On the behavior of tile assembly system at high temperatures

Shinnosuke Seki ${ }^{1}$ and Yasushi Okuno ${ }^{2}$
${ }^{1}$ Department of Information and Computer Science, Aalto University shinnosuke.seki@aalto.fi
${ }^{2}$ Department of Systems Bioscience for Drug Discovery, Kyoto University June 19th, 2012

Molecular self-assembly

Engineering Goal

Practice of DNA self-assembly

In 1982, Seeman proposed the following laboratory implementation of DNA tile called holiday junction [Seeman 1982].

Practice of DNA self-assembly

Practice of DNA self-assembly

Polymerase Chain
Reaction

Many copies

Practice of DNA self-assembly

Manhattan structure assembles

Many copies

Theory of algorithmic self-assembly

Erik Winfree asked: what if . . .

Theory of algorithmic self-assembly

Erik Winfree asked: what if . . .

- there are more than one tile types, with different sticky ends?

Theory of algorithmic self-assembly

Erik Winfree asked: what if . . .

- there are more than one tile types, with different sticky ends?
- some sticky ends are weak?

Abstract Tile-Assembly Model (aTAM) [Winfree 1998]

- A DNA holiday junction is abstracted to be a unit square tile.
- Sticky ends at each of its 4 sides are abstracted to be glues taken from a set Σ

Abstract Tile-Assembly Model (aTAM) [Winfree 1998]

- A DNA holiday junction is abstracted to be a unit square tile.
- Sticky ends at each of its 4 sides are abstracted to be glues taken from a set Σ
- A function $g: \Sigma \rightarrow \mathbb{N}_{0}$ assigns each label a strength.

$$
g(\mathrm{~A})=2, g(\mathrm{~B})=0, g(\mathrm{C})=1
$$

Abstract Tile-Assembly Model (aTAM) [Winfree 1998]

A tile assembly system (TAS) is a 4-tuple (T, σ, g, τ), where
T a set of tile types
σ a special tile type called seed
g glue strength function
τ a positive integer threshold called temperature

$$
g(\mathrm{~A})=2, g(\mathrm{~B})=0, g(\mathrm{C})=1
$$

Assembly begins with a single copy of seed σ.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

An example: self-assembly of $n \times n$ square using $n+3$ tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at least τ (temperature). In this example, $\tau=2$.

(Directed) tile complexity

Definition The minimum \# of tile types necessary for a TAS at temperatures below τ to assemble S.
Notation $C^{\text {dtilec }(\leq \tau)}(S)$.
The above example shows that $\mathrm{C}^{\text {dtilec }(\leq 2)}\left(S q_{n}\right) \leq n+3$, and it is actually $O(\log n / \log \log n)$ [Adleman et al. 2001].

Theorem ([Adleman et al. 2002])
It is NP-hard to compute directed tile complexity at the temperatures below 2.

But, for squares ...

Minimum tile system for squares (MTSS)

INPUT a positive integer n
OUTPUT a smallest directed TAS at a temperature below τ that assembles the $n \times n$ square $S q_{n}$.

Polynomial-time algorithm for MTSS
[Chen, Doty, and Seki 2011]

1. \# of "(local) behaviors of TASs" is polynomial in n.
2. For each of them,
2.1 check whether the behavior is valid or implementable as a behavior of TAS;
2.2 if YES, then check whether it assembles $S q_{n}$.

Local behavior of a tile in a TAS

Let $\mathcal{T}=(T, \sigma, g, \tau)$ be a TAS. The behavior of $t \in T$ (how its 4 sides cooperate for attachment) is completely described by a system of 16τ-inequalities (inequalities whose RHS is τ).
If $\tau=4$, then

Local equivalence among TASs

Given TASs $\mathcal{T}_{1}=\left(T, \sigma, g_{1}, \tau_{1}\right)$ and $\mathcal{T}_{2}=\left(T, \sigma, g_{2}, \tau_{2}\right)$ with the same tile set T, they are locally equivalent if for each tile type $t \in T$, the induced systems of 16 inequalities are identical.

All TASs in a class behave exactly in the same way, and hence, output the same final product.

Validity or implementability of a behavior

Each equivalence class is represented by systems of 16 τ-inequalities assigned to tile types.

Some of such systems may not represent any class.

Validity or implementability of a behavior

Each equivalence class is represented by systems of 16 τ-inequalities assigned to tile types.

Some of such systems may not represent any class.

FindStrength and FindOptimalStrength

FindStrength

INPUT a tile set T and systems of τ-inequalities;
OUTPUT a TAS whose tile set is T and each of whose tile types behaves as specified, if any.

There is a polynomial time algorithm for FindStrength [Chen, Doty, and Seki 2011].

FindOptimalStrength
Can we modify FindStrength so as to optimize the output TAS w.r.t. temperature in a polynomial time?

Main contribution
FindOptimalStrength is np-hard.

Threshold programming (TP)

GIVEN integer matrices C_{1}, C_{2};
MINIMIZE τ;
SUBJECT TO $C_{1} x \geq \tau \overrightarrow{1}$ and $C_{2} x<\tau \overrightarrow{1}$, where x is a vector of positive integer variables.

Our special interest lies in TPs all of whose conditions are τ-inequalities of at most 4 terms like $v_{1}+v_{2}+v_{3}<\tau$.

- Whenever TP is referred to, we assume this.
- This is for the reduction from TP to FindOptimalStrength.

Karp-reduction from 1-in-3-SAT to FindOptimalStrength

The reduction proceeds $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$.

1. Quadripartite 1-in-3-SAT;
2. τ-TP for any $\tau \geq 4$;
3. TP;
4. FindOptimalStrength.

Quadripartite 1-in-3-SAT is a variant of 1-in-3-SAT by Schaefer [Schaefer 1978], in which the variable set can be split into disjoint 4 subsets such that each clause contains at most 1 variable from each set. This is NP-hard even if no clause contains negated literals.

Karp-reduction from 1-in-3-SAT to 4-TP and to TP

τ-TP
Given integer matrices C_{1}, C_{2}, decide whether there is a positive integer vector x such that $C_{1} x \geq \tau \overrightarrow{1}$ and $C_{2} x<\tau \overrightarrow{1}$.
For $\tau=4$, a clause $\left\{x_{1}, x_{2}, x_{3}\right\}$ is converted into

$$
\begin{array}{r}
v_{1}+v_{2}+v_{3} \geq 4 \\
v_{1}+v_{2}, v_{1}+v_{3}, v_{2}+v_{3}<4
\end{array}
$$

Theorem
4-TP is NP-hard. More strongly, for any $\tau \geq 4, \tau-T P$ is NP-hard.
Theorem
τ-TP is NP-hard.

From TP to FindOptimalStrength

The following inequalities, which correspond to a clause of $1-\mathrm{in}-3$-SAT

$$
\begin{aligned}
v_{1}+v_{2}+v_{3} & \geq 4 \\
v_{1}+v_{2}, v_{1}+v_{3}, v_{2}+v_{3} & <4 .
\end{aligned}
$$

are converted into a right tile type with
 the cooperation set below.

$$
\begin{aligned}
v_{1}+v_{2} & <\tau \\
v_{2}+v_{3} & <\tau \\
v_{3}+v_{1} & <\tau \\
v_{1}+v_{2}+v_{3} & \geq \tau \\
v_{\tau} & \geq \tau
\end{aligned}
$$

From TP to FindOptimalStrength (cont.)

Theorem

FindOptimalStrength is NP-hard.

Other results

Theorem
For any $\tau \geq 2$, there is a shape S_{τ} with
$\mathrm{C}^{\text {dtilec }(<\tau)}\left(S_{\tau}\right)>\mathrm{C}^{\text {dtilec }(\tau)}\left(S_{\tau}\right)$.

Theorem
For any $\tau \geq 4$, it is NP-hard to compute directed tile complexity at the temperatures below τ.

Thank you very much for your attention.

This research project is supported by

- Kyoto University Start-up Grant-in-Aid for Young Scientists Grant No. 021530 to Shinnosuke Seki
- Funding Program for Next Generation World-Leading Researchers (NEXT Program) to Yasushi Okuno
- Department of Information and Computer Science, Aalto University

Aalto University

References

E- L. M. Adleman, Q. Cheng, A. Goel, and M-D. Huang. Running time and program size for self-assembled squares.

STOC 2001, pp. 740-748, 2001.
目 L. M. Adleman, Q. Cheng, A. Goel, M-D. Huang, D. Kempe,
P. M. de Espanes, and P. W. K. Rothemund.

Combinatorial optimization problems in self-assembly. STOC 2002, pp. 23-32, 2002.
圊 H-L. Chen, D. Doty, and S. Seki.
Program size and temperature in self-assembly. ISAAC 2011, pp. 445-453, 2011.

References（cont．）

居 P．W．K．Rothemund and E．Winfree．
The program－size complexity of self－assembled squares （extended abstract）．
STOC 2000，pp．459－468， 2000.
睩 T．J．Schaefer．
The complexity of satisfiability problems．
STOC 1978，pp．216－226， 1978.
圊 N．C．Seeman．
Nucleic－acid junctions and lattices．
Journal of Theoretical Biology 99：237－247， 1982.
圊 E．Winfree．
Algorithmic Self－Assembly of DNA．
PhD thesis，California Institute of Technology，June 1998.

