Operational state complexity under Parikh equivalence

Giovanna Lavado ${ }^{1}$, Giovanni Pighizzini ${ }^{1}$, Shinnosuke Seki ${ }^{2,3}$

(1) Dipartimento di Informatica, Università degli Studi di Milano, Italy.
(2) Helsinki Institute for Information Technology (HIIT)
(3) Department of Information and Computer Science, Aalto University

DCFS 2014, August 6th, 2014

Parikh map

- $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ be an alphabet
- $|w|_{a}$ be the number of occurrences of a letter $a \in \Sigma$ on the word w

Parikh map

The Parikh map $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{m}$ associates with a word $w \in \Sigma^{*}$ the m-dimensional nonnegative vector $\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{m}}\right)$.

Parikh image

The Parikh image of a language L is $\psi(L)=\{\psi(w) \mid w \in L\}$.

Parikh equivalence

Parikh equivalence $={ }_{\pi}$

Languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ are Parikh equivalent if $\psi\left(L_{1}\right)=\psi\left(L_{2}\right)$. We write $L_{1}={ }_{\pi} L_{2}$.

Parikh equivalence can be naturally extended among languages, grammars, and machines.

Example

Let $R=(a b)^{*}$ and M be a pushdown automaton (PDA) to accept

$$
L=\left\{a^{i} b^{i} \mid i \geq 0\right\}
$$

Then $\psi(R)=\psi(L(M))=\{(i, i) \mid i \geq 0\}$. Thus, the language R is Parikh equivalent to the PDA $M\left(R={ }_{\pi} M\right)$.

Semilinear set

A set $S \subseteq \mathbb{N}^{n}$ is linear if there exist $\vec{v}_{1}, \ldots, \vec{v}_{k} \subseteq \mathbb{N}^{n}$ such that

$$
S=\left\{i_{1} \vec{v}_{1}+\cdots+i_{k} \vec{v}_{k} \mid i_{1}, \ldots, i_{k} \in \mathbb{N}\right\} .
$$

A finite union of linear sets is called a semilinear set.

The semilinear set admits many other representations including

- regular language/expression
- (non)deterministic finite automaton (NFA/DFA)
- context-free language (Parikh's theorem [Parikh 66]).
- context-free grammar (CFG)
- pushdown automaton
- reversal-bounded counter machine (see, e.g., [lbarra 78])
- etc.

State complexity of Parikh-equivalent conversion CFG $\Longrightarrow{ }_{\pi}$ DFA

Question

How costly is it to convert one representation to another?
By \Longrightarrow_{π}, we mean the Parikh equivalent conversion.
CNFG \Longrightarrow_{π} DFA [Lavado et al. 13]
For a CFG in Chomsky normal form (CNFG) G with h variables, there exists a Parikh equivalent DFA A with $2^{O\left(h^{2}\right)}$ states.

State complexity of Parikh-equivalent conversion NFA \Longrightarrow_{π} DFA

NFA \Longrightarrow_{π} DFA [Lavado et al. 13]

$$
\begin{array}{ccc}
\text { NFA } & \text { DFA } \\
\begin{array}{c}
\text { states } \\
A_{1}
\end{array} & \Longrightarrow_{\pi} & e^{\sqrt{n \ln n}} \text { states }
\end{array}
$$

Nonunary NFA \Longrightarrow_{π} DFA [Lavado et al. 13]
NFA with no
DFA
unary word
n states
$A_{1}$$\quad \Longrightarrow_{\pi} \quad O\left(n^{3 m^{3}+6 m^{2}} m^{m^{3} / 2+m^{2}+2 m+5}\right)$ states

Lemma [Lavado et al. 13]

For each n-state NFA A over an m-letter alphabet, there exist $m+1$ NFAs $A_{0}, A_{1}, \ldots, A_{m}$ such that

- for $1 \leq i \leq m, A_{i}$ consists of n states accepting $L(A) \cap\left\{a_{i}\right\}^{*}$;
- A_{0} consists of $n(m+1)+1$ states accepting $L(A) \backslash\left(\bigcup_{i=1}^{m} L\left(A_{i}\right)\right)$.
Moreover, if A is deterministic, then so are $A_{0}, A_{1}, \ldots, A_{m}$.

Regular operations under Parikh equivalence Problems

For DFAs A and B of n_{1} and n_{2} states, respectively, we consider the following problems:
(1) For a unary operation f, how small can we make a DFA M that is Parikh equivalent to $f(L(A))$?
(2) For a binary operation g, how small can we make a DFA M that is Parikh equivalent to $g(L(A), L(B))$?

Regular operations under Parikh equivalence Summary table

$$
\text { Let } \Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}
$$

	conventionally		under Parikh equivalence
	$m \geq 2$	$m=1$	
$\cup \cap$	$n_{1} n_{2} \quad[\mathrm{Yu} 00]$		$n_{1} n_{2}$
\bullet	$\begin{gathered} \left(2 n_{1}-1\right) 2^{n_{2}-1} \\ {[Y u \text { et al. } 94]} \end{gathered}$	$n_{1} n_{2}$	$O\left(n_{1} n_{2}\left(2\left(n_{1}+n_{2}\right)\right)^{3 m^{3}+6 m^{2}} m^{7 m^{3} / 2+7 m^{2}+2 m+6}\right)$
Shuffle	$\begin{gathered} 2^{n_{1} n_{2}}-1 \\ \text { [Câmpeanu et al. 02] } \end{gathered}$	[Yu 00]	
*	$\begin{gathered} 2^{n-1}+2^{n-2} \\ {[\text { Yu et al. } 94]} \end{gathered}$	$(n-1)^{2}+1$ [Yu et al. 94]	$O\left((2 n)^{3 m^{3}+6 m^{2}+1} n m^{7 m^{3} / 2+7 m^{2}+2 m+6}\right)$
Reversal	2^{n} [Yu et al. 94]	n	n

State complexity under Parikh equivalence

Catenation

Let $L=L(A) L(B)$, and let $L_{i}=L \cap\left\{a_{i}\right\}^{*}$ for $1 \leq i \leq m$.

DFAs A, B
n_{1}, n_{2} states
[Pighizzini \& Shallit 02]
$\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$

NFA M s.t. $L(M)=L$

$$
\begin{gathered}
\left(n_{1}+n_{2}\right) \text { states } \\
\text { ext fact }
\end{gathered}
$$

nonunary part of M
$\left(n_{1}+n_{2}\right)(m+1)+1$ states $\downarrow \pi$

$$
O\left(\left(2\left(n_{1}+n_{2}\right)\right)^{3 m^{3}+6 m^{2}} m^{7 m^{3} / 2+7 m^{2}+2 m+5}\right) \text { states }
$$

DFAs $M_{i}(1 \leq i \leq m)$
$L\left(M_{i}\right)=L_{i}$
$n_{1} n_{2}$ states

DFA M^{\prime} s.t. $L\left(M^{\prime}\right)=\cup_{i=1}^{m} L_{i}$

$$
1+m n_{1} n_{2} \text { states }
$$

standard construction
for union
\downarrow
DFA
$O\left(n_{1} n_{2}\left(2\left(n_{1}+n_{2}\right)\right)^{3 m^{3}+6 m^{2}} m^{7 m^{3}} / 2+7 m^{2}+2 m+6\right.$. states

State complexity under Parikh equivalence Star

Unary parts of A

$$
A_{1}, \ldots, A_{m}
$$

$$
L\left(A_{i}\right)=L \cap a_{i}^{*}
$$

n states

NFA M
s.t. $L(M)=L(A)^{*}$ n states extract
nonunary part of M
$n(m+1)+1$ states
π
DFA M_{0}
$L\left(M_{0}\right)={ }_{\pi} L(A)^{*} \backslash\left(\bigcup_{i=1}^{m} L(A)^{*} \cap a_{i}^{*}\right)$
$O\left((2 n)^{3 m^{3}+6 m^{2}} m^{7 m^{3} / 2+7 m^{2}+2 m+5}\right)$ states

DFAs M_{1}, \ldots, M_{m}
$L\left(M_{i}\right)=L_{i}^{*}$ $(n-1)^{2}+1$ states

DFA $M_{\text {unary }}$

$$
L\left(M_{\text {unary }}\right)=\bigcup_{i=1}^{m} L_{i}^{*}
$$

$$
m\left((n-1)^{2}+1\right)+1 \text { states }
$$

standard construction
for union
\downarrow
DFA
$O\left(\left(2\left(n_{1}+n_{2}\right)\right)^{3 m^{3}+6 m^{2}+1} n m^{7 m^{3} / 2+7 m^{2}+2 m+6}\right)$ states

State complexity under Parikh equivalence Projection

The projection of a word $w \in \Sigma^{*}$ over $\Sigma^{\prime} \subseteq \Sigma, P_{\Sigma^{\prime}}(w)$, is the word obtained by removing all the non- Σ^{\prime} symbols from w (see, e.g., [Jirásková \& Masopust 12]).
Given a DFA A of n states, an exponential number of states in n is required for a DFA to accept $P_{\Sigma^{\prime}}(L(A))$.

Projection under Parikh equivalence

Under Parikh equivalence, $e^{O(\sqrt{n \ln n})}$ is enough and this is tight.

Intersection and complement: revisited

Non-commutativity with Parikh mapping

Intersection is not commutative with Parikh mapping

$$
\begin{aligned}
& \psi\left(a^{+} b^{+} \cap b^{+} a^{+}\right) \neq \psi\left(a^{+} b^{+}\right) \cap \psi\left(b^{+} a^{+}\right) \text {holds; in fact, } \\
& \psi\left(a^{+} b^{+} \cap b^{+} a^{+}\right)=\emptyset \\
& \psi\left(a^{+} b^{+}\right) \cap \psi\left(b^{+} a^{+}\right)=\{(i, j) \mid i, j \geq 1\} .
\end{aligned}
$$

Complement is not commutative with Parikh mapping $\psi\left(\overline{a^{*} b^{*}}\right) \neq \overline{\psi\left(a^{*} b^{*}\right)}$ holds; in fact,

$$
\begin{aligned}
& \frac{\psi\left(\overline{a^{*} b^{*}}\right)}{\overline{\psi\left(a^{*} b^{*}\right)}}=\{(i, j) \mid i, j \geq 0\} \\
&=\emptyset
\end{aligned}
$$

Intersection and complement: revisited

Problem setting

Problem: intersection

$$
\begin{gathered}
\text { DFAs } A, B \\
n_{1}, n_{2} \text { states } \longrightarrow \psi(L(M))=\psi(L(A)) \cap \psi(L(B)) \\
\text { How many states needed? }
\end{gathered}
$$

Problem: complement (left open!)

DFA A n states

DFA M

$$
\psi(L(M))=\overline{\psi(L(A))}
$$

How many states needed?

Intersection and complement: revisited

Theorem

Let A, B be DFAs with respectively n_{1}, n_{2} states over $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$. There exists a DFA M whose Parikh map is equal to $\psi(L(A)) \cap \psi(L(B))$ and which contains

$$
O\left(n^{(2 m-1)\left(3 m^{3}+6 m^{2}\right)+2} p(n)^{2\left(3 m^{3}+6 m^{2}\right)+m}\right)
$$

states, where $p(n)=O\left(n^{3 m^{2}} m^{m^{2} / 2+2}\right)$.

Proof.

Revisiting the Ginsburg and Spanier's proof [Ginsburg \& Spanier 64] of the closure property of semilinear sets under intersection.

Complexity of transforming FIN to equivalent CFG

In the conventional sense

FIN \Longrightarrow CNFG

Finite language

$$
\begin{gathered}
L=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \\
\text { over } \Sigma_{m}=\left\{a_{1}, \ldots, a_{m}\right\}
\end{gathered}
$$

CNFG G s.t. $L(G)=L$ $m+\sum_{i=1}^{k}\left|w_{i}\right|$ variables

This bound cannot be reduced significantly.
Lemma ([Domaratzki et al. 02])
For each $k \geq 1$, a singleton language $L_{k}=\{w\}$ with $|w|=2^{k}+k-1$ such that any CNFG for L_{k} requires $O\left(2^{k} / k\right)$ variables.

Complexity of transforming FIN to equivalent CFG

 Under Parikh equivalenceA grammar G is binary normal form grammar (BNFG) if every production is in one of the following forms:

$$
A \rightarrow a, A \rightarrow \lambda, A \rightarrow B, A \rightarrow B C
$$

where A, B, C are variables and $a \in \Sigma$.

Lemma

Let $n \geq 1$ and $T \subseteq\{0,1,2, \ldots, n-1\}^{m}$. There exists a BNFG G of $O\left(n^{m / 3}\right)$ variables s.t. $\psi(L(G))=T$. The bound is aymptotically tight.

Theorem

Let $L \subseteq\left\{w\left||w|_{a}<n\right.\right.$ for any $\left.a \in \Sigma\right\}$. Then there is a CNFG with $O\left(n^{m / 3}\right)$ variables which is Parikh equivalent to L. This bound is asymptotically tight.

Proof idea for the lemma

Let $r=\left\lceil n^{1 / 3}\right\rceil$. Any integer less than n can be expressed in base r using at most 3 digits as $i r^{2}+j r+k$ for some $0 \leq i, j, k<r$.
(1) Prepare r^{m} variables $G_{k_{1}, \ldots, k_{m}}$ for $0 \leq k_{1}, \ldots, k_{m}<r$ such that $L\left(G_{k_{1}, \ldots, k_{m}}\right)=\left\{a_{1}^{k_{1}} \cdots a_{m}^{k_{m}}\right\}$.
(2) Based on them, prepare r^{m} variables $F_{j_{1}, \ldots, j_{m}}$ for $0 \leq j_{1}, \ldots, j_{m}<r$ such that $L\left(F_{j_{1}, \ldots, j_{m}}\right)=\left\{a_{1}^{j_{1} r} \cdots a_{m}^{j_{m} r}\right\}$.
(3) Based on them, prepare r^{m} variables $E_{i_{1}, \ldots, i_{m}}$ for $0 \leq i_{1}, \ldots, i_{m}<r$ such that $L\left(E_{i_{1}, \ldots, i_{m}}\right)=\left\{a_{1}^{i_{1} r^{2}} \cdots a_{m}^{i_{m} r^{2}}\right\}$.
(c) Finally, we define

$$
\begin{array}{ll}
S & \rightarrow E_{i_{1}, \ldots, i_{m}} S_{i_{1}, \ldots, i_{m}} \quad \text { for } 0 \leq i_{1}, \ldots, i_{m}<r \\
S_{i_{1}, \ldots, i_{m}} \rightarrow & F_{j_{1}, \ldots, j_{m}} G_{k_{1}, \ldots, k_{m}} \quad \text { for all } 0 \leq j_{1}, \ldots, j_{m}, k_{1}, \ldots, k_{m}<r \\
& \text { s.t. }\left(i_{1} r^{2}+j_{1} r+k_{1}, \ldots, i_{m} r^{2}+j_{m} r+k_{m}\right) \in T
\end{array}
$$

Thank you very much!

References I

: [Câmpeanu et al. 02]
C. Câmpeanu, K. Salomaa, S. Yu.

Tight lower bound for the state complexity of shuffle of regular languages.
Journal of Automata, Languages, and Combinatorics 7(3), 303-310, 2002.

[Domaratzki et al. 02]
M. Domaratzki, G. Pighizzini, J. Shallit.

Simulating finite automata with context-free grammars. Information Processing Letters 84(6), pp.339-344, 2002.

References II

囯 [Ginsburg \& Spanier 64]
S. Ginsburg, E. H. Spanier.

Bounded ALGOL-like languages.
Transactions of American Mathematical Society 113,
pp.333-368, 1964.
[Ibarra 78] O. H. Ibarra.
Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM 25(1), pp.116-133, 1978.

References III

圊［Jirásková \＆Masopust 12］
G．Jirásková，T．Masopust．
On a structural property in the state complexity of projected regular languages．
Theoretical Computer Science 449，pp．93－105， 2012.
雷［Lavado et al．13］G．J．Lavado，G．Pighizzini，S．Seki．
Converting nondeterministic automata and context－free grammars into Parikh equivalent one－way and two－way deterministic automata． Information and Computation 228，pp．1－15， 2013.
固［Parikh 66］R．J．Parikh．
On context－free languages．
Journal of the ACM 13（4），570－581， 1966.

References IV

[[Pighizzini \& Shallit 02] G. Pighizzini, J. Shallit.
Unary language operations, state complexity and jacobsthal's function.
International Journal of Foundations of Computer Science 13(1), pp.145-159, 2002.

- Bu 00]
S. Yu.

State complexity of regular languages
Journal of Automata, Languages, and Combinatorics 6, pp.221-234, 2000.

References V

[[Yu et al. 94]
S. Yu, Q. Zhuang, K. Salomaa.

The state complexity of some basic operations on regular languages.
Theoretical Computer Science 125, pp.315-328, 1994.

