A stronger square conjecture on binary words

Nataša Jonoska ${ }^{1}$, Florin Manea ${ }^{2}$, and Shinnosuke Seki ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, University of South Florida, USA. ${ }^{2}$ Institute für Informatik, Christian-Albrechts-Universität zu Kiel, Germany.
${ }^{3}$ Department of Information and Computer Science, Aalto University, Finland.

Talk at SOFSEM 2014, January 27th.

Square packing

 What is square?
Square

A square is a word (sequence of letters) of the form $x x$.

Example

Squares	Non-squares
aa	aba
abab	bbab
baabbaab	baabbaaa
abaaababaaab	aaaaaaa
\vdots	\vdots

Square packing

Squares on a word

Counting rule

Don't count the same square twice or more times!
What squares does the following word (length 16) contain? abbaaaabaaaaabaa

Square packing

Squares on a word

Counting rule

Don't count the same square twice or more times!
What squares does the following word (length 16) contain? abbaaaabaaaaabaa

- aa (occurs 8 times but count is just 1)

Square packing

Squares on a word

Counting rule

Don't count the same square twice or more times!
What squares does the following word (length 16) contain? abbaaaabbaaaaabaa

- aa (occurs 8 times but count is just 1)
- aaaa

Square packing

Squares on a word

Counting rule

Don't count the same square twice or more times!
What squares does the following word (length 16) contain? abbaaaabaaaaaabaa

- aa (occurs 8 times but count is just 1)
- aaaa
- aaaabaaaaaba

Square packing

Squares on a word

Counting rule

Don't count the same square twice or more times!
What squares does the following word (length 16) contain?

abbaaaabaaaaabaa

- aa (occurs 8 times but count is just 1)
- aaaa
- aaaabaaaaaba
- aaabaaaaabaa

Square packing

Squares on a word

Counting rule

Don't count the same square twice or more times!
What squares does the following word (length 16) contain?

abbaaaabaaaaabaa

- aa (occurs 8 times but count is just 1)
- aaaa
- aaaabaaaaaba
- aaabaaaaabaa
- bb

Square packing

Squares on a word

Counting rule

Don't count the same square twice or more times!
What squares does the following word (length 16) contain?

abbaaaabaaaaaabaa

- aa (occurs 8 times but count is just 1)
- aaaa
- aaaabaaaaaba

The count is 6

- aaabaaaaabaa
- bb
- baaaabaaaa

Square packing

Counting squares: example

Exercise

How many squares does the following word (length 20) contain?

$$
a^{20}=\text { aaaaaaaaaaaaaaaaaaaa }
$$

Square packing

Counting squares: example

Exercise

How many squares does the following word (length 20) contain?

$$
a^{20}=\text { aaaaaaaaaaaaaaaaaaa }
$$

Answer

$10\left(a^{2}, a^{4}, a^{6}, a^{8}, a^{10}, a^{12}, a^{14}, a^{16}, a^{18}, a^{20}\right)$.

Square packing

Counting squares: example

Exercise

How many squares does the following word (length 20) contain?

$$
a^{20}=\text { aaaaaaaaaaaaaaaaaaa }
$$

Answer

$10\left(a^{2}, a^{4}, a^{6}, a^{8}, a^{10}, a^{12}, a^{14}, a^{16}, a^{18}, a^{20}\right)$.

Proposition

The unary word of length n, that is, a^{n}, contains exactly $\lfloor n / 2\rfloor$ squares.

Square packing
 Counting squares: example

Exercise

How many squares does the following word (length 20) contain? abaabaaabaabaaabaaaa

Square packing

Counting squares: example

Exercise

How many squares does the following word (length 20) contain?

abaabaaabaabaaabaaaa

Answer
$13\left(a^{2},(a a)^{2},(a a b)^{2},(a b a)^{2},(b a a)^{2},(a a b a)^{2},(a b a a)^{2},(b a a a)^{2},(a a b a a a b)^{2}\right.$, $\left.(\text { abaaaba })^{2},(a b a a b a a)^{2},(b a a a b a a)^{2},(b a a b a a a)^{2}\right)$.

Square packing

Counting squares: example

Exercise

How many squares does the following word (length 20) contain? abaabaaabaabaaabaaaa

Answer
$13\left(a^{2},(a a)^{2},(a a b)^{2},(a b a)^{2},(b a a)^{2},(a a b a)^{2},(a b a a)^{2},(b a a a)^{2},(a a b a a a b)^{2}\right.$, $\left.(\text { abaaaba })^{2},(a b a a b a a)^{2},(b a a a b a a)^{2},(b a a b a a a)^{2}\right)$.

Thus, binary words outperform unary words in packing squares.

Square packing Quiz-setting

Square packing

Find a word that contains many squares relative to its length.

Upper bounds

Linear bounds; proved and conjectured

Theorem ([Fraenkel \& Simpson 1998])

A word of length n contains at most $2 n$ squares.

Idea of simple proof [llie 2005]

Ignore all but the rightmost occurrence of each square, and we can see that, at each position, at most 2 rightmost occurrences can start.

Upper bounds

Linear bounds; proved and conjectured

Theorem ([Fraenkel \& Simpson 1998])

A word of length n contains at most $2 n$ squares.

Idea of simple proof [llie 2005]

Ignore all but the rightmost occurrence of each square, and we can see that, at each position, at most 2 rightmost occurrences can start.

Square conjecture

A word of length n contains at most n squares.

Upper bounds

Conjecture

Unsuccessful attempt

If we could show that "at each position of a word, at most one rightmost occurrence could start," then the conjecture would be proved.

Counterexample

Consider abaababaab. The rightmost occurrences of abaaba and abaababaab start both on position 1.

Square-dense words

Examples

Known square-dense words include

Square-dense words

Examples

Known square-dense words include

- the following word by Fraenkel and Simpson:

$$
\begin{aligned}
w_{\mathrm{fs}} & =\text { abaabaaabaabaaabaaaabaaabaaaabaaaaab } \cdots \\
& =a^{1} b a^{2} b a^{3} b a^{2} b a^{3} b a^{4} b a^{3} b a^{4} b a^{5} b \cdots
\end{aligned}
$$

Square-dense words

Examples

Known square-dense words include

- the following word by Fraenkel and Simpson:

$$
\begin{aligned}
w_{\mathrm{fs}} & =\text { abaabaaabaabaaabaaaabaaabaaabaaaaab } \ldots \\
& =a^{1} b a^{2} b a^{3} b a^{2} b a^{3} b a^{4} b a^{3} b a^{4} b a^{5} b \cdots
\end{aligned}
$$

- Let us propose a "simpler" one as:

$$
w_{\mathrm{jms}}=a b a a b a a a b a a a b a a a a a b \cdots=a^{1} b a^{2} b a^{3} b a^{4} b a^{5} b \cdots .
$$

Square-dense words
 Examples

Known square-dense words include

- the following word by Fraenkel and Simpson:

$$
\begin{aligned}
w_{\mathrm{fs}} & =\text { abaabaaabaabaabaaaabaaabaaabaaaaab } \ldots \\
& =a^{1} b a^{2} b a^{3} b a^{2} b a^{3} b a^{4} b a^{3} b a^{4} b a^{5} b \cdots
\end{aligned}
$$

- Let us propose a "simpler" one as:

$$
w_{\mathrm{jms}}=a b a a b a a a b a a a a b a a a a a b \cdots=a^{1} b a^{2} b a^{3} b a^{4} b a^{5} b \cdots .
$$

Note that both of these words are binary.

Square-densest words

Candidates are binary

Conjecture

Square-densest words are binary.
binary words with at most $1 b$ is square-sparse
Recall that the word a^{n} contains exactly $\lfloor n / 2\rfloor$ squares.
Consider a word $a^{i} b a^{n-i-1}$ with $1 b$. The b cannot make contribution to any square, so replacing it with a does not destroy any square. Hence, it contains at most $\lfloor n / 2\rfloor$ squares.

Stronger conjecture

Stronger conjecture on binary words

Let us strengthen the square conjecture by the \# of occurrences of b 's as follows.

Stronger conjecture on binary words
For $k \geq 2$, a binary word w of length n with $k b$'s contains at most $\frac{2 k-1}{2 k+2} n$ squares.

Stronger conjecture

Asymptotic tightness

Theorem

Both of the words w_{fs} and w_{jms} achieve the tighter bound asymptotically.

Inductive approach to the stronger conjecture

Preliminaries

A binary word w with k b's can be represented as

$$
w=a^{i_{1}} b a^{i_{2}} b \cdots a^{i_{k}} b a^{i_{k+1}}
$$

for some coefficients $i_{1}, \ldots, i_{k+1} \geq 0$.

Coefficient sequence

The coefficient sequence of w means the sequence i_{1}, \ldots, i_{k+1}.

Coefficient set

The coefficient set of w, denoted by $I(w)$, is the multiset $\left\{i_{1}, i_{2}, \ldots, i_{k}, i_{k+1}\right\}$.

Inductive approach to the stronger conjecture

sufficient condition inequality

Let
$I(w)[j] \quad$ the j-th smallest element of $I(w)$
$I(w)[\max] \quad$ the maximum element of $I(w)$
$\# \operatorname{Sq}(w) \quad$ the number of squares on the word w

Lemma

If a word w_{k} of length n with k b's satisfies

$$
\# \operatorname{Sq}\left(w_{k}\right) \leq\left\lfloor\frac{I\left(w_{k}\right)[\max]}{2}\right\rfloor+\sum_{j=1}^{\left|I\left(w_{k}\right)\right|-2}\left(I\left(w_{k}\right)[j]+1\right)
$$

then $\# \operatorname{Sq}\left(w_{k}\right) \leq \frac{2 k-1}{2 k+2} n$.

Inductive approach to the stronger conjecture Induction strategy

Induction hypothesis

The inequality holds for all words with at most $k-1 b$'s.

Inductive approach to the stronger conjecture Induction strategy

Induction hypothesis

The inequality holds for all words with at most $k-1 b$'s.
(1) Apply an operation to a word w_{k-1} with $k-1 b$'s to yield a word w_{k} with $k b$'s.

Inductive approach to the stronger conjecture Induction strategy

Induction hypothesis

The inequality holds for all words with at most $k-1 b$'s.
(1) Apply an operation to a word w_{k-1} with $k-1 b$'s to yield a word w_{k} with $k b$'s.
(2) Prove that the \# of squares thus created is small enough to keep the inequality valid.

Inductive approach to the stronger conjecture

Induction strategy: example

Induction hypothesis

$w_{k-1}=a^{1} b a^{2} b \cdots a^{k-1} b a^{k}$ (with $k-1 b$'s) satisfies the inequality, that is, $\# \operatorname{Sq}\left(w_{k-1}\right) \leq\lfloor k / 2\rfloor+\sum_{j=1}^{k-2}(j+1)$.

Inductive approach to the stronger conjecture

Induction strategy: example

Induction hypothesis

$w_{k-1}=a^{1} b a^{2} b \cdots a^{k-1} b a^{k}$ (with $k-1 b$'s) satisfies the inequality, that is, $\# \operatorname{Sq}\left(w_{k-1}\right) \leq\lfloor k / 2\rfloor+\sum_{j=1}^{k-2}(j+1)$.
(1) $w_{k-1} \leftarrow b a^{k+1} \Rightarrow w_{k}=a^{1} b a^{2} b \cdots a^{k-1} b a^{k} b a^{k} a$.

Inductive approach to the stronger conjecture

 Induction strategy: example
Induction hypothesis

$w_{k-1}=a^{1} b a^{2} b \cdots a^{k-1} b a^{k}$ (with $k-1 b$'s) satisfies the inequality, that is, $\# \operatorname{Sq}\left(w_{k-1}\right) \leq\lfloor k / 2\rfloor+\sum_{j=1}^{k-2}(j+1)$.
(1) $w_{k-1} \leftarrow b a^{k+1} \Rightarrow w_{k}=a^{1} b a^{2} b \cdots a^{k-1} b a^{k} b a^{k} a$.
(2) The catenation creates $(k-1)+1$ squares, that is,

$$
\left(a^{k-1} b a\right)^{2},\left(a^{k-2} b a^{2}\right)^{2}, \ldots,\left(a b a^{k-1}\right)^{2},\left(b a^{k}\right)^{2} .
$$

Inductive approach to the stronger conjecture

 Induction strategy: example
Induction hypothesis

$w_{k-1}=a^{1} b a^{2} b \cdots a^{k-1} b a^{k}$ (with $k-1 b$'s) satisfies the inequality, that is, $\# \operatorname{Sq}\left(w_{k-1}\right) \leq\lfloor k / 2\rfloor+\sum_{j=1}^{k-2}(j+1)$.
(1) $w_{k-1} \leftarrow b a^{k+1} \Rightarrow w_{k}=a^{1} b a^{2} b \cdots a^{k-1} b a^{k} b a^{k} a$.
(2) The catenation creates $(k-1)+1$ squares, that is,

$$
\left(a^{k-1} b a\right)^{2},\left(a^{k-2} b a^{2}\right)^{2}, \ldots,\left(a b a^{k-1}\right)^{2},\left(b a^{k}\right)^{2} .
$$

(3) Thus,

$$
\begin{aligned}
\# \mathrm{Sq}\left(w_{k}\right) & \leq\lfloor(k+1) / 2\rfloor+\sum_{j=1}^{k-2}(j+1)+(k-1)+1 \\
& =\lfloor(k+1) / 2\rfloor+\sum_{j=1}^{k-1}(j+1)
\end{aligned}
$$

Inductive approach to the stronger conjecture

Theorems

1) When the coefficients are pairwise-distinct

Theorem

For $k \geq 2$, let $w_{k}=a^{i_{0}} b a^{i_{1}} b \cdots b a^{i_{k}}$ be a binary word of length n with k b's. If the coefficients i_{1}, \ldots, i_{k-1} are pairwise-distinct, then $\# \operatorname{Sq}\left(w_{k}\right) \leq \frac{2 k-1}{2 k+2} n$.

Recall $w_{\mathrm{jms}}=a^{1} b a^{2} b a^{3} b a^{4} b \ldots$. Thus, the tighter bound holds for any subword of $w_{j m s}$.

Inductive approach to the stronger conjecture

2) When the coefficient sequence is sorted

Theorem

For $k \geq 2$, let $w_{k}=a^{i_{0}} b a^{i_{1}} b \cdots b a^{i_{k-1}} b a^{i_{k}}$ be a binary word of length n with k b's. If $i_{1} \leq i_{2} \leq \cdots \leq i_{k-1}$, then $\# \operatorname{Sq}\left(w_{k}\right) \leq \frac{2 k-1}{2 k+2} n$.

Inductive approach to the stronger conjecture

Theorems
3) Pairwise-distinct extrema

A maximum of the coefficient sequence i_{0}, \ldots, i_{k} is its subsequence $i_{\ell}, i_{\ell+1}, \ldots, i_{r-1}, i_{r}$ such that $i_{\ell}<i_{\ell+1}=\cdots=i_{r-1}>i_{r}$. The notion of minima is defined analogously.

Theorem

For $k \geq 2$, let w_{k} be a binary word of length n with k b's. If all maxima of its coefficient sequence are pairwise-distinct, then $\# \operatorname{Sq}\left(w_{k}\right) \leq \frac{2 k-1}{2 k+2} n$.

Recall $w_{\mathrm{fs}}=a^{1} b a^{2} b a^{3} b a^{2} b a^{3} b a^{4} b a^{3} b a^{4} b a^{5} b \cdots$, and its maxima $i_{2} i_{3} i_{2}, i_{3} i_{4} i_{3}, i_{4} i_{5} i_{4}, \ldots$ are pairwise-distinct. Hence, the tighter bound holds for any subword of w_{fs}.

Inductive approach to the stronger conjecture

4) Small \# of b's

proposition

For $2 \leq k \leq 9$, any word w of length n with at most $k b$'s satisfies $\# \operatorname{Sq}(w) \leq \frac{2 k-1}{2 k+2} n$.

Summary of the solved cases

The tighter bound holds if one of the following conditions is safisfied:
(1) Extrema of the coefficient sequence are pairwise-distinct, including the cases when:

- the coefficients are pairwise-distinct
- the sequence is sorted
(2) Multiplicity of coefficients is at most 4.
(3) $|w|_{b} \leq 9$.

Open problems

- Prove the bound $\frac{2 k-1}{2 k+2} n$ in general,
- or Find a counterexample (a binary word of length n with k b 's that contains more than $\frac{2 k-1}{2 k+2} n$ squares).
- Prove that square-densest words are binary.
- Generalize the bound for arbitrary alphabets.

Acknowledgements

Thank you very much for your attention!

References I

目 [Fraenkel \& Simpson 1998]
A. S. Fraenkel and J. Simpson.

How many squares can a string contain?
Journal of Combinatorial Theory, Series A 82, pp.112-120, 1998.

- [Ilie 2005]
L. Ilie.

A simple proof that a word of length n has at most $2 n$ distinct squares.
Journal of Combinatorial Theory, Series A 112(1), pp.163-164, 2005.

References II

- [Jonoska, Manea, S. 2013]
N. Jonoska, F. Manea, and S. Seki.

Stronger square conjecture on binary words.
SOFSEM 2014, to appear.

