
TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R17

MODEL CHECKING PSL SAFETY PROPERTIES

Tuomas Launiainen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI





TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R17

MODEL CHECKING PSL SAFETY PROPERTIES

Tuomas Launiainen

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos



Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 451 1

Fax +358 9 451 3369

E-mail: series@ics.tkk.fi

©c Tuomas Launiainen

ISBN 978-952-248-041-5 (Print)

ISBN 978-952-248-042-2 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2009/isbn9789522480422.pdf

TKK ICS

Espoo 2009



ABSTRACT: Model checking is a modern, efficient approach to gaining con-
fidence of the correctness of complex systems. It outperforms conventional
testing methods especially in cases where a high degree of confidence in the
correctness of the system is required, or when the test runs of the system are
difficult to reproduce accurately. In model checking the system is verified
against a specification that is expressed in a formal specification language.
The main challenges are that the process requires quite a lot of training, ex-
perience, and computing power. Recent developments in the field of model
checking address all of these issues.

Safety properties are a subset of formal specifications that are simpler to
verify than formal specifications in the general case. Additionally, safety prop-
erties can be used to improve conventional testing methods by observing the
behaviour of the system at runtime and reporting the detected violations of
the safety properties, which are more expressive than the properties used with
conventional testing. In model checking, recognising and separately verify-
ing safety properties can give faster verification times than just processing all
properties without a specialised algorithm for safety properties.

One of the problems related to model checking is creating specifications
that are meaningful to both humans and to model checking tools. One spec-
ification language that focuses on this problem is the IEEE 1850 standard
Property Specification Language (PSL). It is not as widely supported by aca-
demic model checking tools as linear temporal logic (LTL) or computation
tree logic (CTL), but it has many features that make writing specifications
easier for engineers.

This work describes a method for verifying PSL safety properties by con-
verting them to transducers, a variant of symbolic finite automata. The
semantics in the most current proposal for the revised PSL standard is re-
viewed, and additional operators are introduced for formula rewriting. The
main contributions of this work are the PSL translation and its proof of cor-
rectness with respect to the presented semantics, and a prototype implemen-
tation of an algorithm for model checking PSL safety properties. The imple-
mentation is built on top of the NuSMV model checker, a modern, open-
source tool that previously had little support for PSL. Experiment results are
presented to show the feasibility of the implemented approach.

KEYWORDS: model checking, PSL, safety properties, NuSMV
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1 INTRODUCTION

A crucial part of engineering complex systems, such as computer programs,
electrical circuits, and embedded electronic systems, is verifying that the sys-
tems works as intended. For example, modern computer programs often
have to deal with an environment where many processes are run concur-
rently and where they communicate and co-operate with each other. In such
cases the traditional approach of testing the system, where inputs are given
to the system and then the observed behaviour is compared to the intended
behaviour, can be insufficient to gain enough confidence in the correctness
of the tested system. This is because the order in which the program steps of
different processes are executed can vary greatly between test runs, and this
can affect the behaviour of the system as a whole. Thus, a fault that only
occurs with a certain scheduling of the processes can be next to impossible
to detect with traditional testing.

Model checking [12] is a tool that can cover some of the cases where
traditional testing is insufficient. Like testing, its primary function is to gain
confidence that the system works as intended. As such, it can partially replace
testing, but mostly the two approaches complement each other. The term
model checking refers to a collection of techniques but the common factor
in them is that the system is represented using a formal mathematical model.
The model is combined with properties that are created from the intended
behaviour of the system. The specified properties must also be expressed
formally. The model and properties are then given to a model checking tool
that goes through every possible behaviour of the model and verifies that
none of them break the specified properties.

Model checking can be an expensive procedure because of its nature. Ex-
pressing both the model of the system and the properties formally requires
great care and expertise. Mistakes in either can obviously produce incor-
rect results. Moreover, the verification of models with model checking tools
requires a lot of computing resources. More specifically, model checking suf-
fers from the so called state explosion [30]: when the model is constructed
from many concurrent components, as is often the case with concurrently
executed programs, the resulting model can have an exponential number of
reachable states with respect to the number of components. Since the tool
must go through every possible behaviour of the model, a lot of computing
power (time) and memory are required.

Model checking has many advantages as well. It can detect errors that
would be very difficult to notice with other methods, for example in concur-
rent software. The properties that can be verified are more expressive than
with traditional testing, depending on the formalism used to express them.
For example properties that require something to happen infinitely often, or
properties that require that some alternative is always available. Model check-
ing can also be used for prototyping a design in cases where creating a model
is easier than creating an actual implementation. Additionally, because every
possible behaviour of the model is checked, the result is absolutely certain,
unless the model checking tool itself has serious errors. Thus, model check-
ing can be used in making formal proofs of the system: if the model an prop-
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erties are proven correct, a very high degree of confidence can be gained that
the system itself is correct.

For model checking to be applicable and easier to deploy in more cases
the model checking tools need to be developed further. The running time
and memory requirements can be lowered with better algorithms, tools can
be made to automatically extract models from programs, and modelling and
specification languages can be made easier to use for engineers with differ-
ent backgrounds. This work introduces a new translation from the Property
Specification Language (PSL) to symbolic finite state automata. PSL was
developed from IBM’s Sugar [4], a specification language that was created to
be easier to use by engineers than the specification languages that precede it.
More recently it has been made into an IEEE standard [3]. The correctness
of the developed translation is proven, and with it a model checking algo-
rithm for PSL is implemented to the NuSMV [8] model checker: a fast, free,
and open-source tool. Some experiments are performed with the modified
NuSMV model checker, and the results are analysed. Unfortunately, a direct
comparison of the algorithm to other PSL model checking algorithms could
not be done, because of the limited support for PSL in the latest version of
NuSMV, v.2.4.3 at the time of writing.

1.1 RELATED WORK

Safety properties have been singled out for separate inspection in several pa-
pers. Complexity issues of model checking safety properties with finite state
automata are covered in [18], which also contains a classification of safety
properties into intentionally safe, accidentally safe, and pathologically safe.
The paper also describes a way to construct finite state automata that can
be used to observe safety properties, much like in this work. The construc-
tion is further studied and refined in [17]. The approach to constructing the
automata in these papers differs from the one presented here, however, and
only LTL formulae are considered in them.

A translation of LTL safety properties into finite state automata, follow-
ing the approach of [18] is covered in [20] and [21]. Evaluation of LTL on
finite paths in the context of bounded model checking is done in [6]. The
approach in that paper is to encode the model checking problem to a propo-
sitional satisfiability (SAT) problem and then use a SAT-solver to solve the
encoded instance. That approach needs a semantics for LTL formulae with
finite paths, which is similar to the semantics for finite paths in this work.
A translation from LTL to SMV code is done in [11]. The implementa-
tion technique in that paper is similar to the one used in this work but they
only consider infinite paths unlike this work. Monitoring safety properties
expressed in the past time fragment of LTL are used as a testing aid in [15].

Other work has also been done to translate PSL properties into other forms
of specifications that are easier to model check. The one that is probably
most similar to the approach in this work is presented in [26]. That paper
also translates PSL to symbolic automata that are similar to the ones in this
work. We are not aware of an implementation of the approach of [26]. Those
automata are for infinite words, however, and the translation is for the full
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PSL, without special consideration for safety properties. A translation from
the full PSL to non-deterministic symbolic Büchi-automata for NuSMV is
presented in [9], where PSL formulae are divided into an LTL part and a
part encoded as symbolic Büchi-automata. An automata translation for the
safety simple subset of PSL is presented in [27]. The idea behind that paper
is also quite similar to the one in this work but that paper restricts the sup-
ported subset of PSL syntactically to rule out non-safety formulae. Moreover,
their algorithm does not seem to be implemented in a freely available model
checking tool. This work, on the other hand, supports the full PSL language,
but is only able to detect finite counterexamples to the properties. A method
of translating a core set of PSL properties to Büchi-automata is presented
in [5], but safety properties are not considered separately. A translation of
PSL into the µ-calculus is presented in [23]. The expressiveness of fragments
of PSL is studied in [19], along with the complexity of model checking these
fragments.

PSL safety properties, the semantics of PSL with finite paths, and model
checking PSL safety properties is also discussed in [10]. That paper also re-
stricts the syntax of PSL to rule out non-safety formulae. Also, we are not
aware of a freely available implementation of its semantics. An alternative
way of defining the semantics of PSL for finite paths is also discussed in [14].
The concerns of these two papers are addressed in a recent proposal for a
revised PSL standard [1], the semantics of which is used in this work. Au-
tomata formalisms similar to the one in this work are presented in e.g. [25]
and [28].

The rest of this work is structured as follows. Chapter 2 goes over the ba-
sic concepts of model checking, Chapter 4 introduces the basics of the PSL
language, and Chapter 5 formalises the semantics of the language. Chap-
ter 6 discusses the use of the semantics in Chapter 5 for finite paths. In
Chapter 7 transducers, a formalism similar to symbolic finite state automata
is introduced, and a method for compositionally constructing transducers
from PSL formulae is described, along with proofs of its correctness. Chap-
ter 8 describes the prototype implementation of the translation described in
Chapter 7 into the open-source model checker NuSMV. Chapter 9 describes
the test setup that was used to run experiments on the implementation, and
presents the results and their interpretation. Finally, Chapter 10 concludes.
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2 MODEL CHECKING

The process of model checking usually starts with a decision of what part of
the system will be checked, and what properties that part should satisfy. Then,
an abstract model is created from that part of the system. The properties that
are checked for in the system determine what parts should be abstracted away,
and what details must be included in the model.

A model in the context of model checking is a precise formal description
of the behaviour of the system. Usually the design of the system is what needs
to be validated, and the model is built by hand from the high level design.
Some small critical parts of the actual implementation of the system can also
be validated but it is rarely feasible to validate the whole implementation of
the system. The model can also be automatically generated from the design
or the implementation but usually that requires that the description of the
design or implementation is done with that purpose in mind.

In this work we use a common formalism for models: the Kripke structure
[12]. A Kripke structure is a system that consists of finite number of states,
some of which are initial, a transition relation, and a function that labels each
state with the atomic propositions that hold in the state. When the system
starts, it is in one of its initial states. The next state is one of the states to
which there is a transition from the current state in the transition relation.
The transition relation is required to be total, meaning that from every state
there is at least one transition originating from it. Formally, a Kripke structure
M over a set of atomic propositions, AP , is a quadruple M = (S, S0, R, L),
where:

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• R ⊆ S × S is the transition relation, and

• L : S → 2AP is the labelling function, that associates each state in S
with the atomic propositions that hold in it.

A path of the Kripke structure is a finite or infinite sequence of states,
π = s0s1s2 . . . such that for all i ≥ 0, (si, si+1) ∈ R holds. If s0 ∈ S0, then π
is an initialised path.

This kind of formalism for models is extremely simplistic, and on purpose.
Creating models directly as Kripke structures is only seldom feasible but cre-
ating model checking algorithms for them is convenient. Consequently the
modelling work is often done in a more expressive language that is then con-
verted to a Kripke structure by the model checking tool.

Properties are the other part of the model checking process. They must
also be represented formally, usually in some formal specification language.
The purpose of a property is to tell what the model is not allowed to do,
and what it must be able to do. Typical formal specification languages are
the Computation Tree Logic (CTL), and the Linear Temporal Logic (LTL)
[12]. Property Specification Language (PSL), is a more modern addition and
an IEEE 1850 standard [3].
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State space

Initial
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Reachable with n steps

Reachable with 1 step

Reachable with 2 steps
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.

Figure 2.1: An illustration of invariant model checking. The outermost box
represents all the possible states of the model.

2.1 INVARIANT MODEL CHECKING

A simple version of the model checking process is checking whether invariant
properties hold. Intuitively, an invariant is something that must remain true
in all reachable states of the model. An example of an invariant property is
that in a bank account the amount of money deposited minus the amount
withdrawn must equal the balance. From the invariant the set of bad states,
i.e. those in which the invariant is broken, can be computed. Then, the
model is inspected to see if any bad state is reachable from the initial state.
The following process is used to do this check:

1. Let X be a set of states, initially set to S0, the set of initial states of the
Kripke structure.

2. Let succ(X) be the set of states that are reachable fromX with a single
transition, i.e. succ(X) = {s | ∃t ∈ X : (t, s) ∈ R}.

3. LetB be the set of bad states, i.e. the set of states in which the invariant
is broken.

4. If B ∩X 6= ∅, report failure and terminate the algorithm.

5. If X ∪ succ(X) = X , report success and terminate the algorithm.

6. Set X to X ∪ succ(X) and proceed with step 4.

Figure 2.1 illustrates this process.

2.2 SYMBOLIC MODEL CHECKING

The straightforward way of handling states in model checking algorithms is
by storing each of them explicitly in memory. Doing this often leads to a
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problem called state explosion [30], however, even with moderately complex
models. State explosion happens when the state-space is exponential in size
with respect to the description of the model. This is the case, for example,
when the model consists of multiple concurrently executing components,
and there can be exponentially many combinations of the local states of the
components. With state explosion, the main memory of computers quickly
becomes too small to accommodate the state space, and the hard drives are
too slow in practice to be used in storing the state space. The solution to
the problem is to have some compact way of representing the sets of states
that arise in model checking. A popular technique that achieves this is called
symbolic model checking, and is discussed in detail in [24] and [12].

2.2.1 Binary Decision Diagrams

A popular way of way of representing the state space in symbolic model
checking is with Binary Decision Diagrams. Binary Decision Diagrams (BDD) [7],
are a way of describing boolean functions. They are rooted, directed, acyclic
graphs (DAGs), that have two kinds of nodes: non-terminals and terminals.
The terminal nodes denote a boolean value, while non-terminal nodes de-
note variables with boolean domains. Terminal nodes have no children,
while non-terminals have exactly two: a low and a high child. The order
of variables in the BDD is fixed: if a variable comes after another in one
path from the root to a terminal, they cannot appear in reversed order along
another path.

Intuitively, a BDD is interpreted as a boolean function in the following
way: start with the root, and go to the high child if the variable denoted by
the node is true, or the low child otherwise. This choice is repeated on every
non-terminal node encountered this way, until a terminal is reached. The
value denoted by the terminal is the value of the function with the variable
values for the followed path.

Let V be a set of boolean variables. A truth assignment of V is a mapping
of the variables in V to truth values, i.e. a : V → {0, 1}. A boolean function
f over the set of variables V maps the truth assignments of V to truth values.
One way to describe f as a BDD is to have a the full tree with separate
nodes for all the possible truth assignments. The size of such a tree is 2O(|V |).
Figure 2.2 illustrates this set-up.

This way of representing boolean functions is obviously inefficient, since
a simple truth table would be smaller. A very straightforward improvement
is to use only one instance each of the “true”-node and the “false”-node.
This removal of redundancy is extended to variable nodes. If the low-child
and the high -child of a variable node are the same, the variable node can
be removed, and all nodes that point to it are modified to point to its child
instead. Also, sub-graphs that have identical structure are merged into one.
This can be done efficiently in bottom-up order one node at a time: if two
nodes denote the same variable and have the same low and high children,
they are merged. When no new node merging or removal can be done,
the BDD is in its reduced form. Figure 2.3 shows an unreduced BDD, and
Figure 2.4 shows the same BDD in its reduced form.

BDDs that have a fixed variable ordering and are reduced as described
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Figure 2.2: A Binary Decision Diagram representing some boolean function
over a set of n variables. A dashed line leads to the low child while a solid
line leads to a high child.
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Figure 2.3: A BDD in its unreduced form.
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Figure 2.4: A BDD in its reduced form.
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above are called Reduced, Ordered Binary Decision Diagrams (ROBDD).
ROBDDs are a canonical way of representing boolean functions, mean-
ing that if two ROBDDs represent the same function, they are isomorphic,
i.e. they have the same structure. This in turn means that checking if a
boolean function is valid or satisfiable can be done trivially by checking if
the ROBDD that represents the function is a single “true” or “false” terminal
node. In this text all BDDs from now on refer to ROBDDs. The properties
of BDDs and algorithms for manipulating them are covered e.g. in [7].

Utilising BDDs in model checking is conceptually fairly straightforward.
Since they are a convenient way to describe boolean functions, all that is
needed is a way to use boolean functions to describe the parts of a Kripke
structure.

• A state of the Kripke structure is encoded as a truth assignment of a set
of variables V .

• A set of states S ′ can be coded as a boolean function over the set of
variables V . The binary function fS′ describing S ′ returns true if and
only if the truth assignment represents a state in S ′.

• The transition relation R ⊆ S × S can also be coded as a boolean
function fR over a union of two sets of variables V and V ′. Truth
assignments of V are used to represent starting states for transitions
and truth assignments of V ′ are used to represent ending states. Let a
be a truth assignment of V and a′ be a truth assignment of V ′. Then
fR returns true if and only if the pair of states represented by a and a′

belongs to the transition relation R.

A few operations on boolean functions need to be defined before a model
checking algorithm that utilises them can be described.

• The union of two sets is equivalent to the disjunction of the boolean
functions that describe them. A disjunction of two boolean functions
f1 and f2 over the sets of variables V1 and V2 is a boolean function f
over the set of variables V1 ∪ V2, s.t. f returns true for a truth assign-
ment if and only if at least one of f1 and f2 would return true for that
assignment.

• The intersection of two sets is equivalent to the conjunction of the
boolean functions that describe them. A conjunction of two boolean
functions f1 and f2 over the sets of variables V1 and V2 is a boolean
function f over the set of variables V1 ∪ V2, s.t. f returns true for a
truth assignment if and only if both f1 and f2 would return true for
that assignment.

• Using the transition relation requires two operations on boolean func-
tions: existential quantification and renaming. Existential quantifica-
tion is denoted by ∃V ′ . f1, where f1 is a boolean function over the set
of variables V1 and V ′ ⊆ V1. The result of the operation is a boolean
function f over the set of variables V1 \V ′, s.t. f returns true for a truth
assignment a if and only if there exists a truth assignment a′ of V ′ such
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that f1 would return true for the combined truth assignment of a and
a′. This can be thought of as saying the variables in V ′ are not of im-
portance: if there is a way to set them that makes the function true,
then the value is true.

Renaming is denoted by f1[V
′/V ], where f1 is a boolean function over

the set of variables V1, |V | = |V ′|, and V ′ ⊆ V1. The result of the
operation is a boolean function f over the set of variables (V1 \V ′)∪V
s.t. the variables in V ′ are replaced with the variables in V . f returns
true for a truth assignment a if and only if replacing the variables from
V ′ with the variables from V in a would result in a truth assignment
for which f1 would return true.

The above operations can be used to compute the set of states that is
reachable from some set of states S ′ with a single step, for example.
Let fS′ be the boolean function over V that represents S ′, let fR be the
boolean function over V ∪ V ′ that represents the transition relation.
The states that are reachable from S ′ with a single step can be com-
puted with the operation (∃V . (fR ∧ fS′))[V ′/V ]. First, the transition
relation is intersected with the set of states S ′: this restricts it to the
transitions whose starting state is in S ′. After that existential quantifi-
cation is used to remove the variables that are used for encoding the
starting state, and finally the remaining variables are renamed to get an
encoding for the desired set of states.

For more details about the above operations, their implementations with
BDDs, and about BDDs in general, see [7] or [24]. With these operations,
an algorithm for symbolic invariant model checking can be described. The
algorithm, shown in Figure 2.5, gets as parameters the boolean function en-
coding of the set of initial states of the Kripke structure, the boolean function
encoding of the transition relation, and the boolean function encoding of the
set of bad states. It returns FAILURE if some bad state is reachable from the
initial states, and SUCCESS otherwise. The auxiliary function succ com-
putes the states that are reachable with a single step from the set it gets as a
parameter, using the transition relation that it gets as the other parameter. V
is the set of variables that is used for encoding states and the starting states of
a transition, and V ′ is the set of variables that is used for encoding the ending
states of transitions.

2.3 SAFETY PROPERTIES

Safety properties are a special class of properties that state that require that
some bad thing can never happen. Intuitively, the bad thing is something
that can be immediately noticed from an observed behaviour. More for-
mally, a safety language [18] is a set of finite and infinite paths, for which
the following holds: for every path not in the safety language, there exists a
bad prefix. A bad prefix is a finite path that cannot be extended in any way
to produce a path that is in the language. A bad prefix can be thought of as
a counterexample to a property. A safety property is a property that can be
expressed as a safety language.
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succ(f, fR) {
r e t u r n (∃V . (fR ∧ f))[V ′/V ]

}

CheckInvar(fS0 , fR, fB) {
f ← false
f ′ ← fS0

whi le (f ′ 6= f ) {
f ← f ′

f ′ ← f ′ ∨ succ(f ′, fR)
i f (f ′ ∧ fB 6= false ) {

r e t u r n FAILURE
}

}
r e t u r n SUCCESS

}

Figure 2.5: An algorithm for symbolic invariant model checking

Safety properties are an important class of properties in a few ways. Firstly,
model checking with safety properties is a simpler task than general model
checking, as discussed e.g. in [18] and [21]. This makes developing spe-
cialised algorithms for handling them attractive. Secondly, safety properties
can be monitored at runtime by adding instrumentation to a system that
reports violations of the safety property. This follows from the finiteness
of the counterexamples: when the property is broken, a finite execution is
enough to report its violation, no knowledge about possible future behaviour
is needed.

2.4 MODEL CHECKING WITH OBSERVERS

Observers in the context of model checking are finite state machines that are
used to detect counterexamples to a property. For details, see [11]. They
have a set of bad states, expressed as an invariant property, and are given an
execution path as input. The observer enters a bad state if and only if the ex-
ecution so far has broken the property that is being checked. This method of
operation of course means that only safety properties can be exhaustively ver-
ified by observers, since the observer enters a bad state after a finite number
of steps or not at all, and thus the counterexample for the property must be
finite. Some finite counterexamples to non-safety properties can be detected
as well. Figure 2.6 illustrates the components and their inputs in model
checking with the observer method.

While the observer method does suffer from being limited to finite coun-
terexamples, it has a reduced complexity of verification: it is sufficient to
check for the reachability of bad states. Observers can also be used in testing
to bring the expressiveness of properties from model checking to the testing
methodology by running the observer together with the system and having it
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Property

Translator

Model checker

Observer

Model

Figure 2.6: Model checking with the observer method. Ovals represent in-
puts to components, and boxes represent the components.

report a fault when a bad state is reached, as is done in [15]. The main ad-
vantage to conventional testing is that more complex properties can be tested
for more easily.
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3 NUSMV MODEL CHECKING TOOL

NuSMV [8] is a model checking tool and framework released under an open
source license. It was originally designed as a BDD-based model checker,
but has since been extended to incorporate propositional satisfiability (SAT)
-based model checking techniques. In the process of adding the SAT-based
back end, NuSMV has been redesigned to make adding new algorithms and
model checking methods possible. The goal of the NuSMV project is to have
a free tool with support for state of the art techniques, as well as a framework
for adding and testing experimental techniques.

3.1 INPUT LANGUAGE

NuSMV uses an extension of the SMV language [16]. The basic building
blocks of SMV models are modules. They are templates for finite state ma-
chines, and define a set of state variables, parameters, and restrictions on
behaviour. The state of the whole model consists of instantiated modules
and their internal states. Module instances can behave synchronously, up-
dating their state all at once, or as asynchronous processes, in which case one
instance at a time is non-deterministically chosen to update its state.

A module consists of a list of parameters, a list of variables, and a set of
constraints for them. The variables can have domains of boolean values,
arrays, integer ranges, and module instances, among others, but this work
focuses only on variables with boolean domains. The constraints limit which
state changes are possible, thus inducing a Kripke structure. Any unrestricted
variables can take any value in their domain.

The parameters of a module are used to convey signals between module
instances. A parameter can be used like a state variable in the constraints,
but the effect carries on to other module instances, allowing them to com-
municate with each other.

Variables are declared in VAR-blocks in a module. A variable declaration
consists of the name and type of the variable. Multiple variable declarations
can be included in a VAR-block, and a module can contain multiple VAR-
blocks. A typical VAR-block could look something like:

VAR

a : boolean;

b : boolean;

This block declares two boolean variables, a and b.
Constraints can be added with INIT-blocks, INVAR-blocks, TRANS-blocks,

and ASSIGN-blocks. In this work we focus only on INIT-, INVAR-, and TRANS-
blocs. The INIT-block contains a boolean expression that must be true in the
initial state of the module. If multiple INIT-blocks are present, they all must
be true in the initial state. A typical INIT-block could look like:

INIT a & !b
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This block states that in every initial state, a must hold and b must not hold.
The INVAR-block contains a boolean expression that must be true in every

state of the module. Again, multiple INVAR-blocks must all be true. For
example, the block:

INVAR

a | b | c

states that at least one of the variables must be true in every state.
The TRANS-block also contains a boolean expression, but such an expres-

sion is true in every state change of the system. Boolean expressions inside a
next-expression must be true after the state change, whereas boolean expres-
sions outside them are true before the state change. A module can contain
multiple TRANS-blocks, in which case they must all be true in every state
change. A typical TRANS-block could look like:

TRANS

a <-> next(!a)

This block declares that a is an oscillating variable: it is true in exactly every
other state. The constraints in TRANS-blocks do not hold in the case where
there is no next state. INVAR-constraints must be used in such cases.

NuSMV modules can include many types of verifiable specifications, in-
cluding CTL, LTL, PSL, and invariant properties. They are declared in
SPEC-, LTLSPEC-, PSLSPEC-, and INVARSPEC-blocks, respectively. Each type
of temporal logic specification block contains a formula written in the corre-
sponding logic, and the invariant specification contains a boolean expression
that must hold in every reachable state of the module.

The following example illustrates the use of INIT and TRANS blocks, as
well as usage of modules:

MODULE main

VAR

a : step_delay(0, b.out);

b : step_delay(1, a.out);

MODULE step_delay(initial, signal)

VAR

out : boolean;

INIT

out = initial

TRANS

next(out) = signal

The step_delay-module is a state machine that has two parameters: the ini-
tial value of the output and the signal that it gets its subsequent output values
from. It introduces a delay of a single step between the signal and its output.
The main-module instantiates two synchronous copies of the step_delay-
module and sets the input signal of each to the output of the other. The end
result is a system where a.out and b.out take turns in being true.
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4 INTRODUCTION TO PSL

The Property Specification Language (PSL) [3], was developed from Sugar [4],
a specification language designed by IBM. Sugar, and by extension PSL, is
focused on creating a specification language that is easy to use by engineers.
It has many features for circuit design and analysis, but can be used in any
type of environment where formal specification languages are used. The pre-
vious versions of the standard suffer from slight inconsistencies as detailed
for example in [10], but a new version of the PSL standard is under develop-
ment. This work uses the semantics from [1], which is a proposal for the next
version of PSL. A more thorough introduction to PSL can be found in [13].

PSL uses atomic propositions as basic elements of statements. The specifi-
cation also includes the boolean layer, which includes more complex expres-
sions that have boolean values: bit vector expressions, numerical expressions,
and string expressions etc. Here, however, we omit the boolean layer for
simplicity.

Basic PSL expressions can be formed and combined with the basic boolean
logic operators: ∧, ∨, and ¬, but the real power of PSL is with the temporal
layer. The temporal layer contains operators that refer to the future or past.
They are the heart of the language, and are used to specify behaviour with
respect to subsequent states of the system.

The core of PSL, called the Foundation Language in the specification,
contains temporal operators that make statements about a single path. A
path is a sequence of states that represent one possible way in which the sys-
tem can behave. This means that the temporal operators in the Foundation
Language cannot make statements about what states are available as a choice
for the next state. This is possible in the Optional Branching Extension of
the language, which is not covered in this work. A system satisfies a property
if and only if the property holds on every path of the system. The temporal
operators in the Foundation Language can be roughly divided into two parts:
Sequential Regular Expressions (SEREs), that are discussed in Section 4.1,
and LTL-like operators, that are discussed in Section 4.2.

4.1 SEQUENTIAL REGULAR EXPRESSIONS

Sequential Regular Expressions (SERE), are very much like other forms of
regular expressions that are used in various computer-related tasks. A com-
mon use for regular expressions is to describe patterns against which it is
efficient to test a sequence of characters. SEREs, on the other hand, are used
to describe a pattern that can be tested for in a path. They also contain some
operators that are not available in typical forms of regular expressions.

The benefits of SEREs compared to the LTL-like temporal operators are
that engineers that already know some form of regular expressions can use
that previous knowledge with SEREs. Moreover, SEREs can be used to spec-
ify some things that can not be specified in LTL. They can only specify finite
patterns, however, so specifying infinite behaviour must be done with the
LTL-like operators.
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When deciding if a path matches the pattern described by a SERE, the
basic interpretation is to see if the beginning of the path matches the pattern.
A SERE by itself cannot make statements about things that must happen
infinitely often, or state that some action must always be followed by some-
thing else in an infinite execution. This limits the usability of SEREs by
themselves, and therefore they are often used as parts of a larger property that
uses the other temporal operators in PSL.

Paths in this chapter are presented as sequences of atomic proposition
groups. The groups are surrounded by braces, and contain the atomic propo-
sitions that hold in them. Some groups also have negated atomic proposi-
tions, which means that the atomic proposition does not hold in that group,
and that it is somehow significant. For example, the path

{a}, {a,¬b}

consists of two states, where a holds in both states, but the second state
stresses that b does not hold in it. The atomic propositions that hold are
in bold, while those that do not hold are in italics.

4.1.1 Atomic propositions

The most simple Sequential Regular Expression is a single atomic proposi-
tion. The pattern it specifies is a single state in which the atomic proposition
holds. Braces are used for grouping SEREs, so an example of a SERE with
just the atomic proposition a would be:

{a}

4.1.2 Concatenation

Concatenation of SEREs is another to construct simple patterns. The ;-
operator is used to concatenate two expressions, and the :-operator is used to
concatenate two expressions such that they have an overlap of a single state.
For example, the path

{a,b,¬c}, {b, c,¬a}, {c,¬a,¬b}, . . .

would match the pattern specified by the expression

{a; b; c}

as well as the pattern specified by the expression

{{a; b} : {c; c}}.

4.1.3 Union

The union of two SEREs is another operation that is used with practically
all types of regular expressions. The union operator is written as |, and it
combines two SEREs into a new one that matches all the patterns that either
of them would match. For example, the SERE

{{a; b} | {c}}
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specifies a pattern that would match with the following two paths:

{a}, {b}, . . .

{c}, . . .

4.1.4 Intersection

The intersection of two SEREs is something that is missing from most forms
of regular expressions, because it is a computationally costly operation. The
intersection operator is written as &&, and it combines two SEREs into a
SERE that matches every pattern that both of them match. Additionally, the
length of the match must be the same with both SEREs. For example the
following SERE:

{{a} | {b; c}} && {{b} | {d; a}}

would match the following paths:

{b,d,¬a,¬c}, {a, c,¬b,¬d}, . . .

{a,b,¬c,¬d}, . . .
but not these:

{b,¬a,¬c,¬d}, {c,¬a,¬b,¬d}, . . .
{a,d,¬b,¬c}, {a,¬b,¬c,¬d}, . . .

because the length of the match must be the same on both sides of the SERE.

4.1.5 Repetition

Repetition of a SERE is again something that is present in practically every
form of regular expressions. There are a few ways to make repeating versions
of SEREs: adding [*] to the SERE matches patterns that match the original
SERE zero or more times, adding [+] does the same one or more times,
adding [*n] matches the pattern exactly n times, adding [*n : m] matches
from n to m times. For example the SERE

{{a}[∗]; b}

matches the following paths:
{b}, . . .
{a}, {b}, . . .

{a}, {a}, {a}, {b}, . . .

4.2 TEMPORAL LOGIC OPERATORS

PSL has the usual set of operators from LTL, which function exactly as in
LTL. Only operators that refer to future states are presented here. In addition
to the operators here, PSL has lots of syntactic sugar (hence the original name
Sugar), including operators that refer to the past. As with SEREs, a formula
written with these operators holds in a path if and only if it holds in the first
state. Both SEREs and atomic propositions can be used as sub-formulae.
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4.2.1 Weak and strong operators

PSL divides operators into weak and strong ones. The exact meaning varies
according to the individual operators, but the intuitive difference is how the
operator is interpreted when finite paths are used with PSL, and the path
ends before enough information is available to resolve the truth value of a
formula. A strong version of an operator is interpreted as false if this happens,
while a weak operator evaluates to true.

4.2.2 Next

The X!-operator states that the formula it is applied to holds in the next state.
The exclamation mark indicates that this is a strong operator, meaning it is
false if there is no next state. The corresponding weak operator is X. For
example in the path

{¬a}{a}, {a}, {¬a}, . . .
the following formulas would hold:

X! a

X!X! a

but the following would not:

X!X!X! a

PSL also defines more verbose versions of the next-operators: next and
next!

4.2.3 Globally

The G-operator states that the formula it is applied to holds in every state of
the path. By itself it can be used to specify invariant properties: if something
must hold in every state of every path of a model, then it must hold in every
reachable state of the model. The G-operator is not limited to specifying
invariant properties, however, as it can be embedded into other properties to
specify other interesting properties. For example the PSL property

G(a -> G b)

uses a logical implication to state that whenever the atomic proposition a is
true, the atomic proposition b must hold then and always after that. A more
verbose version of the G-operator is always. It does not have a strong and
a weak version, since there is no ambiguity about the value it should have
when a path ends. G can be thought of as a weak operator, because if the
property always held up to the end of the path, then the operator is true.

4.2.4 Finally

The F-operator specifies that the formula it is applied to must hold in some
future state of the path. A typical example that uses the F-operator is a prop-
erty that states that whenever a request is sent, at some subsequent state a
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response is received:

G(request -> F response)

Here request and response are atomic propositions. Also note that this
property does not say that every request must get a response: it just states that
after every request a response must be made. The property would still be true
in the following path, for example:

{request}, {request}, {response}

A verbose version of the F-operator is the eventually!-operator. Again, no
separate strong or weak version exists: if a path ends and the property has not
been true, the operator is false. Therefore, the F operator can be thought of
as a strong operator.

4.2.5 Until

The U-operator combines two formulae and states that the first must hold
from that point on up to, but not including the state where the second for-
mula holds. The operator also requires that the second property must occur
at some point. To specify, for example, that heat cannot be true before water
is, and additionally water must be true at some point, the following property
can be used:

!heat U water

To further specify that heat must become true at some point as well, a finally-
operator can be added:

(!heat U water) && F heat

The verbose version of U is the until!-operator. The weak version until

does not require the second property to become true, but if it does not, then
the first property must hold in every subsequent state. W can also be used
to denote the weak until operator. The until_ and until_! operators are
variations that require that the first property must hold also in the state where
the second one does.

4.2.6 Tail implication

Even though SEREs can be combined in various ways with other Foundation
Language formulae, only the start of a SERE pattern match can be attached
to other properties unless another operator is introduced. The |=>-operator
can be used to link the end of a SERE match to other properties. The left
operand of tail implication is a SERE and the right operand is any PSL for-
mula. The |=>-operator is true in a state if and only if every match of the
SERE that starts from the state is followed by a state where the other formula
is true. For example, the property

{a[+]} |=> b

would hold in the path
{a}, {a,b}, {b}
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but not for example in the path

{a,¬b}, {a,¬b}, {b,¬a}

because the SERE {a[+]} matches a single a, but b does not hold in the
second state. |-> is a variation of the operator that states that the SERE
matches and the following property must overlap by a single state.
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5 PSL SYNTAX AND SEMANTICS

This chapter formally defines the syntax and semantics of PSL. The presen-
tation closely follows that of [1]. The suggested PSL extension with local
variables as well as the Optional Branching Extension are not considered.
Also note that the some of the operators in Chapter 4 are not considered.
See [1] for a list of all PSL operators and information on how they can be
expressed with the operators defined here.

5.1 SYNTAX

Let AP be the set of atomic propositions, and p ∈ AP . Let r1 and r2 be Se-
quential Regular Expressions. The syntax of Sequential Regular Expressions
(SERE), is defined inductively as follows:

r ::= [∗0] | p | ¬p | {r1} | r1[+] |
r1 · r2 | r1 ◦ r2 | r1 ∪ r2 | r1 ∩ r2

Additionally, let φ1 and φ2 be PSL formulae and k be a non-negative inte-
ger. The syntax of PSL formulas is defined inductively as follows:

φ ::= p | r1 | r1! | ¬φ1 | (φ1) |
X![k]φ1 | φ1 ∧ φ2 | φ1 U φ2 | r1 7→ φ1

The textual representation, i.e. |->, of the 7→ operator is used in Chap-
ter 4. Some operators from that chapter are omitted here for brevity, since
they can be rewritten with the operators of this chapter.

Additionally, the following operators are used in this work when convert-
ing formulae to the positive normal form. They appear also in [9].

φ ::= φ1 R φ2 | φ1 ∨ φ2 | r1 �→ φ1

The R, i.e. releases-operator, is also used in LTL. The �→, i.e. tail conjunction-
operator, is the dual of the 7→, it states that there exists some match of the
SERE operand in the path, and that the formula holds in the state where the
match ends.

5.2 SEMANTICS

The semantics of PSL formulae is defined with respect to models and their
computation paths. A model over a set of atomic propositions AP is a tuple
(S, S0, R, L)1, where S is a finite set of states, S0 ⊆ S is the set of initial
states, R ⊆ S × S is the transition relation, and L : S → 2AP is a function
that maps the states to the atomic propositions that hold in them.

1See the Kripke structure in Chapter 2.
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A path π = s0, s1, s2, . . . is a finite or infinite sequence of states. A com-
putation path π = s0, s1, s2, . . . of a model is a non-empty finite or infinite
sequence of states where s0 ∈ S0 and each (si, si+1) ∈ R. The empty path is
denoted by ε.

Note that unlike [1], here we use s0, s1, etc. to denote states in a path, and
π0, π1, etc. to denote paths.

5.2.1 SERE semantics

For each SERE r, three languages are defined: L(r), F(r), and I(r). The
first is the intuitive, commonly used language of finite words defined by
other flavours of regular expressions, the second language contains exactly
the words that are the proper prefixes of the words in the first, and the third
consists of infinite words that are generated by making some repeating oper-
ator of the SERE repeat infinitely, or intuitively getting stuck in some repeti-
tion.

We define S∗ to mean the set of finite (possibly empty) sequences s0, s1, . . . , sn

where each si ∈ S, S+ to mean the set of finite non-empty sequences
s0, s1, . . . , sn where each si ∈ S, and Sω to mean the set of infinite sequences
s0, s1, . . . where each si ∈ S. |π| is the length of π if π ∈ S∗, or ω otherwise.
In the following definitions π, π1, π2, . . . ∈ S∗ ∪ Sω and s ∈ S.

Base language
The base language of a SERE is defined inductively as follows:

• L([∗0]) = {ε}.

• L(p) = {s | p ∈ L(s)}, where p ∈ AP .

• L({r}) = L(r).

• L(r+) = {π | ∃n ∈ Z+ : π = π1π2 . . . πn and ∀i, 1 ≤ i ≤ n : πi ∈
L(r)}, where Z+ is the set of positive integers.

• L(r1 · r2) = {π1π2 | π1 ∈ L(r1) and π2 ∈ L(r2)}.

• L(r1 ◦ r2) = {π1sπ2 | π1s ∈ L(r1) and sπ2 ∈ L(r2)}.

• L(r1 ∪ r2) = L(r1) ∪ L(r2).

• L(r1 ∩ r2) = L(r1) ∩ L(r2).

For example the languageL(a+ · {b∪c}) consists of the words ab, ac, aab, aac, . . .

Prefix language
The prefix language is defined as:

F(r) = {π | ∃π′ ∈ S+ : ππ′ ∈ L(r)}.

For example, the languageF(a+ · {b∪c}) consists of the words a, aa, aaa, . . ..
Note that b or c never show up in the words of the language.
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Loop language
The loop language is defined inductively as:

• I([∗0]) = ∅.

• I(p) = ∅.

• I({r}) = I(r).

• I(r+) = {π1π2 | π1 ∈ L(r+) ∪ {ε} and π2 ∈ I(r)} ∪
{π | π ∈ Sω, π = π1π2π3 . . . ,∀i ∈ Z+ : πi ∈ L(r)}.

• I(r1 · r2) = I(r1) ∪ {π1π2 | π1 ∈ L(r1) and π2 ∈ I(r2)}.

• I(r1 ◦ r2) = I(r1) ∪ {π1sπ2 | π1s ∈ L(r1) and sπ2 ∈ I(r2)}.

• I(r1 ∪ r2) = I(r1) ∪ I(r2).

• I(r1 ∩ r2) = I(r1) ∩ I(r2).

For example, the language I(a+ · {b∪ c}) consists of only the single infi-
nite word aω = aaa . . .. On the other hand, the language I({a+ · {b∪c}}+)
has the word aω but also the infinite words (ab)ω, (ac)aω, (abaac)ω among
others, since the infinite looping can be done at either of the repetition op-
erators.

5.2.2 PSL semantics

The PSL semantics itself is divided into three classes: the strong, neutral,
and weak semantics. As with strong and weak operators in Chapter 4, the
semantics differ when a path ends and the truth values of some operators
are inconclusive in some way. With some operators the strong semantics de-
mands that some additional conditions are met within the path, when the
neutral and weak semantics do not. The weak semantics, on the other hand,
relax some requirements, stating that some conditions need not be satisfied
in a finite path. With infinite paths, the three semantics are identical. Intu-
itively, the strong semantics can be thought to require that all the conditions
of the operator are met within the finite path: if it can be extended in such
a way that the operator would become false, then the operator is false in the
strong semantics. The weak semantics, on the other hand, works the other
way around: if the path could be extended in such a way that the operator
becomes true, then the operator is true in the weak semantics.

Here we again use a notation that is slightly different from [1]. We use
π |=v

i φ to denote that the formula φ holds with the semantics v on the path
π at point i. Here v is one of strong, neutral, or weak, and i ∈ N.

In each case we assume that π = s0, s1, s2, . . . ∈ S∗ ∪ Sω. The semantics
of PSL formulae is defined inductively as follows:

• π |=v
i p⇔ p ∈ L(si), where p ∈ AP .

• π |=v
i r!⇔


∃j ≥ i : si, . . . , sj ∈ L(r), or
ε ∈ L(r), or
v = weak and π ∈ F(r) ∪ {ε}.
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• π |=v
i r ⇔


v 6= strong and π ∈ F(r) ∪ {ε}, or
π ∈ I(r), or
π |=v

i r!.

• π |=v
i r 7→ φ⇔


∀j ≥ i : if si, . . . , sj ∈ L(r), then π |=v

j φ, and
if ε ∈ L(r), then π |=v

i φ, and
if v = strong, then si, . . . /∈ F(r) ∪ {ε}.

• π |=v
i r �→ φ⇔


∃j ≥ i : si, . . . , sj ∈ L(r) and π |=v

j φ, or
ε ∈ L(r) and π |=v

i φ, or
v = weak and si, . . . ∈ F(r) ∪ {ε}.

• π |=v
i (φ)⇔ π |=v

i φ.

• π |=v
i ¬φ⇔


v = strong and π 6|=weak

i φ, or
v = neutral and π 6|=neutral

i φ, or
v = weak and π 6|=strong

i φ.

• π |=v
i φ ∧ ψ ⇔ (π |=v

i φ and π |=v
i ψ).

• π |=v
i φ ∨ ψ ⇔ (π |=v

i φ or π |=v
i ψ).

• π |=v
i X![k]φ⇔

{
|π| ≥ i+ k and π |=v

i+k φ, or
v = weak and |π| < i+ k.

• π |=v
i φ1 U φ2 ⇔

{
∃j ≥ i : π |=v

j φ2 and ∀k, i ≤ k < j : π |=v
k φ1, or

v = weak and π ∈ S∗ and ∀k, i ≤ k ≤ |π| : π |=v
k φ1.

• π |=v
i φ1 R φ2 ⇔

{
∀j ≥ i : π |=v

j φ2 or ∃k, i ≤ k < j : π |=v
k φ1, and

v 6= strong or π ∈ Sω or ∃k, i ≤ k ≤ |π| : π |=v
k φ1.

A formula φ holds with semantics v for a computation path π, denoted
π |=v φ, if and only if π |=v

0 φ. A formula holds with a certain semantics in
a model if and only if it holds in every computation path of the model with
that semantics. A formula fails on a model if and only if it does not hold with
the weak semantics.
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6 EVALUATING FORMULAE ON FINITE EXECUTIONS

When building an observer for PSL properties, and in fact for any properties,
only finite computation paths can be considered. In the case of properties
where an infinite execution is needed to determine if an aspect of the prop-
erty holds or not, some approximation needs to be done. Usually with model
checking an under-approximation is appropriate: a property is reported to fail
only if the approximation algorithm can be certain it fails. This is also the
approach taken here.

With the PSL semantics described in the previous chapter, a convenient
and intuitive approximation approach is to report when a property fails on
the observed path, i.e. π 6|=weak φ. In that case the path can no longer sat-
isfy the property, even if all possible extensions of the path are considered: a
finite counterexample of the property has been found. This is equivalent to
π |=strong ¬φ. An observer for a formula in the strong semantics can be con-
structed, because a finite path is always sufficient to determine if the formula
holds. Negations in the formulae refer to other semantics, however:

π |=v
i ¬φ⇔


v = strong and π 6|=weak

i φ, or
v = neutral and π 6|=neutral

i φ, or
v = weak and π 6|=strong

i φ.

To avoid the need to create observers with other than strong semantics, the
formula can be converted into positive normal form, which means allowing
negations only in front of atomic propositions, where the three semantics
are equivalent. The following rewriting rules, that are obtained by logically
negating the semantics of the formulae, can be used to push negations next
to atomic propositions:

• π |=v
i ¬¬φ⇔ π |=v

i φ,

• π |=v
i ¬(r 7→ φ)⇔ π |=v

i r �→ ¬φ,

• π |=v
i ¬(φ1 ∧ φ2)⇔ π |=v

i (¬φ1) ∨ (¬φ2), and

• π |=v
i ¬(φ1 U φ2)⇔ π |=v

i (¬φ1) R (¬φ2).

Additionally, because strong semantics is in use, the following rewriting rule
can also be used:

• π |=strong
i ¬X![k]φ⇔ π |=strong

i X![k]¬φ.

Since the semantics of the �→ operator are not part of the PSL standard,
the rewriting rule for it is proven here:

Proposition 6.1. π |=v
i ¬(r 7→ φ)⇔ π |=v

i r �→ ¬φ.

Proof. For v ∈ {strong,neutral,weak}, we define

v =


weak, when v = strong
neutral, when v = neutral
strong, when v = weak
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Recall that the definition of π |=v
i r 7→ φ is:

∀j > i : if si, . . . , sj ∈ L(r), then π |=v
j φ, and

if ε ∈ L(r), then π |=v
i φ, and

if v = strong, then si, . . . /∈ F(r) ∪ {ε}.

The proposition can then be proven with:

π |=v
i ¬(r 7→ φ)

⇔ π 6|=v
i r 7→ φ

⇔


∃j > i : si, . . . , sj ∈ L(r) and π 6|=v

j φ, or
ε ∈ L(r) and π 6|=v

i φ, or
v = strong and si, . . . ∈ F(r) ∪ {ε}

⇔


∃j > i : si, . . . , sj ∈ L(r) and π |=v

j ¬φ, or
ε ∈ L(r) and π |=v

i ¬φ, or
v = weak and si, . . . ∈ F(r) ∪ {ε}

⇔ π |=v
i r �→ ¬φ
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7 TRANSDUCERS FOR PSL FORMULAE

Transducers (also called testers in e.g. [26]) are a symbolic variant of finite
state automata. Intuitively a transducer is an automaton that has a finite
number of input and state variables and one output variable, all with boolean
domains, and a transition relation that maps values of the variables in a state
to new values in the next state. Instead of accepting or rejecting the input
at the end of the execution like regular finite automata, they can signal ac-
ceptance or rejection at each point. This can be interpreted as acceptance
starting from that point, and since the transducer can refer to future input
values, they are inherently non-deterministic.

In this work we use transducers to signal whether a PSL property holds
starting at each point of execution. Translating transducers to NuSMV mod-
ules is very straightforward, as is building larger transducers from other, smaller
component transducers. Additionally, proving properties about them is con-
venient. These are the main reasons for using this formalism here.

7.1 NON-DETERMINISTIC FINITE AUTOMATA

Some of the transducers in this chapter require the concept of a non-deterministic
finite automaton (NFA). A non-deterministic finite automaton is a state ma-
chine that is given a finite sequence of input letters, and at the end of the
sequence the automaton either accepts or rejects the input sequence. For-
mally, a non-deterministic finite automaton is a quintuple (Q,Σ, δ, q0, F ),
where:

• Q is a finite set of states,

• Σ is a finite set of input letters, i.e. the alphabet,

• δ ⊆ Q× Σ×Q is the transition relation,

• q0 ∈ Q is the initial state, and

• F is the set of accepting states.

An input sequence w, called a word, is a finite sequence of input letters:
w = σ1, σ2, . . . , σn, where each σi ∈ Σ. An execution of an automaton A
for w is a sequence of transitions (q0, σ1, q

′
1), (q

′
1, σ2, q

′
2), . . . , (q

′
n−1, σn, q

′
n),

where q0 is the initial state, and each triplet is a member of the transition
relation, and therefore each q′i is a member of Q. The automaton is defined
to accept the word if an execution exists for which q′n ∈ F . The language of
the automaton, denoted by L(A), is the set of words it accepts.

7.2 TRANSDUCERS

Formally, a transducer T is a tuple (Q,Qin, qout, I, F, δ), where:

• Q is a finite set of state variables.
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• Qin is a finite set of input variables, disjoint from Q.

• qout ∈ Q is the output variable.

• Every subset of Q ∪Qin is a state of the transducer. A variable v is true
in a state s ⊆ Q ∪Qin if and only if v ∈ s.

• I ⊆ 2Q∪Qin is a set of initial transducer states.

• F ⊆ 2Q∪Qin is a set of final transducer states.

• δ ⊆ 2Q∪Qin × 2Q∪Qin is the transition relation.

7.3 TRANSDUCER EXECUTION

An execution of a transducer T is a finite non-empty sequence of states,
s1, s2, . . . , sn, where ∀i, 1 ≤ i < n : (si, si+1) ∈ δ.

The input of a transducer is a path: π = p1, . . . , pn, where each pi is a set
of input variables from some input domain D, where Qin ⊆ D. Formally,
π ∈ (2D)+. An execution s1, s2, . . . , sn of a transducer T is defined to be an
execution for π if for every input variable v ∈ Qin and for every i, 1 ≤ i ≤ n
the following holds: v ∈ si ⇔ v ∈ pi.

A transducer is defined to accept its input starting from point j if there
exists an execution s1, . . . , sj, . . . , sn where s1 ∈ I , sn ∈ F , and the output
qout variable is true at state sj .

The example below is a transducer that accepts at a point of a path where a
holds exactly in every other state until the end of the path, the last state being
one where a does not hold. The beginning of the path can be anything, as
long as the end of the path consists of at least one state where a holds and
one state where it does not.
T = (Q,Qin, qout, I, F, δ), where:

• Q = {q0, q1},

• Qin = {a},

• qout = q0,

• I = 2Q∪Qin ,

• F = {s | s ⊆ (Q ∪Qin), q0 /∈ s ∧ (q1 ∈ s⇔ a /∈ s)}, i.e. {{q1}, {a}},
and

• δ = {(s, s′) | s ⊆ (Q ∪ Qin), s′ ⊆ (Q ∪ Qin), (q0 ∈ s ⇒ a ∈ s ∧ q1 ∈
s′) ∧ (q1 ∈ s⇒ a /∈ s ∧ q0 ∈ s′)}.

The state variables are q0 and q1, and q0 is also the output variable. q0
is used to signal a non-deterministic guess that the rest of the path consists
of states where a alternates between true and false. The transition relation
enforces this: q0 or q1 need not ever be true, but if they are, a must have the
appropriate value, and the other variable must be true in the next state. The
constraints do not prevent transitions to states where e.g. q0 and q1 are both
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Figure 7.1: A composition of two transducers, T1 and T2. T1 gets the output
information from T2 into an input variable.

true, which can be a bit counter-intuitive, but since no transitions from such
states are present, they need not be explicitly ruled out from the reachable
states of the transducer.

The final state constraint works together with the transition relation to
enforce that the non-deterministic guess of setting q0 to true is done properly:
it states that q0 can not be true, meaning that the alternation of q0 and q1
must always end with q1, and q1 holding in the last state is equivalent to a not
holding. This constraint is necessary, since the transition relation does not
constrain a in the succeeding state: q0 implies that q1 must hold next, but
that does not mean that a must not hold next. States where both q1 and a
hold have no outgoing transitions, but the final state constraint must rule out
such states as the final state.

7.4 TRANSDUCER COMPOSITION

For transducer composition, we define a renaming operation for sets. Let S
be a set, and let a ∈ S. Renaming a to b in the set S is then denoted by
S[a/b], and defined as (S \ {a}) ∪ {b}. For a pair of sets (S, S ′), (S, S ′)[a/b]
is shorthand for (S[a/b], S ′[a/b]). The latter notation is used for renaming
with transition relations.

Let T1 = (Q1, Q
in
1 , q

out
1 , I1, F1, δ1) and T2 = (Q2, Q

in
2 , q

out
2 , I2, F2, δ2) be

two transducers. A composition of the transducers T1 and T2, with respect
to some qin ∈ Qin

1 , connects the output of T2 to one input variable of T1.
Figure 7.1 illustrates this. The resulting transducer has all the input variables
of T1 and T2, except for the one input of T1 that was used up by the com-
position. The output variable of the new transducer is the output variable of
T1. Transducer composition should not be confused with concatenating the
accepted paths of the transducers. The properties of the resulting transducer
depend solely on the components: T1 is free to use the information it gets
from T2 in any way.

Transducer composition is denoted as T2 Bqin T1, and defined as TB =
(QB, Q

in
B, q

out
B , IB, FB, δB), where:

• QB = Q1 ∪Q2,

• Qin
B = (Qin

1 \ {qin}) ∪Qin
2 ,

• qout
B = qout

1 ,

28 7. TRANSDUCERS FOR PSL FORMULAE



• IB =

s1[q
in/qout

2 ] ∪ s2

∣∣∣∣∣∣∣
s1 ∈ I1, s2 ∈ I2, and
qin ∈ s1 ⇔ qout

2 ∈ s2, and∧
v∈Qin

1 ∩Qin
2

v ∈ s1 ⇔ v ∈ s2

,

• FB =

s1[q
in/qout

2 ] ∪ s2

∣∣∣∣∣∣∣
s1 ∈ F1, s2 ∈ F2, and
qin ∈ s1 ⇔ qout

2 ∈ s2, and∧
v∈Qin

1 ∩Qin
2

v ∈ s1 ⇔ v ∈ s2

, and

• δB =(s1 ∪ s2, s
′
1 ∪ s′2)[q

in/qout
2 ]

∣∣∣∣∣∣∣
(s1, s

′
1) ∈ δ1, (s2, s

′
2) ∈ δ2, and

(qin ∈ s1 ⇔ qout
2 ∈ s2) ∧ (qin ∈ s′1 ⇔ qout

2 ∈ s′2), and∧
v∈Qin

1∩Qin
2

(v ∈ s1 ⇔ v ∈ s2) ∧ (v ∈ s′1 ⇔ v ∈ s′2)

.

The constraints set by the initial states, the final states, and the transition
relations are preserved in the composition. This is done by forming the new
initial states from the union of the variables from each initial state of T1 with
the variables form each initial state of T2, but only when they agree on the
plugged variable and the input variables they share. The same is done for the
final states and the transitions. T1 and T2 may not share any state variables
and the plugged input variable cannot exist in T2, i.e. we require that Q1 ∩
Q2 = ∅ and qin /∈ Qin

2 .
To give an example of transducer composition, we will use the previous

transducer example. An additional condition is added: the suffix of the path
where a alternates must contain at least two states where a holds. To achieve
this, we will construct a transducer that accepts its input if its input variable
becomes true at least twice, and then compose it with the previous example.

The new transducer is defined as T2 = (Q2, Q
in
2 , q

out
2 , I2, F2, δ2), where:

• Q2 = {q},

• Qin
2 = {qin

2 },

• qout
2 = q,

• I2 = {s | s ⊆ (Q ∪Qin), q ∈ s⇔ qin
2 ∈ s}, i.e. {∅, {q, qin

2 }},

• F2 = {s | s ⊆ (Q ∪Qin), q /∈ s}, i.e. {∅, {qin
2 }}, and

• δ2 = {(s, s′) | s ⊆ (Q∪Qin), s′ ⊆ (Q∪Qin), (q ∈ s′ ⇔ q ∈ s)∨ qin
2 ∈

s′}.

The only state variable, q, is used to verify that the input is true twice.
The transition relation permits changing the value of q only when the input
variable qin

2 is true. Thus, if the input is true only once, it can be set to true,
but not to false again. This, in turn, violates the constraint on the final state.
Therefore, if q becomes true in an execution, qin

2 must be true at least twice.
Also note that qin

2 being true does not force changing the value of q, so qin
2 can

be true an odd number of times as well. In this case we also need an initial
state constraint to be able to detect if the input variable is true in the first
state, and set q accordingly. A quirk of the transducer is that no execution
exists if qin

2 is true in the initial state, but not in any subsequent state. This
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is not a real problem, however, because of the way accepting is defined with
transducers.

The composition of the two examples is TB = (QB, Q
in
B, q

out
B , IB, FB, δB) =

T Bqin
2
T2, where:

• QB = {q, q0, q1},

• Qin
B = {a},

• qout
B = q,

• IB = {s | s ⊆ (Q ∪Qin), q ∈ s⇔ q0 ∈ s},

• FB = {s | s ⊆ (Q ∪Qin), q0 /∈ s ∧ (q1 ∈ s⇔ a /∈ s) ∧ q /∈ s},

• δB = {(s, s′) | s ⊆ (Q∪Qin), s′ ⊆ (Q∪Qin), ((q ∈ s′ ⇔ q ∈ s)∨ q0 ∈
s′) ∧ (q0 ∈ s⇒ a ∈ s ∧ q1 ∈ s′) ∧ (q1 ∈ s⇒ a /∈ s ∧ q0 ∈ s′)}.

Also note that this composition relies on the fact that T can set its output
to true in every state where a holds and the requirement of alternation is met:
with long suffixes where a alternates, the output can be true whenever a is.
This means that T2 can expect at least two states where its input is true. T2

is not so well behaved, however: its output can be set to true in the first state
where its input becomes true, but it will stay true until its input becomes
true in a subsequent state, after which it is false again. This could be fixed by
composing TB with another transducer that sets its output to true only in the
first state where its input is true, for example.

7.5 TRANSDUCERS FOR FORMULAE

The following rewriting rules can be used to remove SEREs that are not a
part of a tail implication or a tail conjunction, thus removing the need to
separately define transducers for them.

• π |=v
i r!⇔ π |=v

i r �→ >.

• π |=strong
i r ⇔ π |=strong

i r!, and

X![k]φ is rewritten to
k︷ ︸︸ ︷

XX . . .Xφ, which is equivalent to the former when
using strong semantics.

For the transducer construction for the formulae r 7→ φ and r �→ φ, we
define some additional notation. For the SERE r, we use AP (r) to denote
the set of atomic propositions appearing in r. We also define a function
that maps the states of a transducer to the atomic propositions of the SERE:
` : 2Qin∪Q → 2AP (r). For any state s of the transducer: `(s) = s∩AP (r). We
use `(s0, . . . , sn) to denote `(s0), . . . , `(sn).

A transducer T that is constructed for a formula φmust have the following
property: for every path π there must be an execution where the transducer
accepts at every point i if π |=strong

i φ. It is not sufficient that for each such
i there exists some execution where T accepts at i, there must exist a sin-
gle execution where T accepts at every such i. This is because of how the
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composition is defined, and because transducers for formulae use the output
values of the transducers for its sub-formulae. If a transducer requires that
a sub-formula is true at certain points, the output of the transducer for the
sub-formula must be true at those points within a single execution. Naturally
a transducer for a formula φ can not have executions for any π where they
accept at i if π 6|=strong

i φ.

7.5.1 r 7→ φ

In the transducer construction we assume that the base language L(r) of r is
not empty. If L(r) = ∅, the formula can be rewritten to>, and no transducer
is constructed.

The intuition behind the transducer is that multiple copies of an automa-
ton for the SERE are simulated, which yields the matches for the SERE.
When a simulated copy accepts, φ should hold.

Let Ar = (Qr,Σ, δr, q0, Fr) be a finite, non-deterministic automaton with
Fr reachable from every state and no ε-transitions, s.t. L(Ar) = L(r) and
Σ = 2AP (r). We can then construct a transducer T = (Q,Qin, qout, I, F, δ)
for the tail implication, where:

• Q = Qr,

• Qin = AP (r)∪{qφ}, where qφ is the input variable to which the output
of Tφ is connected,

• qout = q0, the initial state of Ar,

• I = 2Q∪Qin ,

• F = {s | s ⊆ (Q ∪Qin), s ∩Qr = ∅}, and

• δ =

(s, s′)

∣∣∣∣∣∣
∧

(v,σ,v′)∈δr

(v ∈ s ∧ `(s) = σ)⇒ v′ ∈ s′
 and

Fr ∩ s′ 6= ∅ ⇒ qφ ∈ s

, where

s ⊆ (Q ∪Qin) and s′ ⊆ (Q ∪Qin).

The transducer for the entire sub-formula is obtained with the composi-
tion Tφ Bqφ T , where Tφ is a transducer for φ. Intuitively, the first part of the
transition relation handles simulating copies of the automaton for the SERE,
and the second part states that when the simulated automaton accepts, φ
must hold. The final state constraint states that no copies of the simulated
automata can be left running, which takes care of the requirement that the
suffix of the path cannot belong to the prefix language of r.

This transducer only satisfies the following semantics:

π |=v
i r 7→ φ⇔

{
∀j > i : if si, . . . , sj ∈ L(r) then π |=v

j φ, and
if v = strong then si, . . . /∈ F(r) ∪ {ε}.

The missing part of the semantics from the semantics chapter, if ε ∈
L(r) then π |=v

i φ, can be added by rewriting the formula to (r 7→ φ) ∧ φ if
ε ∈ L(r), which is trivial to check from Ar.
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This transducer must be run one step further than the actual path that
is under inspection, because of how the state variables of Ar are handled.
Intuitively, in the second state of the execution, Ar can be interpreted to
have been given one input. Therefore, to determine its state after the last
input in the path, one more step of execution must be performed.

Proposition 7.1. If s0, . . . , si, . . . , sn is an execution of the transducer that
accepts at si, then `(si, . . . , sn−1) /∈ F(r) and ∀j, i < j < n : if si, . . . , sj ∈
L(r) then qφ ∈ sj .

Proof. Follows from Lemmas 7.2, 7.3, and 7.4. Lemmas 7.2 and 7.3 to-
gether prove that all matches for r are detected whenever q0 is set to true,
and Lemma 7.4 proves that the suffix of the path after q0 is true cannot be-
long to the prefix language of r.

Lemma 7.2. IfAr has a sequence of transitions for an input σi, σi+1, . . . , σj−1

that takes Ar from some state vi to some state vj , and vi ∈ si, then for every
execution si, . . . , sj , where ∀l, i ≤ l < j : `(sl) = σl, vj ∈ sj .

Proof. Proof by induction over j:

• Base case: i = j, so vj ∈ sj is equivalent to vi ∈ si.

• Induction assumption: The above statement holds when j ≤ k.

• Induction step: For every (v, σ, v′) ∈ δr and (s, s′) ∈ δ, (v ∈ s∧`(s) =
σ)⇒ v′ ∈ s′. In other words, if v is true in some transducer state s and
`(s) = σ, then v′ is true in every follower state s′ of s. This means that
if Ar has a transition that takes it from v to v′ with the input `(s), and v
holds in s, then v′ must hold in every follower state of s. The induction
assumption states that vk ∈ sk. If Ar has a transition (vk, σk, vk+1),
then vk+1 ∈ sk+1. Therefore the above statement holds for j ≤ k + 1
as well, and by induction for any j.

Lemma 7.3. If s0, . . . , sn is an execution of T , q0 ∈ s0, and `(s0, . . . , sn−1) ∈
L(r), then Fr ∩ sn 6= ∅.

Proof. Because `(s0, . . . , sn−1) ∈ L(r), there exists a sequence of transitions
(q0, `(s0), q1), (q1, `(s1), q2), . . ., (qn−1, `(sn−1), qn), each in δr, for some
q1, q2, . . . ∈ Qr and qn ∈ Fr. This, combined with Lemma 7.2 implies
qn ∈ sn.

Lemma 7.4. If s0, . . . , sn is an execution of T that accepts at si, then `(si, . . . , sn−1) /∈
F(r).

Proof. Suppose that `(si, . . . , sn−1) ∈ F(r), i.e. `(si, . . . , sn−1) is a proper
prefix of some word in L(r). Since q0 ∈ si, and because of Lemma 7.2,
qj ∈ sn for some qj ∈ Qr. This contradicts with the terminating condition of
T , so si, . . . , sn−1 /∈ F(r).

Proposition 7.5. Let π = p0, p1, . . . , pn−1 be a path. There exists an accept-
ing execution s0, s1, . . . , sn of T for π such that for every pair of indices i, j
the following holds: if pi, . . . , pj ∈ L(r) and π |=strong

j φ, then q0 ∈ si.
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Proof. Follows from Lemmas 7.6 and 7.7. Lemma 7.6 proves that an accept-
ing execution exists for a path where a single accepting state is needed, and
Lemma 7.7 proves that the union of two accepting executions is an accepting
execution.

Lemma 7.6. If π = p0, p1, . . . , pn−1 is a path and π |=strong
k r 7→ φ for some

k, then there exists an accepting execution s0, s1, . . . , sn of T for π such that
q0 ∈ sk.

Proof. The execution s0, s1, . . . , sn can be constructed in the following way:

• `(si) = si when 0 ≤ i < k, i.e. only atomic propositions hold in the
states before sk, all the state variables are false.

• q0 ∈ sk.

• sk \ `(sk) = q0, i.e. q0 is the only state variable that holds in sk.

•
∧

(v,σ,v′)∈δr

(v ∈ si ∧ `(si) = σ)⇔ v′ ∈ si+1

 when k ≤ i < n, i.e.

the implication in the transition relation is replaced with equivalence
after sk.

For the above execution, if q ∈ si for some q ∈ Qr, then there exists an exe-
cution ofAr that takes it from q0 to q with the input sequence `(sk, . . . , si−1).
This is proven by induction over i:

• Base case: i = k, and the execution of Ar is the empty sequence.

• Induction assumption: The above statement holds when i ≤ j.

• Induction step: Let m be any k < m ≤ n. A state variable v ∈ Qr

holds in the state sm of the above execution if and only if there is a
transition of Ar that takes it from v to v′ with the input `(sm−1), and
v ∈ sm−1. Thus, for every state variable in sj+1, there is a transition
of Ar with a corresponding state variable in sj with the input `(sj).
The induction assumption states that for every state variable in sj a
corresponding execution exists, and therefore an execution exists for
every state variable in sj+1, and by induction for every state variable in
any state of the execution.

As a direct consequence, if Fr ∩ sm 6= ∅ for some m, then `(sk, . . . , sm−1) ∈
L(r). Since π |=strong

k r 7→ φ, qφ must hold in sm−1. Moreover, since
`(sk, . . . , sn) /∈ F(r), and since every state of Ar has an execution that leads
to an accepting state, sn cannot contain any variables from Qr, so the termi-
nating condition holds.

Lemma 7.7. If s0, s1, . . . , sn and s′0, s′1, . . . , s′n are accepting executions of
T s.t. ∀i, 0 ≤ i ≤ n : `(si) = `(s′i), then s0 ∪ s′0, s1 ∪ s′1, . . . , sn ∪ s′n is an
accepting execution of T .
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Proof. The terminating condition obviously holds, since sn ∩ Qr = ∅ and
s′n ∩Qr = ∅. The transition relation can be shown to hold with:∧

(v,σ,v′)∈δr

(v ∈ sk ∧ `(sk) = σ)⇒ v′ ∈ sk+1

∧∧
(v,σ,v′)∈δr

(v ∈ s′k ∧ `(s′k) = σ)⇒ v′ ∈ s′k+1


⇒ ∧

(v,σ,v′)∈δr

((v ∈ sk ∧ `(sk) = σ)⇒ v′ ∈ sk+1) ∧

((v ∈ s′k ∧ `(s′k) = σ)⇒ v′ ∈ s′k+1)


⇒ ∧
(v,σ,v′)∈δr

(v ∈ sk ∧ `(sk) = σ) ∨ (v ∈ s′k ∧ `(s′k) = σ)⇒

(v′ ∈ sk+1) ∨ (v′ ∈ s′k+1)


⇒ ∧
(v,σ,v′)∈δr

(v ∈ sk ∨ v ∈ s′k) ∧ (`(sk) = σ)⇒

(v′ ∈ sk+1) ∨ (v′ ∈ s′k+1)


⇒ ∧
(v,σ,v′)∈δr

(v ∈ (sk ∪ s′k) ∧ `(sk) = σ)⇒

v′ ∈ (sk+1 ∪ s′k+1)


and with:Fr ∩ sk+1 6= ∅ ⇒ qφ ∈ sk

 ∧Fr ∩ s′k+1 6= ∅ ⇒ qφ ∈ s′k


⇒ Fr ∩ sk+1 6= ∅ ∨ Fr ∩ s′k+1 6= ∅
⇒ qφ ∈ sk ∨ qφ ∈ s′k


⇒ Fr ∩ (sk+1 ∪ s′k+1) 6= ∅

⇒ qφ ∈ (sk ∪ s′k)


7.5.2 r �→ φ

In the transducer construction we assume that the base language L(r) of r is
not empty. If L(r) = ∅, the formula can be rewritten to⊥, and no transducer
is constructed.

The intuition behind the transducer is a non-deterministically simulated
automaton for the SERE, together with the enforcing that φ must hold when
the simulated automaton accepts. The simulation is different from the tail
implication, because only one match needs to be captured, instead of all
possible matches.

Let Ar = (Qr,Σ, δr, q0, Fr) be a finite, non-deterministic automaton with
Fr reachable from every state and no ε-transitions, s.t. L(Ar) = L(r) and
Σ = 2AP (r). We can then construct a transducer T = (Q,Qin, qout, I, F, δ)
for the tail conjunction, where:
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• Q = Qr,

• Qin = AP (r)∪{qφ}, where qφ is the input variable to which the output
of Tφ is connected,

• qout = q0, the initial state of Ar,

• I = 2Q∪Qin ,

• F = {s | s ⊆ (Q ∪Qin), s ∩Qr = ∅}, and

• δ ={
(s, s′)

∣∣∣∣∣ ∧
v∈Qr

v ∈ s⇒
∨

(v,σ,v′)∈δr

`(s) = σ ∧ (v′ ∈ s′ ∨ (v′ ∈ Fr ∧ qφ ∈ s))


}

,

where s ⊆ (Q ∪Qin) and s′ ⊆ (Q ∪Qin).

The transducer for the entire sub-formula is obtained with the composi-
tion Tφ Bqφ T , where Tφ is a transducer for φ. Intuitively, the transition rela-
tion takes care of the simulation of the automaton, except for the innermost
parenthesis, which allow for the termination of the simulation if a match is
found and φ holds. The state variables can be seen as a promise to find a
match starting from that state of the automaton, and the final state constraint
enforces that no such promise is left unfulfilled when the execution stops.

The above transducer only satisfies the following semantics: π |=strong
i

r �→ φ ⇔ ∃j > i : si, . . . , sj ∈ L(r) and π |=strong
j φ. The case where

ε ∈ L(r) can be handled as with the transducer for tail implication, by
rewriting the formula to r �→ φ ∨ φ if ε ∈ L(r). The final part of the
semantics is not relevant here, since strong semantics is always in use.

Lemma 7.8. If si, . . . , sj is an execution of the transducer, qi ∈ si for some
qi ∈ Qr, and ∀l, i ≤ l < j : qφ /∈ sl, then there is some qj ∈ sj s.t. qj ∈ Qr

and the input sequence `(si, . . . , sj−1) takes Ar from qi to qj .

Proof. Proof by induction over j:

• Base case: i = j and si = sj , so both claims hold trivially.

• Induction assumption: The claims hold when j ≤ k.

• Induction step: There is an execution si, . . . , sk, qi ∈ si, and qk ∈ sk.
Because of the initial assumption, we also assume that qφ /∈ sk. Now
we extend the execution with a single step to sk+1. Note that if the
transition relation does not permit such an extension, then the initial
assumption that the execution exists is broken. Since qφ /∈ sk, the
transition relation is equivalent to:

qk ∈ sk ⇒
∨

(qk,σ,q′)∈δr

`(sk) = σ ∧ q′ ∈ sk+1

This means that there exists some q′ ∈ Qr s.t. q′ ∈ sk+1 and (qk, σ, q
′) ∈

δr. Now both claims of Lemma 7.8 hold for sk+1, and by induction for
any execution.
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Proposition 7.9. If s0, . . . , si, . . . , sn is an execution of the transducer that
accepts at si, then there exists some j s.t. i ≤ j < n, qφ ∈ sj , and `(si, . . . , sj) ∈
L(r).

Proof. Because of Lemma 7.8 and the terminating condition of the trans-
ducer, there must be some sj in the execution s.t. qφ ∈ sj . Additionally,
there is some qj ∈ sj such that `(si, . . . , sj−1) takes Ar from q0 to qj . On the
other hand, if there is no transition (qj, `(sj), q

′) ∈ δr for some q′ ∈ Fr, then
the transition relation at that point is equivalent to:

qj ∈ sj ⇒
∨

(qj ,σ,q′)∈δr

`(sj) = σ ∧ q′ ∈ sj+1

That would mean that there is some q′ in sj+1, and because of Lemma 7.8
the terminating condition would not be satisfied. That means that there must
exist some transition from qj to an accepting state of Ar with the input `(sj),
which in turn means that `(si, . . . , sj) ∈ L(r).

Proposition 7.10. Let π = p0, p1, . . . , pn−1 be a path. There exists an ac-
cepting execution s0, s1, . . . , sn of T for π such that ∀i, 0 ≤ i < n : (∃j, i ≤
j < n : `(si, . . . , sj) ∈ L(r) and qφ ∈ sj)⇒ q0 ∈ si.

Proof. Follows from Lemmas 7.11 and 7.12.

Lemma 7.11. If π = p0, p1, . . . , pn−1 is a path such that π |=strong
k r �→ φ

for some k, then there exists an accepting execution s0, s1, . . . , sn of T for π
such that q0 ∈ sk.

Proof. Because π |=strong
k r �→ φ, there exists some j, k ≤ j < n s.t. π |=strong

j

φ and pk, . . . , pj ∈ L(r). The execution can then be constructed as follows:

• `(si) = si when 0 ≤ i < k, i.e. only atomic propositions hold in the
states before sk, all the state variables are false.

• q0 ∈ sk.

• sk \ `(sk) = q0, i.e. the only state variable in sk is q0.

• Let (q0, pk, qk+1), (qk+1, pk+1, qk+2), . . . , (qj, pj, qj+1) be a sequence of
transitions that takes Ar from q0 to some qj+1 ∈ Fr with the input
pk, . . . , pj . Such a sequence is guaranteed to exist, since pk, . . . , pj ∈
L(r). For each si, k ≤ i ≤ j, si \ `(si) = qi. In other words, the only
state variable in each state from sk to sj is the state variable from the
execution of Ar.

• For each si, j < i ≤ n, `(si) = si, i.e. no state variables are true after
sj .

The terminating condition obviously holds for the above execution. The
transition relation trivially holds for each pair of states (si, si+1) when 0 ≤
i < k, since no state variables are true, and therefore every implication in the
transition relation is true.
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Each pair of states (si, si+1), k ≤ i < j also satisfies the transition relation,
since the state variables are taken from an execution of Ar, and therefore:

qi ∈ si ⇒ (qi, σ, qi+1) ∈ δr ∧ `(s) = σ ∧ qi+1 ∈ si+1

The rest of the implications are again trivially true, as no other state variables
are true.

The pair of states (sj, sj+1) satisfies the transition relation, because there
is a transition (qj, `(sj), qj+1) ∈ δr, and therefore:

qj ∈ sj ⇒ (qj, σ, qj+1) ∈ δr ∧ `(s) = σ ∧ qj+1 ∈ Fr ∧ qφ ∈ sj

Note that qj+1 /∈ sj+1.
For each pair (si, si+1), j < i < n, again no state variables are true, so the

implications in the transition relation hold trivially.

Lemma 7.12. If s0, s1, . . . , sn and s′0, s′1, . . . , s′n are accepting executions of
T s.t. ∀i, 0 ≤ i ≤ n : `(si) = `(s′i), then s0 ∪ s′0, s1 ∪ s′1, . . . , sn ∪ s′n is an
accepting execution of T .

Proof. The terminating condition obviously holds, since sn ∩ Qr = ∅ and
s′n ∩Qr = ∅. The transition relation can be shown to hold with:

∧
v∈Qr

v ∈ sk ⇒
∨

(v,σ,v′)∈δr

`(sk) = σ ∧ (v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk))

∧∧
v∈Qr

v ∈ s′k ⇒
∨

(v,σ,v′)∈δr

`(s′k) = σ ∧ (v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))


⇒ ∧
v∈Qr

v ∈ sk ⇒
∨

(v,σ,v′)∈δr

`(sk) = σ ∧ (v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk))

 ∧v ∈ s′k ⇒
∨

(v,σ,v′)∈δr

`(s′k) = σ ∧ (v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))


⇒ ∧
v∈Qr

(v ∈ sk ∨ v ∈ s′k)⇒ ∨
(v,σ,v′)∈δr

`(sk) = σ ∧ (v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk))

∨ ∨
(v,σ,v′)∈δr

`(s′k) = σ ∧ (v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))


⇒ ∧
v∈Qr

(v ∈ sk ∨ v ∈ s′k)⇒ ∨
(v,σ,v′)∈δr

`(sk) = σ ∧ (v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk)) ∨

`(s′k) = σ ∧ (v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))
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⇒ ∧
v∈Qr

(v ∈ sk ∨ v ∈ s′k)⇒ ∨
(v,σ,v′)∈δr

`(sk) = σ ∧ ((v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk))∨

(v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k)))


⇒ ∧
v∈Qr

(v ∈ sk ∨ v ∈ s′k)⇒ ∨
(v,σ,v′)∈δr

`(sk) = σ ∧ ((v′ ∈ sk+1 ∨ v′ ∈ s′k+1) ∨ (v′ ∈ Fr ∧ qφ ∈ sk))


⇒ ∧

v∈Qr

(v ∈ sk ∪ s′k)⇒ ∨
(v,σ,v′)∈δr

`(sk) = σ ∧ ((v′ ∈ sk+1 ∪ s′k+1) ∨ (v′ ∈ Fr ∧ qφ ∈ sk))



7.5.3 φ1 U φ2

The transducer for the until operator is T = (Q,Qin, qout, I, F, δ), where:

• Q = {qU},

• Qin = {qleft, qright},

• qout = qU,

• I = 2Q∪Qin ,

• F = {s | s ⊆ (Q ∪Qin), qU ∈ s⇔ qright ∈ s}, and

• δ =
{

(s, s′)
∣∣∣qU ∈ s⇔ qright ∈ s ∨ (qleft ∈ s ∧ qU ∈ s′)

}
, where

s ⊆ (Q ∪Qin) and s′ ⊆ (Q ∪Qin).

The transducer for the entire sub-formula is obtained with the composi-
tions T2Bqright(T1BqleftT ), where T1 is a transducer for φ1 and T2 is a transducer
for φ2.

Because strong semantics is in use, the semantics of the until-operator is
reduced to: π |=strong

i φ1 U φ2 ⇔ ∃j ≥ i : π |=strong
j φ2 and ∀k, i ≤ k < j :

π |=strong
k φ1.

Proposition 7.13. For any path π = p0, p1, . . . , pn, and for every execution
s0, s1, . . . , sn of T for π, qU ∈ si if and only if π |=strong

i φ1 U φ2.

Proof. The proposition can be proven by backward induction from the final
state of the execution.
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• Base case: In the final state the terminating condition is equivalent to
the semantics: since there is no next state in the execution, π |=strong

n

φ1 U φ2 if and only if qright ∈ sn.

• Induction assumption: The proposition holds for states sn−k with some
limit for k.

• Induction step: The transition relation states that qU ∈ sn−(k+1) ⇔
(qright ∈ sn−(k+1) ∨ (qleft ∈ sn−(k+1) ∧ qU ∈ sn−k)). Clearly qright ∈
sn−(k+1) implies π |=strong

n−(k+1) φ1 U φ2. Moreover, since qU ∈ sn−k if
and only if π |=strong

n−k φ1 U φ2, qleft ∈ sn−(k+1)∧qU ∈ sn−k implies both
∃j > i : qright ∈ sj and ∀l : n− (k + 1) ≤ l < j : qleft ∈ sl. Therefore
qleft ∈ sn−(k+1) ∧ qU ∈ sn−k implies π |=strong

n−(k+1) φ1 U φ2.

On the other hand, π |=strong
n−(k+1) φ1 U φ2 implies that either π |=strong

n−(k+1)

φ2 or ∃j > i : qright ∈ sj and ∀l : n − (l + 1) ≤ l < j : qleft ∈ sl. The
latter implies that π |=strong

n−k φ1 U φ2, and therefore qU ∈ sn−k. As a
consequence, π |=strong

n−(k+1) φ1 U φ2 implies qright ∈ sn−(k+1) ∨ (qleft ∈
sn−(k+1) ∧ qU ∈ sn−k).

Now we have established that qU ∈ sn−(k+1) ⇔ qright ∈ sn−(k+1) ∨
(qleft ∈ sn−(k+1) ∧ qU ∈ sn−k) is equivalent to π |=strong

n−(k+1) φ1 U φ2, so
the proposition holds for k + 1, and by induction for any k.

7.5.4 φ1 R φ2

The transducer for the releases operator is T = (Q,Qin, qout, I, F, δ), where:

• Q = {qR},

• Qin = {qleft, qright},

• qout = qR,

• I = 2Q∪Qin ,

• F = {s | s ⊆ (Q ∪Qin), qR ∈ s⇔ (qleft ∈ s ∧ qright ∈ s)}, and

• δ =
{

(s, s′)
∣∣∣qR ∈ s⇔ qright ∈ s ∧ (qleft ∈ s ∨ qR ∈ s′)

}
, where

s ⊆ (Q ∪Qin) and s′ ⊆ (Q ∪Qin).

The transducer for the entire sub-formula is obtained with the composi-
tions T2Bqright(T1BqleftT ), where T1 is a transducer for φ1 and T2 is a transducer
for φ2.

Because strong semantics is in use and the paths are finite, the semantics
of the releases-operator is reduced to: π |=strong

i φ1 R φ2 ⇔ ∃k, i ≤ k ≤ |π| :
π |=strong

k φ1 and ∀j, i ≤ j ≤ k : π |=strong
j φ2.

Proposition 7.14. For any path π = p0, p1, . . . , pn, and for every execution
s0, s1, . . . , sn of T for π, qR ∈ si if and only if π |=strong

i φ1 R φ2.
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Proof. The proposition can be proven by backward induction from the final
state of the execution.

• Base case: In the final state the terminating condition is equivalent to
the semantics: since there is no next state in the execution, π |=strong

n

φ1 R φ2 if and only if qleft ∈ sn ∧ qright ∈ sn.

• Induction assumption: The proposition holds for states sn−k with some
limit for k.

• Induction step: The transition relation states that qR ∈ sn−(k+1) ⇔
(qright ∈ sn−(k+1) ∧ (qleft ∈ sn−(k+1) ∨ qR ∈ sn−k)). Dividing the right
side of the equivalence, we see that qright ∈ sn−(k+1) ∧ qleft ∈ sn−(k+1)

implies π |=strong
n−(k+1) φ1 R φ2. Additionally, since qR ∈ sn−k if and

only if π |=strong
n−k φ1 R φ2, the other part, qright ∈ sn−(k+1) ∧ qR ∈ sn−k

implies both ∃l, n − k ≤ l ≤ n : qleft ∈ sl and ∀j, n − (k + 1) ≤
j ≤ n : qright ∈ sj . Therefore qright ∈ sn−(k+1) ∧ qR ∈ sn−k implies
π |=strong

n−(k+1) φ1 R φ2.

On the other hand, π |=strong
n−(k+1) φ1 R φ2 implies that either π |=strong

n−(k+1)

φ1 and π |=strong
n−(k+1) φ2, or that ∃l, n−k ≤ l ≤ n : qleft ∈ sl and ∀j : n−

(l + 1) ≤ j ≤ l : qright ∈ sl. The latter implies that π |=strong
n−k φ1 R φ2,

and therefore qR ∈ sn−k. As a consequence, π |=strong
n−(k+1) φ1 R φ2

implies qright ∈ sn−(k+1) ∧ (qleft ∈ sn−(k+1) ∨ qR ∈ sn−k).

Now we have established that qR ∈ sn−(k+1) ⇔ qright ∈ sn−(k+1) ∧
(qleft ∈ sn−(k+1) ∨ qU ∈ sn−k) is equivalent to π |=strong

n−(k+1) φ1 R φ2, so
the proposition holds for k + 1, and by induction for any k.

7.5.5 X φ

The transducer for the next operator is T = (Q,Qin, qout, I, F, δ), where:

• Q = {qX},

• Qin = {qφ},

• qout = qX,

• I = 2Q∪Qin ,

• F = {∅, {qφ}}, and

• δ = {(s, s′) | qX ∈ s ⇔ qin ∈ s′}, where s ⊆ (Q ∪ Qin) and s ⊆
(Q ∪Qin).

The transducer for the entire sub-formula is obtained with the composi-
tion Tφ Bqφ T , where Tφ is a transducer for φ.

Proposition 7.15. For any path π = p0, p1, . . . , pn, and for every execution
s0, s1, . . . , sn of T for π, qX ∈ si if and only if π |=strong

i X![1] φ.

Proof. In the final state sn, qX /∈ sn. In every other state si, the transition
relation states that qXsi ⇔ qφ ∈ si+1.
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7.5.6 Transducers for ∧ and ¬

Transducers for the conjunction and the negation can be somewhat trivially
constructed by having input variables for the sub-formulae and adding the
constraints to the initial and final state sets and the transition relation. The
output variable of the conjunction transducer is constrained to be true exactly
in the states where both input variables are true, and the output variable for
the negation transducer is true exactly in the states where its input variable is
not.
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8 OBSERVER IMPLEMENTATION

Model checking PSL with the transducers from the previous chapter can be
done by constructing a NuSMV module from the transducer of the desired
PSL formula. Transducers are fairly straightforward to translate into NuSMV
modules: the state and input variables can be used in the NuSMV module
without any changes, and the transition relation is fairly straightforward to
implement using the NuSMV’s TRANS-statement. Also the initial states can
be enforced with the INIT-statement. The final state condition needs some
attention, though. NuSMV does not have have a straightforward way of en-
forcing constraints on final states, but the same effect can be achieved by the
following construction. A special purpose variable fs is added to the module.
The fs variable is restricted so that it can get the value true if and only if the
final state conditions hold. This is done by adding to the transition relation
the statement s /∈ F ⇒ ¬fs, where s is any state of the system and F is the
set of final states.

The main idea of doing model checking with these transducers is to re-
duce the problem of whether the property holds to a problem of whether a
state in which fs holds is reachable. The transducer module can be seen
as an observer automaton: it is run together with the actual model, and a
conclusion is made based on the reachability of some states in the observer.
In this case, a set of states are labelled as bad states: if they are reachable, the
property does not hold. Moreover, the path to such a state is a counterexam-
ple of the property being checked for.

The reduction to reachability checking is done by making an observer
module for the negation of the property that is being checked for, and adding
an initial constraint that forces the output variable for the observer to true.
Then, an invariant specification INVARSPEC !fs is added and checked for.
This achieves the desired result, since the semantics of a PSL formula is such
that every path of the model must satisfy it. That means that the specification
is broken if and only if there is some path in the model where the negation of
the specification holds in the first state. Furthermore, since the initial state
is such that the output variable for the observer module is true, the negation
of the specification holds if and only if it is possible for the observer to reach
a valid end state.

Figure 8.1 shows the components of the process. The model and the PSL
formula are written by the user of the system. The PSL formula then goes to
the PSL parser in NuSMV, which is the one that IBM distributes freely on
their PSL/Sugar site [2]. The parsed PSL formula is traversed by the formula
translator that generates the observer module with the rules described in the
previous chapter. The SEREs in the formula are translated to finite state
machines by a separate component.

The actual implementation that was done for this work is a proof-of-concept,
whose main purpose is to verify the feasibility of such an implementation and
to allow experimentation with the algorithm. It is not very tightly integrated
to NuSMV. The formula translator in the Figure 8.1 is run after the initial
generation of the parse tree by NuSMV, and the parse tree is altered as a re-
sult. It only supports verification of a single PSL formula at a time, and only
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Figure 8.1: The components of model checking with the observer. The ovals
in the figure are input to a component. The formula translator and the SERE
to FSM translator are the components implemented in this work.

boolean variables are supported as atomic propositions. Still, it is sufficient to
perform meaningful experiments on the algorithm, and generates minimal
overhead in the verification workflow.

8.1 CONVERTING SERES TO FINITE STATE AUTOMATA

The finite state automata are generated recursively from the SEREs by first
generating the automata for the sub-expressions of the SERE and then com-
bining them into an automaton for the entire SERE. For the union, concate-
nation, and repetition of SEREs this can be efficiently done by just adding
ε-transitions between the automata for the sub-expressions. Concatenation
with overlap and intersection of SEREs are more complicated, and the struc-
ture of the automata need to be changed.

The alphabet of the automata is 2AP , whereAP is the set of atomic propo-
sitions in the SERE. To simplify the construction, a single transition here is
used to represent a group of transitions. The labels on transitions in this chap-
ter are conjunctions of literals l ∈ L, where L = {p | p ∈ AP} ∪ {¬p | p ∈
AP}. A transition with the label l1 ∧ l2 ∧ . . . ∧ ln, where each li, . . . ∈ L,
represents the group of transitions where the positive literals are present,
and the negative literals are not. To express this more formally, a transition
(s, (l1 ∧ l2 ∧ . . . ∧ ln), s′) whose label is a conjunction of literals in L can be
converted to a set of transitions: {(s, σ, s′) | ∀i, 1 ≤ i ≤ n : l ∈ AP ⇒ l ∈
σ} ∩ {(s, σ, s′) | ∀i, 1 ≤ i ≤ n : l = ¬p, p ∈ AP ⇒ p /∈ σ}.

The union of two sub-automata A1 and A2 can be combined into a single
automaton A by adding ε-transitions from the initial state of A to the initial
states of A1 and A2, and keeping the accepting states of both as accepting.

8. OBSERVER IMPLEMENTATION 43



. . .

A1

A

A2

ε

ε

. . .

Figure 8.2: The union of two automata is constructed by adding an ε-
transition from the new initial state to the initial state of each sub-automaton.

ε
. . .

A1

. . .

A2A
ε

Figure 8.3: The concatenation of two automata is constructed by adding an
ε-transition from each accepting state of the first automaton to the initial state
of the second.

This combination is illustrated in Figure 8.2.
The concatenation of two sub-automata A1 and A2 can be combined into

a single automaton A by adding an ε-transition from each accepting state of
A1 to the initial state of A2. The new initial state is the initial state of A1 and
the new accepting states are those of A2. The combination is illustrated in
Figure 8.3.

The Kleene-closure automatonA of a sub-automatonA′ can be formed by
adding a new, accepting initial state, and by adding an ε-transition from the
new initial state to the initial state of A′ and ε-transitions from the accepting
states of A′ to the initial state of A′. Figure 8.4 illustrates this.

The concatenation with an overlap is done by first removing the ε-transitions
from the component automatons A1 and A2. Then all the transitions to the
accepting states of A1 and all the transitions from the initial state of A2 are
processed. These are combined pair-wise so that from every transition to an
accepting state in A1 gets paired with every transition from the initial state of
A2. The combined transitions get labels that are conjunctions of the labels
from the transitions that are combined. Figure 8.5 illustrates this.

The intersection of two automata A1 and A2 is done by first removing the
ε-transitions from both, and then pairing each state of A1 with each state of
A2. The transitions from each new state are formed by taking each transition
from the state from A1 and pairing it with each transition from the state from
A2. The labels on the resulting transitions are conjunctions of the labels on
the transitions that are combined. The new initial state is the pair formed
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Figure 8.4: The Kleene-closure of an automaton is formed by adding ε-
transitions from a new initial state to the old initial state, as well as ε-
transitions from the accepting states to the old initial state.
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Figure 8.5: The concatenation with an overlap is done by combining every
transition that leads to an accepting state inA1 with every transition that starts
from the initial state in A2.
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Figure 8.6: The intersection of automata is done by pairing each state from
one automaton with each state from the other. The transitions are formed by
taking conjunctions of the transitions from both states of the pair.

by the initial states of A1 and A2. The new accepting states are such states
where each of the pair was an accepting state in its original automaton. This
is illustrated by Figure 8.6.

8.1.1 Removing ε-transitions

The ε-transitions can be removed by following ε-transitions from each state
until a visible transition is reached. To avoid problems with ε-loops, the set
of states visited this way is stored, and transitions that lead to visited states are
ignored. A transition is then added with the label of the visible transition,
from the state the search started, to the state where the visible transition goes
to. This is done for each state and for each visible transition that can be
reached with ε-transitions. Then the ε-transitions are removed, along with
states that have become unreachable this way.

8.2 PRODUCING THE OBSERVER MODULE

The observer module for a PSL formula is constructed by first negating the
formula and converting it to the positive normal form. Then, a transducer
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is recursively generated for any sub-formulae and any SEREs converted to
automata as described in Section 8.1. From these a transducer is constructed
as described in Chapter 7. The transducer is then converted to a NuSMV
module by enforcing the transition relation with TRANS-statements, forcing
the output of the top-level formula transducer to true with an INIT-statement,
and adding an invariant specification that states that a valid final state of the
transducer cannot be reached.

For example the PSL formula G a · b ∩ c[∗] 7→ G d1 translates into an
observer module in the following way:

1. The negated positive normal form of the formula is F a · b ∩ c[∗] �→
F ¬d.

2. The observer for F ¬d is:

MODULE observer(d)

VAR

future_1 : boolean;

fs : boolean;

INVAR

(!d -> future_1)

INVAR

(future_1 -> (!d | !fs))

TRANS

(future_1 <-> (!d | next(future_1)))

3. The automaton for the SERE a · b ∩ c[∗] is:

s2

a ∧ c b ∧ c
s0 s1

4. The observer for a · b ∩ c[∗] �→ F ¬d is then:

MODULE observer(a, b, c, d)

VAR

future_1 : boolean;

s0 : boolean;

s1 : boolean;

s2 : boolean;

fs : boolean;

INVAR

(!d -> future_1)

INVAR

(future_1 -> (!d | !fs))

INVAR

((s2 | (s0 | s1)) -> !fs)

TRANS

(future_1 <-> (!d | next(future_1)))

TRANS

1r[∗] is shorthand for [∗0] ∪ r[+].
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((s0 -> ((a & c) & next(s1))) &

(s1 -> ((b & c) & future_1)))

5. Finally, adding the sub-formula for the future-operator, the INIT-condition
and the invariant specification, the result is:

MODULE observer(a, b, c, d)

VAR

future_1 : boolean;

s0 : boolean;

s1 : boolean;

s2 : boolean;

future_2 : boolean;

fs : boolean;

INVAR

(!d -> future_1)

INVAR

(future_1 -> (!d | !fs))

INVAR

((s2 | (s0 | s1)) -> !fs)

INVAR

(s0 -> future_2)

INVAR

(future_2 -> (s0 | !fs))

TRANS

(future_1 <-> (!d | next(future_1)))

TRANS

((s0 -> ((a & c) & next(s1))) &

(s1 -> ((b & c) & future_1)))

TRANS

(future_2 <-> (s0 | next(future_2)))

INIT

future_2

INVARSPEC !fs
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9 EXPERIMENTS

The prototype implementation was subjected to a series of experiments to
measure its performance and capabilities. The experiments were conducted
on a Debian Linux machine with an Intel Core 2 CPU running at 1.86 GHz
and a main memory of 2 GiB. The memory limit for the process was set to
512 MiB and running time limit was set to 300 seconds (5 minutes).

The test models for the experiments were randomly generated Kripke
structures represented as NuSMV modules. The random generation was
done by the same test script that was used in [22]. The number of atomic
propositions was six and the number of expected edges from a state was three
in every experiment.

The test formulae for the experiments were randomly generated PSL prop-
erties that were generated with the same algorithm that is used by the LTL-
to-Büchi translator testbench, described in [29]. A slight modification was
made to the algorithm, however, to obtain legal PSL formulae. Unlike in
LTL, PSL has restrictions on what operators can appear at what points of the
formula, so when selecting a new random operator, only the valid choices are
considered.

The default BDD-based invariant checking of NuSMV was used in the
experiments. A set of test runs was made for formula sizes 10, 20, 30, 50, and
100. Here the size of the formula means the number of nodes in its parse
tree. For each formula size a set of test runs was made with model sizes 10,
100, 1000, 2000, 3000, 5000, and 10000. Here the model size means the
number of states in the Kripke structure. Each set of test runs consisted of 20
randomly generated pairs of a model and a formula.

9.1 TEST RUN RESULTS

Figures 9.1 to 9.3 present the minimum, median, and maximum run times
in the experiment set. Figure 9.4 presents the minimum, median, and max-
imum run times of test sets with model size 5000. Figures 9.5 to 9.6 present
the number of experiments where either the time limit or the memory limit
was exceeded. No resource limits were exceeded in runs with formula size
20. The runs where a resource limit was reached were not included in fig-
ures 9.1 to 9.4.

The figures 9.1 to 9.3 show the expected increase of running time with the
increase of model size. The increase of maximum running times in some test
batches seems to be due to a randomly generated formula that contains lots
of SERE intersections. Since the SERE intersection involves an exponential
blow-up in the size of the automaton for it, the observer construction time
and memory requirement grows exponentially with respect to the formula,
and much higher running times are expected for such formulae.

Interestingly enough, the minimum and median running times in Fig-
ure 9.4 are flat across the different formula sizes, suggesting that the model
size greatly dominates the running time with these parameters. The increase
in the maximum running time again shows that with many intersection op-
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Figure 9.1: The minimum, median, and maximum times of the test batches
with formula size 20.
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Figure 9.2: The minimum, median, and maximum times of the test batches
with formula size 30.
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Figure 9.3: The minimum, median, and maximum times of the test batches
with formula size 50.
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Figure 9.4: The minimum, median, and maximum times of the test batches
with model size 5000.
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Figure 9.5: The number of runs in the test batches where either the time
limit or memory limit was reached with the formula size 30.
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Figure 9.6: The number of runs in the test batches where either the time
limit or memory limit was reached with the formula size 50.
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erators, the formula becomes the dominating factor in running time.
Figures 9.5 to 9.6 show that the number of runs where the memory or time

limit was reached does not seem to depend on the model size. This further
indicates that the heavy use of the SERE intersection operator is the main
cause for high resource usage in these experiments.
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10 CONCLUSION

In this work we have covered evaluating PSL formulae on finite paths. Chap-
ter 4 introduced the basics of the PSL language, and Chapter 5 formalised
the semantics of the language. Additional operators were defined to make
rewriting PSL formulae to the positive normal form possible. The strong,
neutral, and weak semantics are all covered in the chapter. Chapter 6 dis-
cusses the use of the semantics in Chapter 5 for finite paths, and introduces
the rewriting rules needed to convert formulae to the positive normal form.

In Chapter 7 transducers, a formalism similar to symbolic finite state au-
tomata was introduced, along with definitions of acceptance of a path and
composition of transducers. Then, a method for compositionally construct-
ing transducers from PSL formulae was described, along with proofs of its
correctness.

Chapter 8 describes the prototype implementation of the translation de-
scribed in Chapter 7 into the open-source model checker NuSMV. Imple-
mentation issues were discussed, along with the conversion of SEREs to fi-
nite state automata. Chapter 9 describes the test setup that was used to run
experiments on the implementation, and presents the results and their inter-
pretation.

The test runs show that this method of model checking PSL is indeed
feasible. With the parameters used in the experiments, the model size is the
dominating factor in the verification times. SERE intersection, which causes
an exponential state explosion problem, can cause considerable variations
to the total running times, however, since converting a SERE with many
intersection operators to a finite state machine can take a long time, and
quickly consume the available memory resources.

The main contributions of this work are the revision of the semantics in
the proposal for the revised PSL standard, the translation of PSL properties to
symbolic finite state automata, the correctness proof of the translation with
respect to the presented semantics, and the prototype implementation for
NuSMV. To the author’s knowledge, this is the first freely available imple-
mentation for PSL model checking.

10.1 FUTURE WORK

Future work for the PSL observer could include a complete, integrated im-
plementation of the algorithm to NuSMV, and a comparison of the imple-
mentation with other methods of model checking PSL. Unfortunately the
currently released version (2.4.3) of NuSMV does not support full model
checking of PSL, so a direct comparison with alternative algorithms cannot
be made at this time. Moreover, benchmarking against other model checking
tools is not directly comparable, since the performance of each tool varies ac-
cording to the modelling formalism used. Additionally, each tool has its own
strengths and weaknesses in how the state space of the model is handled.

Another thing to note is that the precise syntax and semantics of PSL is
still under development, and the version presented here is based on the most
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recent proposal [1]. Thus, if the precise mechanics of PSL changes, the tools
need to be updated accordingly. The PSL parser in NuSMV, for example,
is not up to date with the language specification, and some PSL properties
are not accepted by the parser. Therefore, future work should also include
updating the components that directly deal with PSL.

Other future work could also include adding support for temporal opera-
tors that refer to the past. This would be a relatively simple addition to the
observers described in this work. Another, slightly more complicated, addi-
tion to the observers would be the ability to also accept infinite paths as input,
enabling the complete model checking of all PSL properties.
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