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Is folding hard?

Most structures in the nature, however complex and intricate, are
obtained from a linear genetic code by folding, e.g.,

RNA sequences→ large chain of amino-acids→ proteins.

Predicting the most likely folding of an input sequence is known to
be NP-hard.

Is the nature stubbornly solving such hard problems?



Cotranscriptional folding
RNA origami

Design of ssRNA origami that self-assembles RNA tiles

[Geary, Rothemund, Andersen 2014]
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Oritatami system

Free energy

RNA primary structure is modeled as a sequence over Σ.

RNA secondary structure (conformation) is modeled as a pair of
p a non-self-crossing directed path on the triangular grid

that is labeled by a primary structure
R A subset of {(i , j) | The i-th and j-th vertices on p with j ≥ i + 2

that are adjecent to each other on the grid}.

Ex.) Two conformations a primary structure GCAAGCUCUACG may take.
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Oritatami system
Free energy

Principle of thermodynamics

Secondary structures with smaller free energy are more stable.
Hence, among all possible secondary structures, a primary
structure folds into the one(s) with smallest free energy.

Ex.) The right conformation has more hydrogen bonds, and hence, more

stable, that is, has smaller free energy.
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Oritatami system
Definition

An oritatami system is a 6-tuple Ξ = (Σ,R, α,w , σ, δt), where
R ⊆ Σ× Σ aRb means that a bead of type a ∈ Σ can form

a hydrogen bond with a bead of type b ∈ Σ.
α ∈ N Beads can form at most α bonds.
w ∈ Σ∗ ∪ Σω a primary structure
σ an initial conformation called seed.
δt ∈ N delay time

If w is periodic, we say that the oritatami system is cyclic.



Oritatami system
Folding process and nondeterminism

Delay time δt = 2
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Oritatami system
Folding process and nondeterminism

There are various ways to elongate the current conformation (blue)
by transcribing the next 2 letters GC of the primary structure.
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Oritatami system
Folding process and nondeterminism

As such, it folds like this.
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Oritatami system
Folding process and nondeterminism

When the delay time becomes 3, the determination of how to fold
refers to the next 3 letters GCU instead.
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Oritatami system
Folding process and nondeterminism

Hence, it folds nondeterministically in the two ways.
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Cyclic oritatami system
Binary counter

reverse
0 seed 1

reverse01

reverse 1 0

reversetowards next increment

adder subunit reverse subunit

This primary structure is a repetition of adder subunit and reverse
subunit. Repetitive primary structures can be transcribed easily
from a cyclic DNA sequence.



Cyclic oritatami system
Binary counter (screenshot)
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Cyclic oritatami system is Turing complete

Theorem
The class of cyclic oritatami system with delay time 3 is Turing
complete.

Proof.
We design an oritatami system to emulate a cyclic tag system.



Cyclic oritatami system is Turing complete
Modified cyclic tag system

A cyclic tag system (cts) is a Turing-complete binary-string
rewriting system which consists of an initial word u ∈ {0, 1}∗ and a
list of productions v1, v2, . . . , vn ∈ {0, 1}∗ considered sequentially
in this order, cycling back to v1 after vn being considered.
Its rewriting proceeds as follows:

1. Examine the leftmost letter of the current word.

2. If it is 1, then append the current production at the end of the
word.

3. Delete the examined (leftmost) letter.

Skipping cts

It skips the next production after appending the current one in the
case of the leftmost letter being 1.



Cyclic oritatami system is Turing complete
Tools

Glider

•
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Gliders for oritatami systems with delay time 3.
(Left) A glider proceeds rightward according to the rule
(2,−3), (5, 0), (8, 3) ∈ R. It can make a turn, due to some
hardcoding in R or collision against environments.
(Right) Forward-swept wing (fsw) glider.



Cyclic oritatami system is Turing complete
Tools

Geometrical encoding

Our cts emulator encodes letters (0/1) of the current word
geometrically by bumps (0) and dents (1).

0 1



Cyclic oritatami system is Turing complete
Primary structure

Assume that the skipping cts to be emulated has n productions
v1, v2, . . . , vn ∈ {0, 1∗.

The primary structure of our cts emulator consists of the subunits
of the following two kinds:

Production It encodes one of the productions and plays the role
of appending it to the current word.

Reversal-read-copy (r2c) As the name suggests, it plays three
roles: reversal, reading a letter, and copying letters.

The primary structure is of the form:

α1x1α2x2 · · ·αnxn,

where x1, . . . , xn are r2c and αi encodes the i-th production vi .



Cyclic oritatami system is Turing complete
Reading the prefix of the form 0∗1
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0
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n = 3 production subunits are colored.



Cyclic oritatami system is Turing complete
Appending the encoded current production at the end
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Cyclic oritatami system is Turing complete
Related open problems

Arity-1

Our cts emulator requires multiple arity. Is the class of oritatami
systems with arity 1 still Turing complete?

Minimum alphabet size

What is the smallest alphabet Σ with which oritatami systems can
be Turing complete?

Minimum period

What is the shortest period with which cyclic oritatami systems
can be Turing complete?



Future projects on oritatami systems

There is a broad unexplored frontier of oritatami systems and
cotranscriptional folding.

I Design of oritatami systems to self-assemble structures and
mechanisms useful in nano-engineering.

I Algorithms to convert folding designs into oritatami systems
and their computational complexity

I Development of oritatami simulator (Pierre-Etienne Meunier
made the first one) and oritatami CAD

I Optimization of oritatami systems design

I Intrinsic universality

I Stochastic oritatami systems

I In-vitro implementation of oritatami systems in laboratories

I Oritatami GWAP (game with a purpose).



Oritatamists

Cody Geary
(CalTech)

Pierre-Etienne Meu-
nier
(Aalto Univ.)

Nicolas Schabanel
(LIAFA, Univ. Paris
Diderot)



University of
Electro-Communications

I National University specialized
in computer and physical
science, engineering, and
technology.

I Notable alumni includes
I Seinosuke Toda (Toda’s

theorem)
I Sumio Iijima (inventor of

carbon nanotubes)
I Ken Kutaragi (father of

PlayStation)

I Just 15 mins train ride from the
central Tokyo.



University of
Electro-Communications

Hiro Ito Satoshi Kobayashi



JSPS Fellowship to Japan

The Academy of Finland has funded researcher mobility with the
Japan Society for the Promotion of Science (JSPS) since 1988.

I All scientific disciplines

I Duration 12-24 months
I It covers

I travel costs between Finland and Japan
I monthly grant of 362,000 JPY (about 2700 EUR)
I settling-in allowance of 200,000 JPY



Thank you very much for your attention!

This talk is supported by the Academy of
Finland, Postdoctoral Researcher Grant No.
13266670/T30606.
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