, and O are
all ground, there is no difference to 'normal’ transitions.
Otherwise, if H, B, and O have no variables in common,
the only difference to ‘normal’ transitions is that for each
abstract state (resp. observation) we have to sample which
concrete state (resp. observation) we are in. Otherwise, we
have to remember the variable bindings. More formally, let
Bfy € Gx(B), HOpby € Gx(Hbg) 00puby € Gx(00s6y),
and let p be a selection distribution. Then with prob-
ablhty p- ,u(HGBHH ‘ HGB) . ’[L(OQBHHHO | DQBQH), the model
makes a transition from state Bfp to Hfg0y and emits sym-
bol 0030].[00.

A selection distribution specifies for each abstract state
(respectively observation) A over the alphabet ¥ a dis-
tribution p(- | A) over Gy(A). Consider, for ex-

ample, the abstract transition 0.5 : s(£(Z)) RO s(X).
Suppose, Bl = s(1), u(s(£(3))]s(£(2))) =0.2 and
wu(o(1,2,3) | o(1,Y,3)) = 0.05. Then, from state s (1)
with probability 0.5 x 0.2 x 0.05 = 0.005 the output
symbol is o(1,2,3) and the next state is s (£(3)).
To reduce the model complexity, we employ a naive
Bayes approach in which — at the expense of a lower
expressivity — functors are neglected and variables are
treated independently. More precisely, for each domain
D,; there is a probability distribution Pp,. Let vars(A) =
{Vy,...,V1} be the variables occurring in A, and let § =
{t1/Vy,...t1/V1} be a substitution grounding A. Each
V; is then considered a random variable over the domain
of the first argument of r/m it appears in, denoted by
Dy,. Then, (A0 | &) =[]}_, Pp, (Vs =t;). For in-

stance, u(s(£(3)) | s(£(2))) equals Pf/l(S).

Indeed, multiple abstract transitions can match a
given ground state. Consider the abstract states
B; = emacs(File, tex) and By = emacs(File,User) in
Fig. 1 (a). The abstract state B; is more specific than By
because there exists a substitution § = {User/tex} such
that Bod = By, ie., By subsumes B;y. Therefore
Gx(B1) C Gx(B2) and the first transition can be re-

garded as more informative than the second one. It should
therefore be preferred over the second one when starting

0.3 : emacs(F)

(b)

0.4 :1s

==
latex(
0.4 : emacs(F)
0.3 : latex(F)

)
Gten 5, D)D)

0.3 : latex(F)

0.4 : latex(F)

Figure 1: Logical hidden Markov models. The vertices represent abstract (hidden) states. Solid edges encode abstract
transitions. Dotted edges indicate that two abstract states behave in exactly the same way. Dashed edge denote the more

general than relation. The LOHMMs are described in the text.

e.g. from emacs(hmml, tex). We will also say that the
transitions of the first abstract state are more specific
than the second ones; encoded by dashed edges. These
considerations lead to the conflict resolution strategy !
of only considering the maximally specific transitions
that apply to a state in order to determine the successor
states. This implements a kind of exception handling or
default reasoning and is akin to Katz’s back-off n-gram
models [10]. In back-off n-gram models, the most detailed
model that is deemed to provide sufficiently reliable
information about the current context is used. That is, if
one encounters an n-gram that is not sufficiently reliable,
then back-off to use an (n — 1)-gram; if that is not reliable
either then back-off to level n — 2, etc.

Finally, dotted edges denote that two abstract states behave
in exactly the same way. If we follow a transition to an
abstract state with an outgoing dotted edge, we will auto-
matically follow that edge making appropriate unifications.

Definition 1 A logical hidden Markov model (LOHMM) is
a tuple M = (3, u, A) where X is a logical alphabet, u
a selection probability over ¥ and A is a set of abstract
transitions. Let B be the set of all atoms that occur as the
body part of transitions in A. We require

VBe B: ZP:H&BGA]) =1. 1)

In [11] it is proven that LOHMMs specify a unique prob-
ability measure over hby. Here, we would like to ex-
emplify that LOHMMs are generative models. Consider
the model in Fig. 1(a). Starting from start, it chooses
an initial abstract state, say emacs(_, tex) with probabil-
ity 0.7. Here, _ denotes an anonymous variable which
is read and treated as distinct, new variables each time it
is encountered. Forced to follow the dotted edge, it en-
ters the abstract state emacs(F,U). In each abstract state,

! Another conflict resolution strategy would be smoothing, i.e. ,
considering all matching abstract states. We chose not to use
smoothing to keep the LOHMM locally interpretable, i.e. to have
a single abstract body for each ground state.

the model samples values for all variables that are not
instantiated yet according to the selection distribution .
Since the value of U was already instantiated in the pre-
vious abstract state emacs(F, tex), the model has only to
sample a value for F, say f1, using . Now, it selects
a transition, say, to latex(F,tex) with probability 0.6.
Since F is shared among the head and the body, the state
latex(f1,tex) is selected with probability 1.0. The ob-
servation emacs(f1) is emitted from emacs(F) with prob-
ability 1.0 using p. Now, the model goes over to, say
1s(tex), emitting latex(f1) which in turn was sampled
from latex(F). The dotted edge brings us to 1s(U) and
automatically unifies U with tex. Emitting 1s, we return to
emacs(F, tex) where F now denotes a new filename.

3 The Learning Setting

For traditional HMMs, the learning problem basically col-
lapses to parameter estimation (i.e., estimating the transi-
tion probabilities) because HMMs can be considered to be
fully connected. For LOHMMs, however, we have to ac-
count for different abstraction levels. The model selection
problem can formally be defined as:

Given a set O = {Oq,...,0,,} of data cases indepen-
dently sampled from the same distribution, a set M of
LOHMMs, and a scoring function scoreg : M — R, find
a hypothesis M* € M that maximizes scoreg.

Each data case O; € O isasequence O; = 0; 105 5...0; 1
of ground atoms and describes the observations evolving
over time. For instance in the user modeling domain a
data case could be emacs(lohmms),1ls, emacs(lohmms).
The corresponding evolution of the system’s state
over time H; = h;ohiq...hsr,41 is hidden, ie. ,
not specified in O;. For instance, we do not
know whether emacs(lohmms) has been generated by
emacs(lohmms, prog) or emacs(lohmms, tex).

The hypothesis space M consists of all candidate
LOHMMs to be considered during search. We assume X

to be given. Thus, the possible constants which can be se-
lected by p are apriori known. Each M € M is parame-
terized by a vector A,;. Each (legal) choice of A, defines
a probability distribution P(- | M, Aps) over hb(X). For
the sake of simplicity, we will denote the underlying logic
program (i.e., the set of abstract transitions without associ-
ated probability values) by M and abbreviate Ays by A as
long as no ambiguities will arise. Furthermore, a syntactic
bias on the transitions to be induced is a parameter of our
framework, as usual in ILP [18]. For instance in the exper-
iments, we only consider transitions which obey the type
constraints induced by the predicates.

As score, we employ scoreg (M, A) =log P(O | M, A) —
Pen(M,X,0). Here, logP(O | M,\) is the log-
likelihood of the current of model (M,). It holds that
the higher the log-likelihood, the closer (M, A) models the
probability distribution induced by the data. The second
term, Pen(M, X, O), is a penalty function that biases the
scoring function to prefer simpler models. Motivated by the
minimum description length score for Bayesian networks,
we use the simple penalty Pen(M, A, O) = |A|log(m)/2.
It is independent of the model parameters and therefore it
can be neglected when estimating parameters. We assume
that each M covers all possible observation sequences
(over the given language X). This guarantees that all new
data cases will get a positive likelihood.

4 A Naive Learning Algorithm

A simple way of selecting a model structure is the follow-
ing greedy approach:

1: Let A\” = argmax, scoreo(M°,\)
2: Loopfork=0,1,2,...

3: Find model M**! € p(M*) that maximizes
maxy scoreo(M*T1 X)
4: Let A" = argmax, scoreq (M*+1,X)

5: Until convergence, i.e., no improvement in score

It takes as input an initial model M° and the data O. At
each stage k we choose a model structure and parameters
among the current best model M* and its neighbors p(M*)
(see below) that have the highest score. It stops, when there
is no improvement in score. In practice, we initialize the
parameters of each model on lines 1 and 3 randomly.

We will now show how to traverse the hypotheses space
and how to estimate parameters for a hypothesis in order to
score it. That is, we will make line 3 more concrete.

Traversing the Hypotheses Space: An obvious candidate
for the initial hypothesis MY (which we also used in our
experiments) is the fully connected LOHMM built over all
maximally general atoms over ¥, i.e., expressions of the
form r(Xy, ..., Xn), where the X; are different variables.

Now, to traverse the hypothesis space M, we have to com-
pute all neighbors of the currently best hypothesis M*. To
do so, we employ refinement operators traditionally used in
ILP. More precisely, for the language bias considered and
the experiments conducted in the present paper, we used the
refinement operator p : M — 2™ which selects a single

clausecl=p:H &£ B € M and adds a minimal specializa-

tioncl =p: H & gofcltoM (w.r.t. to f-subsumption).
Specializing a single abstract transition means instantiat-
ing or unifying variables, i.e., cI’ = cl @ for some substitu-
tion §. When adding cl’ to M*, we have to ensure that (1)
the same observation and hidden state sequences are still
covered and (2) the list of bodies B’ after applying p(M)
should remain well-founded, that is, for each ground state,
there is a unique maximally specific body in B’. Both con-
ditions together guarantee that the most specific body cor-
responding to a state always exists and is unique. Condi-
tion (1) can only be violated if B" ¢ B. In this case, we
add transitions with B’ and maximally general heads and
observations. Condition (2) is established analogously. We
complete the keep the list of bodies well-founded by adding
new bodies (and therefore abstract transitions) in a similar
way as described above.

Consider refining the LOHMM in Fig. 1 (b). When adding

latex(lohmm) . .
1s(U) «————= latex(lohmm,U), hence introducing
the more specific abstract state latex(lohmm, U), further
variants of the same abstract transition but with different
heads have to be added. Otherwise condition (1) would be
violated as the resulting LOHMM does not cover the same
sequences as the original one; the state latex(1lohmm, U)
can only be left via 1s(U) and not e.g. via emacs(_, U). On
the other hand, we have to be careful when subsequently
adding abstract transitions for the body latex(F,tex).
The problem is that we do not know which abstract body to
select in state latex(lohmm, tex). To fulfill condition (2),
you need to add abstract transitions for an additional, third
abstract state latex(lohmm, tex), too.

Parameter Estimation: In the presence of hidden vari-
ables maximum log-likelihood (ML) parameter estimation
is a numerical optimization problem, and all known algo-
rithms involve nonlinear, iterative optimization and mul-
tiple calls to an inference algorithm. The most common
approach for HMMs is the Baum-Welch algorithm, an in-
stance of the EM algorithm [5]. In each iteration [+ 1 it
performs two steps:

(E-step) Compute the expectation of the log-
likelihood given the old model (M* XYY and the
observed data O, ie, Q(MF X | Mk,)\]“l) =

E [1og P(O,H | M*,\) | M’“,Ak’l}
Here, O, H denotes the completion of O where the evolu-

tion H of the system’s state over time is made explicit. The
current model (M*, A*') and the observed data O give

us the conditional distribution governing H, and E[|] de-
notes the expectation over it. The function @) is called the
expected score.

(M-step) Maximize the
QMM X | ME AR wr,
argmaxy Q(M*, X|M*, AR

expected score
A de, AR

The naive greedy algorithm can easily be instantiated us-
ing the EM. The problem, however, is its huge computa-
tional costs. To evaluate a single neighbor, the EM has
to run for a reasonable number of iterations in order to
get reliable ML estimates of A¥'. Each EM iteration re-
quires a full LOHMM inference on all data cases. In to-
tal, the running time per neighbor evaluation is at least
O(#EM iterations - size of data).

5 SAGEM: Structural Generalized EM

To reduce the computational costs, SAGEM (German for

say EM’) adapts Friedman’s structural EM (SEM) [6].

That is, we take our current model (M* AF) and run the

EM algorithm for a while to get reasonably completed data.

We then fix the completed data cases and use them to com-

pute the ML parameters ¥ of each neighbor M K. We

choose the neighbor with the best improvement of the score

as (M**+1 X\FF1) and iterate. More formally, we have

1: Initialize A°° randomly

2: Loopfork=0,1,2,...

3 Loop for! =0,1,2,...

4: Let A" — argmax, Q(MF*, A | M*, AF1)

5 Until convergence or [= [,

6 Find model M**! € p(M*) that maximizes
maxy Q(MFHL X | MF M)

7: Let A*T10 = argmax, Q(M* 1, X | M*, AR

8: Until convergence

The hypotheses space is traversed as described in Section 4,
and again we stop if there is no improvement in score.
The following theorem shows that even when the structure
changes in between, improving the expected score () al-
ways improves the log-likelihood as well.

Theorem 1 If Q(M,A | MFE AR >
Q(M* NP | MEXEY polds, then
log P(O | M, \) > log P(O | M*, A*!) holds.

The proof is a simple extension of the argumentation
by [16, Section 3.2 ff.]. To apply the algorithm to select-
ing LOHMMs, we will now show how to choose the best
neighbour 2 in line 6.

%In the following, we will omit some derivation steps due to
space restriction. They can be found in [13]. Furthermore, for the
sake of simplicity, we will not explicitly check that a transition is
maximally specific for ground states.

Let ¢(b, h, o) denote the number of times the systems pro-
ceeds from ground state b to ground state h emitting ground
observation o. The expected score in line 6 simplifies to

Q(M, X[MF AF 2)
=Y B [c(b,m o)’Mk, A’“»l} “log P(h, 0[b, M, A) .

=:ec(b,h,0)

The term ec(b, h, o) in (2) denotes the expected counts of
making a transition from ground state b to ground state h
emitting ground observation o. The expectation is taken
according to (M*, AFh,

An analytical solution, however, of the M-step in line 7
seems to be difficult. In HMMs, the updated transition
probabilities are simply directly proportional to the ex-
pected number of times they are used. In LOHMMs, how-
ever, there is an ambiguity: multiple abstract transitions
(with the same body), can match the same ground transi-
tion (b,h,0). Using ec as sufficient statistics makes the
M step nontrivial. The solution is to improve (2) instead
of maximizing it. Such an approach is called generalized
EM [16]. To do so, we follow a gradient-based optimiza-
tion technique. We iteratively compute the gradient V
of (2) w.r.t. the parameters of a LOHMM, and, then, take
a step in the direction of the gradient to the point X + §V
where § is the step-size.

For LOHMMs, the gradient w.r.t. (2) consists of partial
derivatives w.r.t. abstract transition probabilities and to se-
lection probabilities. Assume that A is the transition proba-
bility associated with some abstract transition cl. Now, the
partial derivative of (2) w.r.t. some parameter \ is

QM X | M* *!)

o\
B 0log P(h,0 | b, M,)
—th ec(b,h,0) - o)

=D e B

The partial derivative of P(h,o0 | b, M, A) w.r.t. A can be
computed as

ec(b,h,0) 9P(h,0|b,M,A)
P(h,o|b,M,A) oA

3

P(h,o| b, M,)

o\
= p(h | head(cl)fy, M) - p(o | obs(cl)fuby, M) (4)
Substituting (4) back into (3) yields

OQ(M, X | M* A"

o\
Z(

ec(b,h,0)

m ,LL(h ‘ head(cl)@m M)

(o | obs(cl)Bybo, M)) 3)

The selection probability follows a naive Bayes approach.
Therefore, one can show in a similar way as for transition
probabilities that

OQ(M, X\ | M* A"
o\

ec(b,h,0)
- L9 A, cl,b, b, 0)-
Z(P(h,o\b,M,A) 2_e(Ael,bib,0)
b,h,o0 cl

-P(cl | M,) - u(h | head(cl)fy, M)-

- pu(o | obs(cl)fubp, M)) (6)

where ¢(A, cl,b,h, 0) is the number of times that the do-
main element associated with A is selected to ground cl
w.r.t. h and o.

In the problem at hand, the described method has to be
modified to take into account that A € [0,1] and that cor-
responding A’s sum to 1.0. A general solution, which we
used in our experiments, is to reparameterize the problem
so that the new parameters automatically respect the con-
straints no matter what their values are. To do so, we define
the parameters (3 where 3;; € R such that \;; = exp(5;;)/
(>_,exp(Bir)). This enforces the constraints given above,
and a local maximum w.r.t. 3 is also a local maximum w.r.t.
A, and vice versa. The gradient w.r.t the 3;;’s can be found
by computing the gradient w.r.t. the A;;’s and then deriving
the gradient w.r.t. 3 using the chain rule.

Discussion on SAGEM: What do we gain from SAGEM
over the naive approach? The expected ground counts
ec(b,h,0) are used as the sufficient statistics to evaluate
all the neighbors. Evaluating neighbors is thus now in-
dependent of the number and length of the data cases—
a feature which is important for scaling up. More pre-
cisely, the running time per neighbor evaluation is basi-
cally O(#Gradient iterations - #Ground transitions) be-
cause SAGEM’s gradient approach does not perform
LOHMM inferences.

The greedy approach is not always enough. For instance, if
two hidden states are equivalent, to make them effectively
differ from each other, one needs to make them differ both
in visiting probabilities of the state and in behavior in the
state, possibly requiring two steps for any positive effect.
Fixing the expected counts in SAGEM worsens the prob-
lem, since changes in visiting probabilities of states do not
show up before a LOHMM inference is made. To over-
come this, different search strategies, such as beam search,
can be used: Instead of a current hypothesis, a fixed-size
set of current hypotheses is considered, and their common
neighborhood is searched for the next set.

To summarize, SAGEM explores different abstraction lev-
els due to ILP refinement operators, and, due to a GEM
approach, it reduces the neighborhood evaluation problem
to one that is solvable more efficiently.

350
250
150 -

10 samples —+—
50 samples -
100 samples -~

oL %//'//F
* 50 -

Figure 2: Speed-up (y axis), i.e., the ratio of time per EM it-
eration (in sec.) and time per SAGEM’s gradient approach
to evaluate neighbors. The speed-up is shown for differ-
ent numbers of sequence lengths (x axis) and for different
numbers of data cases (curves).

6 Experimental Evaluation

Our intentions here are to investigate whether SAGEM can
be applied to real world domains. More precisely, we will
investigate whether SAGEM

H1 speeds-up neighbor evaluation considerably (compared
to the naive learning algorithm);

H2 finds a comprehensible model;

H3 works in the presence of transition ambiguity;

H4 can be applied to real-world domains and is competitive
with standard machine learning algorithms such as nearest-
neighbor and decision-tree learners.

To this aim, we implemented the SAGEM using the Pro-
log system YAP-4.4.4. The experiments were run on a
Pentium-I11-2.3 GHz machine. For the improvement of
expected score, we adapted the scaled conjugate gradient
as implemented in Bishop and Nabney’s Netlab library
(http://www.ncrg.aston.ac.uk/netlab/) with a
maximum number of 10 iterations and 5 random restarts.

Experiments with Synthetic Data: We sampled indepen-
dently 10, 50, 100 sequences of length 10, 50, 100 (100 to
10000 ground atoms in total) from the LOHMM shown in
Fig. 1(a) and computed their ground counts w.r.t. the sam-
ples. We measured the averaged running time in seconds
per iteration for both, the naive algorithm and SAGEM’s
gradient approach to evaluate neighbors when applied to
the LOHMM shown in Fig. 1(b). The times were mea-
sured using YAP’s built-in statistics/2. The results are
summarized in Fig. 2 showing the ratio of running times of
naive over SAGEM’s gradient approach. In some cases the
speed-up was more than 400. EM’s lowest running time
was 0.075 seconds (for 10 sequences of length 10). In con-
trast, SAGEM was constantly below 0.017 seconds. This
suggests that H1 holds.

We sampled 2000 sequences of length 15 (30000 ground
atoms) from the LOHMM in Fig. 1(a). There were 4
filenames, 2 users types. The initial hypothesis was the
LOHMM in Fig. 1(b) with randomly initialized parame-
ters. We run SAGEM on the sampled data. > Averaged

3The naive algorithm was no longer used for comparison due

1.0 : com(C,P) 0.05 : end

0.95 : com(C’,P’)

Figure 3: The initial hypothesis for the experiments with
real-world data is a minimal structure, implying learning
from scratch. C' stands for command and P for param-
eters. The hidden state hid contains the new command,
parameters and the latest old command.

over 5 runs, estimating the parameters for the initial hy-
pothesis achieved a score of —47203. In contrast, the score
of SAGEM’s selected model was —26974 which was even
slightly above the score of the original LOHMM (—30521).

This suggests that H3 holds. Moreover, in all runs, SAGEM

included c.g. latex(a,B) crr2e®)

.48:
emacs(A,B) QaBmacall) latex(A,B) which were not
present in the initial model. This suggests that H2 holds.

emacs(A,B) and

Experiments with Real-World Data: Finally, we applied
SAGEM to the data set collected by Greenberg [8]. The
data consists of 168 users of four groups: computer scien-
tists, non-programmers, novices and others. About 300000
commands have been logged in on average 110 sessions per
user. We present here results for two classes: novice-1(NV)
consisting of 2512 ground atoms and non-programmers-
4 (NP) consisting of 5183 ground atoms. We randomly
selected 35 training sessions (about 1500 commands) for
each class. On this data, we let SAGEM select a model
for each class independently, starting from the initial hy-
pothesis described in Fig. 3. To evaluate, we computed
the plug-in estimates of each model for the remaining ses-
sions corrected by the class priors. Averaged over five runs,
the precision (0.94 + 0.06 NV, 0.91 £ 0.02 NP) and recall
values (0.67 £ 0.03 NV, 0.89 4+ 0.05 NP) were balanced
and the overall predictive accuracy was 0.92 £ 0.01. Ja-
cobs and Blockeel [9] report that a kNN approach achieved
a precision of 0.91 and J48 (WEKA'’s implementation of
Quinlan’s C4.5 decision tree learner) of 0.86 averaged over
ten runs on 50 randomly sampled training examples. This
suggests that H4 holds. The used kNN and J48 methods,
however, do not yield generative models and lack compre-
hensibility. SAGEM’s selected models encoded e.g. “non-
programmers are very likely to type in cd.. after performing
1s in some directory”. This pattern was not present in the
NV model. This suggests that H2 holds.

7 Related Work

Statistical relational learning (SRL) can be viewed as com-
bining ILP principles (such as refinement operators) with
statistical learning, see [3] for an overview and references.

to unreasonable running times.

Most attention, however, has been devoted to developing
highly expressive formalisms. LOHMMs can be seen as
an attempt towards downgrading such highly expressive
frameworks. They retain most of the essential logical fea-
tures but are easier to understand, adapt and learn. For the
same reasons, simple statistical techniques (such as logis-
tic regression or naive Bayes) have been combined with
ILP refinement oprators for traversing the search space, see
e.g. [20, 14]. They, however, do not select dynamic models.

LOHMMs are related to Anderson et al’s relational
Markov models (RMMs) [1]. Here, states can be of dif-
ferent types, with each type described by a different set
of variables. The domain of each variable is hierarchi-
cally structured. The main differences are that neither
variable bindings, unification nor hidden states are sup-
ported. RMMs do not select the most-specific transition
to resolve conflicting transitions. Instead, they interpolate
between conflicting ones. This is an interesting option for
LOHMMs because it makes parameter estimation more ro-
bust. On the other hand, it also seems to make it more dif-
ficult to adhere one of our design principles: locally inter-
pretable transitions. Structure learning has been addressed
based on probability estimation trees.

Logical sequences can be converted into binary trees by
putting each instance of a relation symbol into a node. The
left subtree represents the first argument and the right sub-
tree represents the next atom in the list (of observations or
arguments). Methods for learning tree languages [2] can
thus be used for learning probabilistic models for logical
sequences, too. The main differences, though, is that vari-
able bindings are not supported.

LOHMMs are related to several extensions of HMMs such
as factorial HMMs [7]. Here, state variables are decom-
posed into smaller units. The key difference to LOHMMs
is that these approaches do not employ logical concepts.

Finally, SAGEM is related to more advanced HMM model
selection methods. Model merging [22] starts with the most
specific model consistent with the training data and gener-
alizes by successively merging states. Abstract transitions,
however, aim at good generalization, and the most gen-
eral clauses can be considered to be the most informative
ones. Therefore, successive state splitting [19] refines hid-
den states by splitting them into new states. In both cases,
the authors are not aware of adaptions of Friedman’s SEM.

8 Conclusions

A novel model selection method for logical hidden Markov
models called SAGEM has been introduced. SAGEM com-
bines generalized EM, which optimizes parameters, with
structure search for model selection using ILP refinement
operators. Experiments show SAGEM’s effectiveness.

Future work should address other scores; other refinement

operators e.g. handling functors, deleting transitions, and
generalizing hypotheses; logical pruning criteria for hy-
potheses; and efficient storing of ground counts. Moreover,
the authors hope that the presented work will inspire further
research at the intersection of ILP and HMM:s.

Acknowledgments: The authors thank the three anony-
mous reviewers for helpful comments, Luc De Raedt for
discussions on the topic, Nico Jacobs for discussions on
user modeling, and Saul Greenberg for providing the data.
The research was partially supported by the EU IST pro-
gramme, contract no. FP6-508861, APriIL II, and by the
Finnish Centre of Excellence Programme (2000-2005) un-
der the project New Information Processing Principles.
Tapani Raiko was partially supported by a Marie Curie fel-
lowship at DAISY, HPMT-CT-2001-00251.

References

[1] C.R. Anderson, P. Domingos, and D. S. Weld. Rela-
tional Markov Models and their Application to Adap-
tive Web Navigation. In Proceedings of the Eighth In-
ternational Conference on Knowledge Discovery and
Data Mining (KDD-02), 2002.

[2] R.C. Carrasco, J. Oncina, and J. Calera-Rubio.
Stochastic inference of regular tree languages. Ma-
chine Learning, 44(1/2):185-197, 2001.

[3] L. De Raedt and K. Kersting. Probabilis-
tic Logic Learning. ACM-SIGKDD Explorations,
5(1):31-48, 2003.

[4] L. De Raedt and K. Kersting. Probabilistic Inductive
Logic Programming. In Proceedings of the 15th In-
ternational Conference on Algorithmic Learning The-
ory (ALT-2004), volume 3244 of LNCS, pages 19-36,
Padova, Italy, October 2—5 2004. Springer.

[5]1 A.P. Dempster, N. M. Laird, and D. B. Rubin. Maxi-
mum likelihood from incomplete data via the EM al-
gorithm. J. Royal Stat. Soc., B 39:1-39, 1977.

[6] N. Friedman. Learning belief networks in the pres-
ence of missing values and hidden variables. In Pro-
ceedings of the Fourteenth International Conference
on Machine Learning (ICML-1997), 1997.

[7] Z. Ghahramani and M. Jordan. Factorial hidden
Markov models. Machine Learning, 29:245-273,
1997.

[8] S. Greenberg. Using Unix: collected traces of 168
users. Technical report, Dept. of Computer Science,
University of Calgary, Alberta, 1988.

[9] N. Jacobs and H. Blockeel. User modeling with se-
quential data. In Proceedings of 10th International

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Conference on Human - Computer Interaction, vol-
ume 4, pages 557-561, 2003.

S. M. Katz. Estimation of probabilities from sparse
data for hte language model component of a speech
recognizer. IEEE Transactions on Acoustics, Speech,
and Signal Processing (ASSP), 35:400-401, 1987.

K. Kersting, L. De Raedt, and T. Raiko. Logical hid-
den markov models. 2005. (submitted).

K. Kersting, T. Raiko, S. Kramer, and L. De Raedt.
Towards discovering structural signatures of protein
folds based on logical hidden markov models. In Pro-

ceedings of the Pacific Symposium on Biocomputing
(PSB-03), 2003.

K. Kersting, T. Raiko, and L. De Raedt. A Structural
GEM for Learning Logical Hidden Markov Models.
In Working Notes of the Second KDD-Workshop on
Multi-Relational Data Mining (MRDM-03), 2003.

N. Landwehr, K. Kersting, and L. De Raedt. nFOIL:
Integrating Naive Bayes and Foil. In Proceedings of
AAAI-05, 2005. To appear.

T. Lane. Hidden Markov Models for Hu-
man/Computer Interface Modeling. In Proceedings
of the IJCAI-99 Workshop on Learning about Users,
pages 35-44, Stockholm, Sweden, July 1999.

G. J. McKachlan and T. Krishnan. The EM Algorithm
and Extensions. John Eiley & Sons, Inc., 1997.

S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic
Programming, 19(20):629-679, 1994.

C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano,
and B. Tausend. Declarative Bias in ILP. In L. De
Raedt, editor, Advances in Inductive Logic Program-
ming. IOS Press, 1996.

M. Ostendorf and H. Singer. HMM topology design
using maximum likelihood successive state splitting.
Computer Speech and Language, 11(1):17-41, 1997.

A. Popescul, L. H. Ungar, S. Lawrence, and D. M.
Pennock. Statistical Relational Learning for Docu-
ment Mining. In Proceedings of ICDM-03, pages
275-282, 2003.

L. R. Rabiner and B. H. Juang. An introduction to
hidden Markov models. IEEE ASSP Magazine, pages
4-15, January 1986.

A. Stolcke and S. Omohundro. Hidden Markov model
induction by Bayesian model merging. In S. J. Han-
son, J. D. Cowan, and C. L. Giles, editors, Adv. in

Neural Information Processing Systems, volume 5,
pages 11-18, 1993.

