Schema for parallel insertion and deletion

Lila Kari, Shinnosuke Seki

Department of Computer Science, University of Western Ontario

Developments in Language Theory August 19th, 2010

Notation

- Σ alphabet
- $\Sigma^*\,$ the set of all words over $\Sigma\,$
- u, v, w words
- L, L_1, L_2, L_3 given languages
- R, R_1, R_2, R_3 given regular languages
 - X, Y unknown variables
 - + union of sets
 - L^c complement of L, i.e., $L^c = \Sigma^* \setminus L$
 - 2^{L} power set of L

Parallel insertion and deletion schema Language equations Conclusion References p-schema-based insertion p-schema-based deletion Classes of p-schemata

Parallel operations

Example ([Kari91])

Parallel insertion \Leftarrow is defined as follows: for a word $u = a_1 a_2 \cdots a_n (a_i \in \Sigma)$ and a language *L*,

$$u \leftarrow L = La_1La_2L\cdots La_{n-1}La_nL.$$

Question

How to control parallel insertion (where to insert L)?

▲□ ► < □ ► </p>

p-schema-based insertion *p*-schema-based deletion Classes of *p*-schemata

p-schema-based insertion

Let
$$\mathfrak{F} = \{(u_1, u_2, \dots, u_{n-1}, u_n) \mid n \geq 1, u_1, \dots, u_n \in \Sigma^*\}.$$

Definition

For $f = (u_1, u_2, \dots, u_n) \in \mathfrak{F}$, insertion $\leftarrow _f$ based on f is defined as:

$$u \leftarrow_f L = \begin{cases} u_1 L u_2 L \cdots u_{n-1} L u_n & \text{if } u = u_1 u_2 \cdots u_n \\ \emptyset & \text{otherwise.} \end{cases}$$

We call $F \subseteq \mathfrak{F}$ a *p*-schema because it can specify how to parallel-insert a language *L* into a word *u*. We can extend $\leftarrow _F$ naturally into an operation between languages as:

$$L_1 \leftarrow F L_2 = \bigcup_{u \in L_1, f \in F} u \leftarrow f L_2.$$

/⊒ > < ∃ >

p-schema-based insertion *p*-schema-based deletion Classes of *p*-schemata

Various instances of *p*-schema-based insertion

Syntactic and Semantic instances of *p*-schema-based insertion $L_1 \leftarrow _F L_2$ include

operation	<i>p</i> -schema
catenation L_1L_2	$\Sigma^* imes \{\lambda\}$
reverse catenation L_2L_1	$\{\lambda\} imes \Sigma^*$
insertion $\{xL_2y \mid xy \in L_1\}$	$\Sigma^* imes \Sigma^*$
parallel insertion $L_1 \leftarrow L_2$	$\bigcup_{n\geq 0} \left(\{\lambda\} \times \underbrace{\Sigma \times \cdots \times \Sigma}_{n\geq 0} \times \{\lambda\} \right)$
inserting exactly 2 L's	$\Sigma^* \times \Sigma^* \times \Sigma^*$ <i>n</i> times
(x, y)-contextual insertion	$\Sigma^* x \times y \Sigma^*$
Parallel insertion next to $b\in\Sigma$	$\{(u_1,\ldots,u_n)\mid n\geq 1,$
	$u_1,\ldots,u_n\in (\Sigma\setminus\{b\})^*b\}.$

p-schema-based insertion *p*-schema-based deletion Classes of *p*-schemata

p-schema-based deletion

Definition

For $f = (u_1, u_2, \dots, u_n) \in \mathfrak{F}$, deletion \rightarrowtail_f based on f is defined as:

$$w \rightarrowtail_f L = \begin{cases} \{u_1 u_2 \cdots u_n\} & \text{if } w \in u_1 L u_2 L \cdots u_{n-1} L u_n \\ \emptyset & \text{otherwise} \end{cases}$$

 \rightarrowtail_f is also extended to an operation between languages as follows:

$$L_1 \rightarrowtail_F L_2 = \bigcup_{w \in L_1, f \in F} w \rightarrowtail_f L_2.$$

p-schema-based insertion *p*-schema-based deletion Classes of *p*-schemata

Classes of *p*-schemata

Definition

For a *p*-schema *F*, its schema language $\psi(F)$ is defined over $\Sigma \cup \{\#\}$ as:

$$\psi(F) = \{u_1 \# u_2 \# \cdots u_{n-1} \# u_n \mid (u_1, u_2, \ldots, u_{n-1}, u_n) \in F\}.$$

Let C be a class of languages over $\Sigma \cup \{\#\}$. We say that a *p*-schema *F* is in C if $\psi(F) \in C$.

regular p-schema

A *p*-schema *F* is regular if $\psi(F)$ is regular.

・ロン ・回 と ・ 回 と ・ 国 と

Solving $L_1 \leftarrow F X = L_3$ Solving $L_1 \rightarrow F X = L_3$ Undecidability

Objectives

Question

Is it decidable whether language equations of the following forms:

$$X \leftarrow_F L_2 = L_3 \text{ and } X \rightarrowtail_F L_2 = L_3$$

have a solution or not?

▲□ ► < □ ► </p>

Parallel insertion and deletion schema Language equations Conclusion References Solving $L_1 \leftrightarrow_F X = L_3$ Solving $L_1 \rightarrow_F X = L_3$ Undecidability

Existence of maximum solution and decision algorithm I

Do language equations of the previous forms have the (unique) maximum solution if they have a solution?

No for
$$L_1 \leftarrow _F X = L_3$$
 and $L_1 \rightarrow _F X = L_3$

Yes for the others

algorithm [Kari91]

- Construct the candidate of maximum solution,
- Substitute it into the equation,
- Test whether both sides become equal.

Solving $L_1 \iff_F X = L_3$ Solving $L_1 \rightarrowtail_F X = L_3$ Undecidability

Existence of maximum solution and decision algorithm II

Corollary

For regular languages R_1, R_2, R_3 and a regular p-schema F, it is decidable whether

- $X \leftarrow _F R_2 = R_3$
- $X \rightarrowtail_F R_2 = R_3$
- $R_1 \leftarrow X R_2 = R_3$
- $R_1 \rightarrowtail_X R_2 = R_3$

has a solution or not.

 $\begin{array}{c} \mbox{Parallel insertion and deletion schema} \\ \mbox{Language equations} \\ \mbox{Conclusion} \\ \mbox{References} \end{array} \qquad \begin{array}{c} \mbox{Solving } L_1 \longleftrightarrow_F X = L_3 \\ \mbox{Solving } L_1 \rightarrowtail_F X = L_3 \\ \mbox{Solving } L_1 \rightarrowtail_F X = L_3 \\ \mbox{Undecidability} \end{array}$

Different approach to language equations

In contrast, $L_1 \leftarrow _F X = L_3$ and $L_1 \succ _F X = L_3$ may not have the unique maximum solution but multiple maximal solutions.

Example

Let
$$L_{\text{even}} = \{a^{2m} \mid m \ge 0\}$$
, $L_{\text{odd}} = \{a^{2n+1} \mid n \ge 0\}$, and $F = \Sigma^* + (\Sigma^* \times \Sigma^* \times \Sigma^*)$.

$$\begin{array}{rcl} L_{\mathrm{even}} \hookleftarrow_F L_{\mathrm{even}} &=& L_{\mathrm{even}} \longleftarrow_F L_{\mathrm{odd}} &=& L_{\mathrm{even}};\\ L_{\mathrm{even}} \rightarrowtail_F L_{\mathrm{even}} &=& L_{\mathrm{even}} \rightarrowtail_F L_{\mathrm{odd}} &=& L_{\mathrm{even}}. \end{array}$$

Actually, both L_{even} and L_{odd} are maximal solutions to $L_{\text{even}} \leftarrow F X = L_{\text{even}}$ and $L_{\text{even}} \succ F X = L_{\text{even}}$.

We propose another approach to solving these equations based on the notion of syntactic congruence.

イロト イポト イヨト イヨト

Solving $L_1 \iff_F X = L_3$ Solving $L_1 \implies_F X = L_3$ Undecidability

Syntactic congruence

Definition

For a language *L*, the syntactic congruence \equiv_L is an equivalence relation defined as: for $u, v \in \Sigma^*$,

$$u \equiv_L v \stackrel{\text{def}}{\Longleftrightarrow} \forall x, y \in \Sigma^*, xuy \in L \iff xvy \in L$$

Theorem ([Rabin and Scott, 1959])

The index of \equiv_L is finite iff L is regular.

Theorem

For a regular language R, each equivalence class in Σ^* / \equiv_R is a regular language.

▲ @ ▶ < ∃ ▶</p>

Solving $L_1 \leftarrow F X = L_3$ Solving $L_1 \rightarrow F X = L_3$ Undecidability

$$\mathsf{Solving}\ L_1 \hookleftarrow_F X = L_3 \mathsf{I}$$

Lemma

Let
$$L_1, L_3 \subseteq \Sigma^*$$
. Then for any $w \in \Sigma^*$ and $L_2 \subseteq \Sigma^*$,

$$(L_1 \leftarrow _F (\{w\}+L_2)) \cap L_3^c \neq \emptyset \iff (L_1 \leftarrow _F ([w]_{\equiv_{L_3^c}}+L_2)) \cap L_3^c \neq \emptyset.$$

Assume that $u = u_1 u_2 u_3 u_4 \in L_1$, $(u_1, u_2, u_3, u_4) \in F$, $w_1, w_2 \in [w]_{\equiv_L}$, and $v \in L_2$ s.t. $u_1 w_1 u_2 v u_3 w_2 u_4 \in L_3^c$. Then,

$$u_1 w_1 u_2 v u_3 w_2 u_4 \in L_3^c \iff u_1 w u_2 v u_3 w_2 u_4 \in L_3^c$$
$$\iff u_1 w u_2 v u_3 w u_4 \in L_3^c.$$

Observe that this word is in $L_1 \leftarrow F(\{w\} + L_2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Solving $L_1 \leftrightarrow_F X = L_3$ Solving $L_1 \rightarrowtail_F X = L_3$ Undecidability

Solving $L_1 \leftarrow _F X = L_3 ||$

Syntactic solution

For a language L, a solution to a given equation is syntactic w.r.t. L if it is a union of equivalence classes in Σ^* / \equiv_L .

Proposition

For languages $L_1, L_3, L_1 \leftarrow F X = L_3$ has a solution iff it has a syntactic solution w.r.t. L_3 .

To decide whether $L_1 \leftarrow _F X = L_3$, therefore, it suffices to check whether or not it has a syntactic solution w.r.t. L_3 . Recall that if L_3 is regular, then

there exist at most finite numbers of syntactic solutions, (the index of ≡_{L3} is finite)

イロト イポト イヨト イヨト

Solving $L_1 \leftrightarrow_F X = L_3$ Solving $L_1 \rightarrowtail_F X = L_3$ Undecidability

Solving $L_1 \leftarrow _F X = L_3 \parallel$

- such syntactic solutions are regular, and
- solely determined by L_3

Proposition

For regular languages R_1 , R_3 and a regular p-schema F, it is decidable whether $R_1 \leftarrow _F X = R_3$ has a solution.

Note that all maximal solutions to $L_1 \leftarrow _F X = L_3$ are syntactic w.r.t. L_3 .

Theorem

For regular languages R_1, R_3 and a regular *p*-schema *F*, the set of all maximal solutions to $R_1 \leftarrow _F X = R_3$ is effectively constructible.

・ロト ・聞 ト ・ ヨト ・ ヨト

Solving $L_1 \leftarrow F X = L_3$ Solving $L_1 \rightarrow F X = L_3$ Undecidability

Solving the inequality $L_1 \leftarrow _F X \subseteq L_3$

Theorem

For regular languages R_1, R_3 and a regular *p*-schema *F*, the set of all maximal solutions to $R_1 \leftarrow F X \subseteq R_3$ is effectively constructible.

An application

Note that $L^* = \{\lambda\} \leftarrow_{\mathfrak{F}} L$. Due to the above theorem, for a given regular language R, we can construct all the maximal languages X such that $X^* \subseteq R$.

(4月) (4日) (4日)

Solving $L_1 \leftarrow F X = L_3$ Solving $L_1 \rightarrow F X = L_3$ Undecidability

Solving multiple-variables equations with *p*-schema based insertion

Remember that syntactic solutions of $L_1 \leftarrow _F Y = L_3$ are solely determined by L_3 .

Theorem

For a regular language R_3 and *p*-schema *F*, it is decidable whether $X \leftarrow _F Y = R_3$ has a solution.

Proof.

N.B. $|\Sigma^*/\equiv_{R_3}|$ is finite. So for each candidate R_c of syntactic solutions, let us check whether $X \leftarrow_F R_c = R_3$ has a solution.

Theorem

For regular languages R_1, R_3 , it is decidable whether $R_1 \leftarrow _X Y = R_3$ has a solution.

 $\begin{array}{c} \text{Parallel insertion and deletion schema}\\ \textbf{Language equations}\\ \text{Conclusion}\\ \text{References} \end{array} \qquad \begin{array}{c} \text{Solving } L_1 \longleftrightarrow_F X = L_3\\ \text{Solving } L_1 \rightarrowtail_F X = L_3\\ \text{Undecidability} \end{array}$

Solving
$$L_1 \rightarrow_F X = L_3$$
 I

Lemma

Let $L_1 \subseteq \Sigma^*$. For any word $w \in \Sigma^*$ and a language $L_2 \subseteq \Sigma^*$,

$$L_1 \rightarrowtail_F (\{w\} + L_2) = L_1 \rightarrowtail_F ([w]_{\equiv_{L_1}} + L_2).$$

Corollary

$$(L_1 \rightarrowtail_F (\{w\}+L_2)) \cap L_3^c \neq \emptyset \iff (L_1 \rightarrowtail_F ([w]_{\equiv_{L_1}}+L_2)) \cap L_3^c \neq \emptyset.$$

Proposition

For languages L_1, L_3 , the equation $L_1 \rightarrow F X = L_3$ has a solution iff it has a syntactic solution w.r.t. L_1 .

イロト イポト イヨト イヨト

э

Solving $L_1 \leftrightarrow_F X = L_3$ Solving $L_1 \rightarrowtail_F X = L_3$ Undecidability

Solving
$$L_1
ightarrow_F X = L_3 ||$$

Lemma

For an arbitrary a complete set $\mathfrak{R}(L_1)$ of representatives of Σ^*/\equiv_{L_1}

$$L_1 \leftarrow _F L_2 = L_1 \leftarrow _F \{ w \in \mathfrak{R}(L_1) \mid w \in L_2 \}.$$

Theorem

For regular languages R_1, R_3 , a regular *p*-schema *F*, a complete system $\mathfrak{R}(R_1)$ of representatives of Σ^* / \equiv_{R_1} , the set of all solutions to $R_1 \rightarrow_F X = R_3$ which are a subset of $\mathfrak{R}(R_1)$ is effectively constructible.

(日) (同) (日) (日) (日)

Solving $L_1 \leftarrow F X = L_3$ Solving $L_1 \rightarrow F X = L_3$ Undecidability

Solving $L_1 \rightarrow_F X = L_3 \parallel I \parallel$

Corollary

For regular languages R_1, R_3 , and a regular p-schema F, the set of all syntactic solutions to $R_1 \rightarrow_F X = R_3$ is effectively constructible, and hence, so is the set of its maximal solutions.

Corollary

For regular languages R_1, R_3 , and a regular p-schema F, the set of all minimal solutions to $R_1 \rightarrow F X = R_3$ modulo \equiv_{R_1} is effectively constructible.

- 4 同 2 4 日 2 4 日 2

Parallel insertion and deletion schema Language equations Conclusion References
Solving $L_1 \leftrightarrow_F X = L_3$ Solving $L_1 \mapsto_F X = L_3$ Undecidability

Solving multiple-variable equations with *p*-schema based deletion

Recall that syntactic solutions to $L_1 \rightarrow F Y = L_3$ is determined by L_1 (not L_3).

Theorem

For regular languages R_1, R_3 , it is decidable whether $R_1 \rightarrow X Y = R_3$ has a solution.

Open problem

Is it decidable whether $X \rightarrowtail_F Y = R_3$ for a regular language R_3 and *p*-schema *F*?

イロト イポト イヨト イヨト

Undecidability

Let NCM(1) be the class of languages accepted by a finite automaton augmented with 1 one-reversal counter.

Proposition

If one of L_1, L_3, F is in NCM(1), then it is undecidable whether $L_1 \leftarrow F X = L_3$ ($L_1 \succ F X = L_3$) has a solution or not.

・ 一 ・ ・ ・ ・ ・ ・

Conclusion

Contributions

- p-schema-based insertion and deletion
- 2 algorithms to solve $L_1 \leftarrow _F X = L_3$ and $L_1 \succ _F X = L_3$

Future works

- Once we weaken the regularity condition on L₃, our algorithm does not work any more to solve L₁ ← F X = L₃. For instance, if L₃ ∈ DCM(1), can we solve this equation?
- ② Can we solve X →_F Y = R₃ for a regular language R₃ and a regular p-schema F?

- 4 同 6 4 日 6 4 日 6

Apology

I sincerely apologize for the following 2 errors and any of your inconveniences caused by these.

- Proposition 1 requires $k_2 = 0$
- 2 In Theorem 11, DPCM should be replaced with REG.

Thank you very much for listening so attentively.

References I

[Kari91] L. Kari, On insertion and deletion in formal languages, Ph.D. Thesis, University of Turku, 1991.

[Kari94] L. Kari,
 On language equations with invertible operations,
 Theoretical Computer Science, 132 (1994) 129-150.

 [Rabin and Scott, 1959] M. Rabin and D. Scott,
 Finite automata and their decision problems,
 em IBM Journal of Research and Development, 3 (1959) 114-125.