Schema for parallel insertion and deletion

Lila Kari, Shinnosuke Seki

Department of Computer Science, University of Western Ontario

Developments in Language Theory August 19th, 2010

Notation

Σ alphabet
Σ^{*} the set of all words over Σ
u, v, w words
L, L_{1}, L_{2}, L_{3} given languages
R, R_{1}, R_{2}, R_{3} given regular languages
X, Y unknown variables

+ union of sets
L^{c} complement of L, i.e., $L^{c}=\Sigma^{*} \backslash L$
2^{L} power set of L

Parallel operations

Example ([Kari91])

Parallel insertion \Leftarrow is defined as follows: for a word $u=a_{1} a_{2} \cdots a_{n}\left(a_{i} \in \Sigma\right)$ and a language L,

$$
u \Leftarrow L=L a_{1} L a_{2} L \cdots L a_{n-1} L a_{n} L .
$$

Question

How to control parallel insertion (where to insert L)?

p-schema-based insertion

$$
\text { Let } \mathfrak{F}=\left\{\left(u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}\right) \mid n \geq 1, u_{1}, \ldots, u_{n} \in \Sigma^{*}\right\} .
$$

Definition

For $f=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathfrak{F}$, insertion \leftarrow_{f} based on f is defined as:

$$
u \longleftrightarrow_{f} L= \begin{cases}u_{1} L u_{2} L \cdots u_{n-1} L u_{n} & \text { if } u=u_{1} u_{2} \cdots u_{n} \\ \emptyset & \text { otherwise }\end{cases}
$$

We call $F \subseteq \mathfrak{F}$ a p-schema because it can specify how to parallel-insert a language L into a word u. We can extend \longleftarrow_{F} naturally into an operation between languages as:

$$
L_{1} \leftarrow_{F} L_{2}=\bigcup_{u \in L_{1}, f \in F} u \leftarrow_{f} L_{2} .
$$

Various instances of p-schema-based insertion

Syntactic and Semantic instances of p-schema-based insertion $L_{1} \leftarrow_{F} L_{2}$ include

operation	p-schema
catenation $L_{1} L_{2}$	$\Sigma^{*} \times\{\lambda\}$
reverse catenation $L_{2} L_{1}$	$\{\lambda\} \times \Sigma^{*}$
insertion $\left\{x L_{2} y \mid x y \in L_{1}\right\}$	$\Sigma^{*} \times \Sigma^{*}$
parallel insertion $L_{1} \Leftarrow L_{2}$	$\bigcup_{n \geq 0}(\{\lambda\} \times \underbrace{\left.\sum \times \cdots \times \Sigma \times\{\lambda\}\right)}_{n \text { times }}$
inserting exactly $2 L^{\prime}$ s	$\Sigma^{*} \times \Sigma^{*} \times \Sigma^{*}$
(x, y)-contextual insertion	$\Sigma^{*} \times \times y \Sigma^{*}$
Parallel insertion next to $b \in \Sigma$	$\left\{\left(u_{1}, \ldots, u_{n}\right) \mid n \geq 1\right.$,
	$\left.u_{1}, \ldots, u_{n} \in(\Sigma \backslash\{b\})^{*} b\right\}$

p-schema-based deletion

Definition

For $f=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathfrak{F}$, deletion \mapsto_{f} based on f is defined as:

$$
w \mapsto_{f} L= \begin{cases}\left\{u_{1} u_{2} \cdots u_{n}\right\} & \text { if } w \in u_{1} L u_{2} L \cdots u_{n-1} L u_{n} \\ \emptyset & \text { otherwise }\end{cases}
$$

\mapsto_{f} is also extended to an operation between languages as follows:

$$
L_{1} \mapsto_{F} L_{2}=\bigcup_{w \in L_{1}, f \in F} w \rightarrow_{f} L_{2} .
$$

Classes of p-schemata

Definition

For a p-schema F, its schema language $\psi(F)$ is defined over $\Sigma \cup\{\#\}$ as:

$$
\psi(F)=\left\{u_{1} \# u_{2} \# \cdots u_{n-1} \# u_{n} \mid\left(u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}\right) \in F\right\} .
$$

Let \mathcal{C} be a class of languages over $\Sigma \cup\{\#\}$. We say that a p-schema F is in \mathcal{C} if $\psi(F) \in \mathcal{C}$.

regular p-schema

A p-schema F is regular if $\psi(F)$ is regular.

Objectives

Question

Is it decidable whether language equations of the following forms:
(1) $X \leftarrow_{F} L_{2}=L_{3}$ and $X \mapsto_{F} L_{2}=L_{3}$
(2) $L_{1} \leftarrow_{x} L_{2}=L_{3}$ and $L_{1} \longmapsto x L_{2}=L_{3}$
(3) $L_{1} \leftarrow_{F} X=L_{3}$ and $L_{1} \mapsto_{F} X=L_{3}$
have a solution or not?

Existence of maximum solution and decision algorithm I

Do language equations of the previous forms have the (unique) maximum solution if they have a solution?

No for $L_{1} \leftarrow_{F} X=L_{3}$ and $L_{1} \mapsto_{F} X=L_{3}$
Yes for the others

algorithm [Kari91]

(1) Construct the candidate of maximum solution,
(2) Substitute it into the equation,
(3) Test whether both sides become equal.

Existence of maximum solution and decision algorithm II

Corollary

For regular languages R_{1}, R_{2}, R_{3} and a regular p-schema F, it is decidable whether

- $X \leftarrow_{F} R_{2}=R_{3}$
- $X \mapsto_{F} R_{2}=R_{3}$
- $R_{1} \leftarrow_{x} R_{2}=R_{3}$
- $R_{1} \mapsto_{x} R_{2}=R_{3}$
has a solution or not.

Different approach to language equations

In contrast, $L_{1} \leftarrow_{F} X=L_{3}$ and $L_{1} \mapsto_{F} X=L_{3}$ may not have the unique maximum solution but multiple maximal solutions.

Example

Let $L_{\text {even }}=\left\{a^{2 m} \mid m \geq 0\right\}, L_{\text {odd }}=\left\{a^{2 n+1} \mid n \geq 0\right\}$, and $F=\Sigma^{*}+\left(\Sigma^{*} \times \Sigma^{*} \times \Sigma^{*}\right)$.

$$
\begin{aligned}
& L_{\text {even }} \longleftrightarrow F L_{\text {even }}=L_{\text {even }} \longleftarrow F L_{\text {odd }}=L_{\text {even }} ; \\
& L_{\text {even }} \longmapsto F L_{\text {even }}=L_{\text {even }} \longmapsto F L_{\text {odd }}=L_{\text {even }} .
\end{aligned}
$$

Actually, both $L_{\text {even }}$ and $L_{\text {odd }}$ are maximal solutions to $L_{\text {even }} \longleftarrow_{F} X=L_{\text {even }}$ and $L_{\text {even }} \mapsto_{F} X=L_{\text {even }}$.

We propose another approach to solving these equations based on the notion of syntactic congruence.

Syntactic congruence

Definition

For a language L, the syntactic congruence \equiv_{L} is an equivalence relation defined as: for $u, v \in \Sigma^{*}$,

$$
u \equiv L v \stackrel{\text { def }}{\Longleftrightarrow} \forall x, y \in \Sigma^{*}, x u y \in L \Longleftrightarrow x v y \in L
$$

Theorem ([Rabin and Scott, 1959])

The index of \equiv_{L} is finite iff L is regular.

Theorem

For a regular language R, each equivalence class in Σ^{*} / \equiv_{R} is a regular language.

Solving $L_{1} \leftarrow_{F} X=L_{3}$ I

Lemma

Let $L_{1}, L_{3} \subseteq \Sigma^{*}$. Then for any $w \in \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$,

$$
\left(L_{1} \leftarrow_{F}\left(\{w\}+L_{2}\right)\right) \cap L_{3}^{c} \neq \emptyset \Longleftrightarrow\left(L_{1} \leftarrow_{F}\left([w]_{\equiv_{L_{3}^{c}}}+L_{2}\right)\right) \cap L_{3}^{c} \neq \emptyset .
$$

Assume that $u=u_{1} u_{2} u_{3} u_{4} \in L_{1},\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in F$, $w_{1}, w_{2} \in[w]_{\equiv_{L}}$, and $v \in L_{2}$ s.t. $u_{1} w_{1} u_{2} v u_{3} w_{2} u_{4} \in L_{3}^{c}$. Then,

$$
\begin{aligned}
u_{1} w_{1} u_{2} v u_{3} w_{2} u_{4} \in L_{3}^{c} & \Longleftrightarrow u_{1} w u_{2} v u_{3} w_{2} u_{4} \in L_{3}^{c} \\
& \Longleftrightarrow u_{1} w u_{2} v u_{3} w u_{4} \in L_{3}^{c} .
\end{aligned}
$$

Observe that this word is in $L_{1} \longleftarrow_{F}\left(\{w\}+L_{2}\right)$.

Solving $L_{1} \leftarrow_{F} X=L_{3}$ II

Syntactic solution

For a language L, a solution to a given equation is syntactic w.r.t. L if it is a union of equivalence classes in $\Sigma^{*} / \equiv \equiv_{L}$.

Proposition

For languages $L_{1}, L_{3}, L_{1} \leftarrow_{F} X=L_{3}$ has a solution iff it has a syntactic solution w.r.t. L_{3}.

To decide whether $L_{1} \leftarrow_{F} X=L_{3}$, therefore, it suffices to check whether or not it has a syntactic solution w.r.t. L_{3}. Recall that if L_{3} is regular, then

- there exist at most finite numbers of syntactic solutions, (the index of $\equiv L_{3}$ is finite)

Solving $L_{1} \longleftrightarrow_{F} X=L_{3}$ Solving $L_{1} \longleftrightarrow F X=L_{3}$ Undecidability

Solving $L_{1} \leftarrow_{F} X=L_{3}$ III

- such syntactic solutions are regular, and
- solely determined by L_{3}

Proposition

For regular languages R_{1}, R_{3} and a regular p-schema F, it is decidable whether $R_{1} \longleftarrow_{F} X=R_{3}$ has a solution.

Note that all maximal solutions to $L_{1} \longleftarrow_{F} X=L_{3}$ are syntactic w.r.t. L_{3}.

Theorem

For regular languages R_{1}, R_{3} and a regular p-schema F, the set of all maximal solutions to $R_{1} \leftarrow_{F} X=R_{3}$ is effectively constructible.

Solving $L_{1} \longleftrightarrow_{F} X=L_{3}$ Solving $L_{1} \longleftrightarrow F X=L_{3}$ Undecidability

Solving the inequality $L_{1} \leftarrow_{F} X \subseteq L_{3}$

Theorem

For regular languages R_{1}, R_{3} and a regular p-schema F, the set of all maximal solutions to $R_{1} \leftarrow_{F} X \subseteq R_{3}$ is effectively constructible.

An application

Note that $L^{*}=\{\lambda\} \leftarrow_{\mathcal{F}} L$. Due to the above theorem, for a given regular language R, we can construct all the maximal languages X such that $X^{*} \subseteq R$.

Solving multiple-variables equations with p-schema based insertion

Remember that syntactic solutions of $L_{1} \leftarrow_{F} Y=L_{3}$ are solely determined by L_{3}.

Theorem

For a regular language R_{3} and p-schema F, it is decidable whether $X \longleftarrow_{F} Y=R_{3}$ has a solution.

Proof.

N.B. $\left|\Sigma^{*} / \equiv_{R_{3}}\right|$ is finite. So for each candidate R_{c} of syntactic solutions, let us check whether $X \longleftarrow_{F} R_{c}=R_{3}$ has a solution.

Theorem

For regular languages R_{1}, R_{3}, it is decidable whether
$R_{1} \leftarrow_{x} Y=R_{3}$ has a solution.

Solving $L_{1} \longleftrightarrow_{F} X=L_{3}$
Solving $L_{1} \longleftrightarrow_{F} X=L_{3}$
Undecidability

Solving $L_{1} \rightarrow_{F} X=L_{3}$ I

Lemma

Let $L_{1} \subseteq \Sigma^{*}$. For any word $w \in \Sigma^{*}$ and a language $L_{2} \subseteq \Sigma^{*}$,

$$
L_{1} \mapsto_{F}\left(\{w\}+L_{2}\right)=L_{1} \mapsto_{F}\left([w]_{\equiv_{L_{1}}}+L_{2}\right) .
$$

Corollary

$$
\left(L_{1} \mapsto_{F}\left(\{w\}+L_{2}\right)\right) \cap L_{3}^{c} \neq \emptyset \Longleftrightarrow\left(L_{1} \mapsto_{F}\left([w]_{\equiv_{L_{1}}}+L_{2}\right)\right) \cap L_{3}^{c} \neq \emptyset .
$$

Proposition

For languages L_{1}, L_{3}, the equation $L_{1} \mapsto_{F} X=L_{3}$ has a solution iff it has a syntactic solution w.r.t. L_{1}.

Solving $L_{1} \mapsto_{F} X=L_{3}$ II

Lemma

For an arbitrary a complete set $\mathfrak{R}\left(L_{1}\right)$ of representatives of $\Sigma^{*} / \equiv L_{1}$,

$$
L_{1} \leftarrow_{F} L_{2}=L_{1} \leftarrow_{F}\left\{w \in \mathfrak{R}\left(L_{1}\right) \mid w \in L_{2}\right\} .
$$

Theorem

For regular languages R_{1}, R_{3}, a regular p-schema F, a complete system $\Re\left(R_{1}\right)$ of representatives of $\Sigma^{*} / \equiv_{R_{1}}$, the set of all solutions to $R_{1} \mapsto_{F} X=R_{3}$ which are a subset of $\mathfrak{R}\left(R_{1}\right)$ is effectively constructible.

Solving $L_{1} \not{ }_{F} X=L_{3}$
Solving $L_{1} \nleftarrow F=L_{3}$
Undecidability

Solving $L_{1} \mapsto_{F} X=L_{3}$ III

Corollary

For regular languages R_{1}, R_{3}, and a regular p-schema F, the set of all syntactic solutions to $R_{1} \mapsto_{F} X=R_{3}$ is effectively constructible, and hence, so is the set of its maximal solutions.

Corollary

For regular languages R_{1}, R_{3}, and a regular p-schema F, the set of all minimal solutions to $R_{1} \mapsto_{F} X=R_{3}$ modulo $\equiv_{R_{1}}$ is effectively constructible.

Solving multiple-variable equations with p-schema based deletion

Recall that syntactic solutions to $L_{1} \mapsto_{F} Y=L_{3}$ is determined by $L_{1}\left(\operatorname{not} L_{3}\right)$.

Theorem

For regular languages R_{1}, R_{3}, it is decidable whether
$R_{1} \longmapsto x Y=R_{3}$ has a solution.
Open problem
Is it decidable whether $X \mapsto_{F} Y=R_{3}$ for a regular language R_{3} and p-schema F ?

Undecidability

Let $\operatorname{NCM}(1)$ be the class of languages accepted by a finite automaton augmented with 1 one-reversal counter.

Proposition

If one of L_{1}, L_{3}, F is in $\operatorname{NCM}(1)$, then it is undecidable whether $L_{1} \leftarrow_{F} X=L_{3}\left(L_{1} \mapsto_{F} X=L_{3}\right)$ has a solution or not.

Conclusion

Contributions

(1) p-schema-based insertion and deletion
(2) algorithms to solve $L_{1} \leftarrow_{F} X=L_{3}$ and $L_{1} \mapsto_{F} X=L_{3}$

Future works

(1) Once we weaken the regularity condition on L_{3}, our algorithm does not work any more to solve $L_{1} \leftarrow_{F} X=L_{3}$. For instance, if $L_{3} \in \operatorname{DCM}(1)$, can we solve this equation?
(2) Can we solve $X \rightarrow_{F} Y=R_{3}$ for a regular language R_{3} and a regular p-schema F ?

Apology

I sincerely apologize for the following 2 errors and any of your inconveniences caused by these.
(1) Proposition 1 requires $k_{2}=0$
(2) In Theorem 11, DPCM should be replaced with REG.

Thank you very much for listening so attentively.

References I

(Rari91] L. Kari,
On insertion and deletion in formal languages, Ph.D. Thesis, University of Turku, 1991.

围 [Kari94] L. Kari,
On language equations with invertible operations, Theoretical Computer Science, 132 (1994) 129-150.
[[Rabin and Scott, 1959] M. Rabin and D. Scott, Finite automata and their decision problems, em IBM Journal of Research and Development, 3 (1959) 114-125.

