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Molecular self-assembly

Engineering Goal



Practice of DNA self-assembly
In 1982, Seeman proposed the following laboratory
implementation of DNA tile called holiday junction
[Seeman 1982].
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Theory of algorithmic self-assembly

Erik Winfree asked: what if . . .

I there are more than one tile types, with different sticky
ends?

I some sticky ends are weak?
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Abstract Tile-Assembly Model (aTAM)
[Winfree 1998]

I A DNA holiday junction is
abstracted to be a unit square
tile.

I Sticky ends at each of its 4
sides are abstracted to be
glues taken from a set Σ

I A function g : Σ→ N0 assigns
each label a strength.



Abstract Tile-Assembly Model (aTAM)
[Winfree 1998]

I A DNA holiday junction is
abstracted to be a unit square
tile.

I Sticky ends at each of its 4
sides are abstracted to be
glues taken from a set Σ

I A function g : Σ→ N0 assigns
each label a strength.



Abstract Tile-Assembly Model (aTAM)
[Winfree 1998]

A tile assembly system (TAS) is a
4-tuple (T , σ,g, τ), where

T a set of tile types
σ a special tile type

called seed
g glue strength function
τ a positive integer

threshold called
temperature

Assembly begins with a single copy
of seed σ.



An example: self-assembly of n × n square using
n + 3 tile types at temperature 2

A tile can attach to an assembly if it binds with total strength at
least τ (temperature). In this example, τ = 2.
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(Directed) tile complexity

Definition The minimum # of tile types necessary for a TAS
at temperatures below τ to assemble S.

Notation Cdtilec(≤τ)(S).

The above example shows that Cdtilec(≤2)(Sqn) ≤ n + 3, and it
is actually O(log n/ log log n) [Adleman et al. 2001].

Theorem ([Adleman et al. 2002])
It is NP-hard to compute directed tile complexity at the
temperatures below 2.

But, for squares . . .



Minimum tile system for squares (MTSS)

INPUT a positive integer n
OUTPUT a smallest directed TAS at a temperature below τ

that assembles the n × n square Sqn.

Polynomial-time algorithm for MTSS
[Chen, Doty, and Seki 2011]

1. # of “(local) behaviors of TASs” is polynomial in n.
2. For each of them,

2.1 check whether the behavior is valid or implementable as a
behavior of TAS;

2.2 if YES, then check whether it assembles Sqn.



Local behavior of a tile in a TAS

Let T = (T , σ,g, τ) be a TAS. The behavior of t ∈ T (how its 4
sides cooperate for attachment) is completely described by a
system of 16 τ -inequalities (inequalities whose RHS is τ ).

If τ = 4, then 

g(t(N)) < τ
...

g(t(W)) + g(t(E)) ≥ τ
...

g(t(N)) + g(t(S)) + g(t(E)) < τ
...

g(t(N)) + g(t(W)) + g(t(S)) + g(t(E)) ≥ τ.



Local equivalence among TASs

Given TASs T1 = (T , σ,g1, τ1) and T2 = (T , σ,g2, τ2) with the
same tile set T , they are locally equivalent if for each tile type
t ∈ T , the induced systems of 16 inequalities are identical.

All TASs in a class behave exactly in the same way, and hence,
output the same final product.



Validity or implementability of a behavior
Each equivalence class is represented by systems of 16
τ -inequalities assigned to tile types.

Some of such systems may not represent any class.
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...

g(t(N)) + g(t(S)) + g(t(E)) < τ
...

g(t(N)) + g(t(W)) + g(t(S)) + g(t(E)) ≥ τ.

⇒

g(A) ≥ τ and g(A) < τ !?
This behavior is invalid (un-implementable).
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FINDSTRENGTH and FINDOPTIMALSTRENGTH

FINDSTRENGTH

INPUT a tile set T and systems of τ -inequalities;
OUTPUT a TAS whose tile set is T and each of whose tile

types behaves as specified, if any.

There is a polynomial time algorithm for FINDSTRENGTH

[Chen, Doty, and Seki 2011].

FINDOPTIMALSTRENGTH

Can we modify FINDSTRENGTH so as to optimize the output TAS
w.r.t. temperature in a polynomial time?

Main contribution
FINDOPTIMALSTRENGTH is NP-hard.



Threshold programming (TP)

GIVEN integer matrices C1,C2;
MINIMIZE τ ;

SUBJECT TO C1x ≥ τ
−→
1 and C2x < τ

−→
1 , where x is a vector

of positive integer variables.

Our special interest lies in TPs all of whose conditions are
τ -inequalities of at most 4 terms like v1 + v2 + v3 < τ .

I Whenever TP is referred to, we assume this.
I This is for the reduction from TP to FINDOPTIMALSTRENGTH.



Karp-reduction from 1-in-3-SAT to FINDOPTIMALSTRENGTH

The reduction proceeds 1→ 2→ 3→ 4.

1. Quadripartite 1-in-3-SAT;
2. τ -TP for any τ ≥ 4;
3. TP;
4. FINDOPTIMALSTRENGTH.

Quadripartite 1-in-3-SAT is a variant of 1-in-3-SAT by Schaefer
[Schaefer 1978], in which the variable set can be split into disjoint 4
subsets such that each clause contains at most 1 variable from each
set. This is NP-hard even if no clause contains negated literals.



Karp-reduction from 1-in-3-SAT to 4-TP and to TP

τ -TP
Given integer matrices C1,C2, decide whether there is a
positive integer vector x such that C1x ≥ τ~1 and C2x < τ~1.
For τ = 4, a clause {x1, x2, x3} is converted into

v1 + v2 + v3 ≥ 4
v1 + v2, v1 + v3, v2 + v3 < 4.

Theorem
4-TP is NP-hard. More strongly, for any τ ≥ 4, τ -TP is NP-hard.

Theorem
τ -TP is NP-hard.



From TP to FINDOPTIMALSTRENGTH

The following inequalities, which cor-
respond to a clause of 1-in-3-SAT

v1 + v2 + v3 ≥ 4
v1 + v2, v1 + v3, v2 + v3 < 4.

are converted into a right tile type with
the cooperation set below.

v1 + v2 < τ

v2 + v3 < τ

v3 + v1 < τ

v1 + v2 + v3 ≥ τ

vτ ≥ τ.



From TP to FINDOPTIMALSTRENGTH (cont.)

Theorem
FINDOPTIMALSTRENGTH is NP-hard.



Other results

Theorem
For any τ ≥ 2, there is a shape Sτ with
Cdtilec(<τ)(Sτ ) > Cdtilec(τ)(Sτ ).

Theorem
For any τ ≥ 4, it is NP-hard to compute directed tile complexity
at the temperatures below τ .
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