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Kaksisuuntainen tehtävänasettelu on yleinen bioinformatiikan alalla. Tässä
diplomityössä esitellään uusi bayesilaisen mallinnuksen menetelmä kaksisuun-
taisen havaintoaineiston analysointiin. Menetelmä toimii myös vähän näytteitä
sisältävillä korkeaulotteisilla havaintoaineistoilla.

Havaintoaineiston oletetaan jakautuvan populaatioihin kovariaattien mukaan,
jotka tyypillisessä biologisessa kokeessa ovat yksilön terveydentila, sukupuoli,
lääketieteellinen hoito sekä yksilön ikä. Esiteltävä menetelmä on suunniteltu
arvioimaan näiden kovariaattien vaikutus havaintoaineiston kontrolliryhmän pe-
rustasoon verrattuna.

Menetelmä perustuu olettamukseen siitä, että havaintoaineiston piirteet muo-
dostavat ryhmiä, joiden sisällä piirteet ovat voimakkaasti kollineaarisia. Tämä
olettamus mahdollistaa piilomuuttajamalliin perustuvan dimensionaalisuuden pu-
dotuksen, jonka ansiosta menetelmä on toimiva myös pienen näytemäärän havain-
toaineistoille.

Menetelmä käsittelee havaintoaineistoa täysin bayesilaisittain, Gibbsin otannan
avulla. Bayesilainen lähestymistapa tuottaa arvion sekä mallin ja havaintoaineis-
ton yhteisjakaumalle että mallin jokaisen parametrin marginaalijakaumalle. Tämä
mahdollistaa tulosten epävarmuuden arvioinnin sekä vertailun toisiin malleihin.

Uuden menetelmän toimivuutta esitellään metabolomiikan alalta olevan havain-
toaineiston avulla. Aineisto sisältää lipidiprofiileja, jotka on mitattu terveistä lap-
sista ja lapsista, jotka myöhemmin sairastuvat tyypin 1 diabetekseen. Kahdessa
erillisessä analyysissä tutkitaan sairauden ja sukupuolen sekä sairauden ja iän
vaikutusta lipidiprofiileihin.

Avainsanat: varianssianalyysi. bayesilainen mallitus, faktorianalyysi,
hierarkinen malli, metabolomiikka, pieni näytemäärä
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Two-way experimental designs are common in bioinformatics. In this thesis, a
new Bayesian model is proposed for the analysis of two-way data. The method
also works for small sample-size data with a high number of features.

The data set is assumed to be divided into populations according to covariates,
which in the case of a typical biological experiment are the health status, the
gender, the medical treatment and the age of the individual. The proposed method
is designed to estimate the effect of these covariates compared to the ground level
of a control group of the data.

The method is based on the assumption that features of the data form groups that
are highly collinear. This allows the use of a latent variable-based dimensionality
reduction, which makes inference possible also for small sample-size data sets.

The method treats the data in a completely Bayesian way, which produces an es-
timate for the joint distribution of the model and the data, and marginal posterior
distributions of all model parameters. This allows one to evaluate the significance
and uncertainty of the results and to compare it to other models. Inference is
carried out with Gibbs sampling.

The performance of the new method is demonstrated with a metabolomic data set
by comparing lipidomic profiles from children who remain healthy to those who
will later develop type 1 diabetes. In two separate studies, the effect of the disease
and gender, and the effect of the disease and time, are estimated.
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1 Introduction

This thesis presents a method for multi-way analysis of high-dimensional data with
small sample-size.

Metabolomics is a field of research where tools of bioinformatics are used in the
analysis of measured concentrations of a high number of small molecules in cells.
Metabolites are molecules that are substrates and end products of biological pro-
cesses in cells. These processes are catalyzed by proteins.

Bioinformatics is a field of research that concentrates on analyzing observations mea-
sured from biological organisms. Bioinformatics includes modern statistical methods
that are able to extract information from high-throughput experiments, where large
data sets with high number of features are produced. In addition to metabolite
concentrations, typical sources of data in bioinformatics are the measured transcrip-
tional activities of genes in transcriptomics, and the concentrations of proteins in
proteomics. Metabolomics is studying the last part in the chain of information from
the genome to cell function.

A main motivation of bioinformatics is to provide new knowledge related to causes of
diseases. Another important task of bioinformatic methods is to predict the disease
risk of new patients.

A powerful approach to disease-related questions is to compare patients who are
diseased to those who are healthy. This comparison reveals changes in the bi-
ological state that the patient undergoes during the development of the disease.
Such findings, considered as potential biomarkers, may lead the way to a biological
breakthrough and, eventually, to development and commercialization of new medical
therapies.

In addition to the healthy-diseased grouping, in many experiments samples can
be further divided to populations according to additional covariates. For instance,
samples may be divided into medically treated and untreated populations, male and
female populations, or populations according to the time of the measurement. In
such a multi-way setup, not only the healthy-diseased difference is of interest but
also effects of other covariates and interactions of several covariates may provide
useful information.

The modelling problem presented in this thesis is to separate the effects of the
covariates and their interactions from other variation of the data. This is called
multi-way analysis. The thesis has a focus on two-way modelling, where the effects
of two covariates and their interaction are studied. Two- and multi-way analyses give
information on how the covariates affect the observations. For metabolomic data,
the result of a multi-way analysis can be, for instance, a list of metabolites that
have differential concentration in healthy and diseased patients and the numerical
quantity of the difference.

A common problem in modern biological experiments is the small number of avail-
able measurements from patients which, in the field of statistics, are called samples.
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The main reason for the small number of samples is the high financial cost of a single
measurement, which leads to a need of keeping the number of samples as small as
possible. In many medical experiments, animals are grown in captivity and included
in the experiment that includes medication and taking samples of live tissue. In such
experiments, the sample-size is small not only because of the high financial costs of
growing animals in laboratory conditions but also due to ethical questions.

The problem of small sample-size, or the n < p problem, leads to constraints in the
analysis. Many traditional statistical methods do not work for a data set with less
samples than features.

The new method presented in this thesis has been rigorously developed to analyze
small sample-size multi-way metabolomic data sets. A particular application is the
Type 1 Diabetes prediction and prevention (DIPP) follow-up study [1]. In the study,
lipidomic profile was measured from the blood serum of children with a genetic risk
for type 1 diabetes. Some patients developed into type 1 diabetes, whereas some of
the individuals under risk remained healthy.

Lipids are a sub-group of metabolites that form the cell membrane and also take part
in many important biological processes such as cell signaling. Lipids are of particu-
lar interest because changes in their concentrations are related to many metabolic
diseases, such as diabetes.

In the DIPP study, the lipidomic profile was measured from each child on several
occasions during the first years of life. Thus, the data set consists of a time series
of profiles for each patient. Due to the nature of the experiment, the data includes
three covariates, which are: healthy-diseased, male-female, and the age of the patient
at the time of the measurement.

The objective of the developed method is to take the additional covariates and special
properties of metabolomic data into account and to provide information on how
healthy and diseased individuals differ in their lipidomic profiles. It is of particular
interest to find out which lipids are the ones having differential concentration due
to the covariates. The new method is able to identify effects resulting from the
covariates and effects resulting from the interaction of multiple covariates. In many
studies, the covariate interaction effects, such as the the interaction of the disease
and age, are of most interest.

None of the current methods, univariate or multivariate, is perfectly suited for the
current problem setting of a multi-way high-throughput experiment with small num-
ber of samples. Univariate methods, which analyze only one feature at a time, are
still usable in the n < p case but do not provide reliable results. Unlike multivariate
methods, univariate methods do not take correlations of features into account, thus
missing one of the critical properties of metabolomics. Multivariate methods are
generally more useful for analyzing multivariate data but many of them cannot be
used in the small sample-size case.

The lack of available methods is the main motivation in developing a Bayesian model
that is particularly suited to this application. The Bayesian approach is justified,



3

as it handles properly the problems following the small sample-size.

This thesis introduces the research field of metabolomics, common methods in an-
alyzing metabolomic data and presents the new Bayesian method with demonstra-
tions of its functioning. Section 2 consists of an overview of metabolomics discussing
the characteristic properties of metabolomic data, technologies used in performing
the measurements, pre-processing steps applied to the raw measurement data, and
data analysis methods widely used in metabolomic analysis.

Widely used univariate statistical methods are presented in Section 3. Of the meth-
ods presented, especially analysis of variance (ANOVA) is important from the per-
spective of the this thesis, as it closely resembles the new method presented in this
thesis.

Clustering, factor analysis and multivariate analysis of variance are multivariate
methods that have similarities to the proposed new method. These methods are
presented in Section 4. Many of these more traditional multivariate methods are
not applicable for n < p data.

Less established multivariate methods proposed for bioinformatics applications are
presented in Section 5. They are usable for data with small number of samples
but the methods are in many ways not perfectly suitable for analysis of multi-way
metabolomics data.

The idea of Bayesian modelling is introduced in Section 6. The Bayesian approach
provides a clear framework for estimating the uncertainty of the model and for incor-
porating prior knowledge into the statistical model. Assessment of the uncertainty
is important especially at small sample sizes. Complex dependencies of variables can
be modeled with hierarchical models, which consist of several layers of unobserved
variables. The concepts of a hierarchical model and sampling are also explained in
Section 6.

The new method presented in this thesis is a hierarchical Bayesian model. It per-
forms dimensionality reduction and estimates the ANOVA-type effects arising from
experimental treatments. The dimensionality reduction is critical in enabling the
model for the small-sample size case, whereas the estimation of treatment effects is
the main objective of the model. The building blocks of the method are explained
in detail in Section 7.

Functioning of the new method is demonstrated in Section 8 with simulated data,
especially with small sample-size data. To extract novel biological information, the
model is applied to the DIPP lipidomic data set and the covariate effects in the
experiment are estimated. The model is learned both with data from a single time
point and with time series data.
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2 Metabolomics data

Metabolomics is a newly emerging field of ’omics’ research concerned with the high-
throughput identification and quantification of small molecule metabolites in the
metabolome. Metabolome is defined as the complete complement of all metabolites
smaller than 1500 Da that are found in a specific cell, organ or organism. It includes
natural reagents and final products of chemical processes taking place in the cell,
such as lipids, but also chemicals that are not naturally part of the cell metabolism,
such as drugs. Traditionally metabolomics, sometimes called metabonomics, has
been seen as a diagnostic tool for metabolic classification of individuals [2].

Lipidomics is a sub-category of metabolomics focusing on quantitative study of
lipids. The group of lipids is defined [3] as hydrophobic or amphiphilic small
molecules that originate either entirely or in part from two distinct types of building
blocks: carbanion-based condensations of thioester and carbocation-based conden-
sations of isoprene. The first group includes fatty acids and the second includes
sterols.

Metabolites and lipids are interesting because they reflect the effects of gene and
protein regulation and thus provide vital information regarding the biological state
of the biological system [4]. Lipids are especially interesting, as they play an impor-
tant role in cell signaling, membrane architecture, transcriptional and translational
modulation, cell-cell and cell-protein interactions and response to environmental
changes over time.

Changes in lipid concentrations are a signal of changes in the metabolic state in a
cell. Such changes are related to many metabolic diseases. Possible connection to a
disease is also the motivation of the experiments presented in this thesis.

Lipids are classified into eight major categories: fatty acyls, glycerolipids, glyc-
erophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyke-
tides [3]. The major difference between lipids and other major components of living
tissue is their solubility to organic solvents [4]. Another unique characteristic of
many lipids is their spontaneous arrangement into micelles or bilayer vesicles in
an aqueous environment. The polar head groups of the molecules tend to remain
associated with water, whereas the hydrocarbon tails form hydrophobic interactions.

Other traditional fields of ’omics’ are genomics, transcriptomics and proteomics.
Genome is the inherited information in the cell. Gene is the part of the genome
that is associated in production of a protein. The first step in production of the
protein is transcription of the gene into messenger ribonucleic acid (mRNA). In the
second step, mRNA is translated into the protein such that each codon in the mRNA
corresponds to one amino acid, which is a basic building block of proteins. Proteins
are the functional molecules built by the cell. Proteins are critical in catalyzing
biochemical reactions, where metabolites act as substrates and products.

Genomics is a field that studies the DNA sequence of an organism. Transcriptomics
is the field of study that focuses on investigating the transcription. Also known as
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Figure 1: Small sample-size data matrix containing simulated normally distributed
data with population-specific up- and down-regulations. Features are ordered ac-
cording to similarity, and samples according to treatment covariates, which in this
case are healthy-diseased and treated-untreated. A feature is a measured property
of the studied object. In metabolomics, one feature is equivalent to one metabolite.
Data of a biological origin is considerably more noisy. Also, the covariate effects are
not as visible as in this simulated example.

expression profiling, it examines the expression level of mRNAs in the cell, often us-
ing high-throughput techniques based on DNA microarray technology. Proteomics
is a field studying the structures and functions of proteins. Even though the protein
production and function are regulated by many ways in the cell, the protein con-
centration is highly dependent on the transcriptional activity of the gene encoding
the corresponding protein. The same connection to transcriptional activity holds
for metabolites because their production is governed by proteins. [2]

2.1 Characteristics of the data

A metabolomic data set consists of metabolic profiles measured from different indi-
viduals under various treatments. Metabolic profile is a vector of measurements of
metabolite concentrations in a biological cell. The profile usually consists of mea-
surements of 20 to 200 metabolites. Such profile vectors from different individuals
or treatments are united to form a data matrix, which consists of p rows and n
columns, corresponding to p different metabolites and n individual profiles, respec-
tively. One individual profile is called a sample. An example data set is shown in
Figure 1.

Metabolomic data, as data in bioinformatics in general, is usually high-dimensional
compared to the number of samples available. The number of samples is limited
mainly by external constraints. Growing multitude of animals, such as mice, in
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laboratory environment is costly. Also, such experiments, where genetically or oth-
erwise manipulated animals are grown and might suffer because of the treatment,
are ethically questionable.

Besides being high-dimensional, metabolomic data typically has high variation be-
tween individuals from which the measurements have been made. This feature does
not only result from noise in the measuring process but mainly from biological vari-
ation between the individuals.

Repeats of measurements from one individual are called technical repeats and mea-
surements from different individuals in similar conditions are called biological re-
peats. When animal cells are under study, the variation of technical repeats is
usually small compared to variation of biological repeats. In plant cells, however,
the variation of technical repeats is high because of stronger regulation in biological
processes [5].

Metabolomic data differs strikingly from other fields of bioinformatics in the way
the correlations between data features arise. In transcriptomics and proteomics,
concentrations are mainly governed by a network of regulatory interactions, whereas
metabolites are synthesized from other metabolites via a network of biochemical
reactions [6]. Concentrations of members of such a reaction chain are naturally
highly correlated.

If one wishes to build a model on the reaction pathways of a set of metabolites,
measuring equipment with high temporal resolution is required. Such equipment
are not widely available currently. Traditionally, metabolic pathway modelling is
done by writing down and solving systems of time-dependent ordinary differential
equations (ODEs) that describe the chemical reaction coefficients and rates of the
metabolic system of interest. For finding underlying biological causes, this kind of
modelling approach is extremely useful. However, the data analyzed in this work
does not have high enough temporal resolution for this type of analysis and, thus,
the topic is not discussed further in this thesis.

In this thesis, the focus is in analysis of experiments with temporally less frequent
measurements. In contrast to pathway modelling, the time scale of the experiment
is comparable to the life span of the species under study. In such a scale, metabolic
changes do not arise from instant fluctuations in chemical processes and their reg-
ulation but from changes in individual’s state, which is caused by aging, biological
conditions or by the applied medical treatments. A metabolite or other substance
that can be used as an indicator of a biological state is called a biomarker.

Metabolic profiling aims at identifying and quantifying the components in the sam-
ple, which in practice means estimating concentrations of metabolites. The concen-
tration profiles can then be used in estimating the effect of a treatment on various
metabolites and thereby in finding potential biomarkers. Such an approach, where
data sets of even hundreds of metabolites are analyzed, is called non-targeted, global
or shotgun metabolomics [7].

The complications in non-targeted metabolomics are discussed in later sections. An-



7

other approach to studying identified metabolites is targeted metabolomics, where
the metabolites are pre-selected according to prior information. In the targeted
approach, the problem of high number of metabolites compared to the number of
samples is avoided but there is also the drawback that behavior of only a limited
number of metabolites can be studied.

The chemometric approach differs from targeted and non-targeted profiling such
that individual metabolites are not identified from the spectral data but the spec-
trum is analyzed as such. The approach is used for finding statistically significant
differences between large groups of spectra collected on different samples or under
different conditions. It is obvious that this approach will not provide information
on which metabolites are affected by the applied treatment, but the spectra can still
be used in finding statistically significant differences under different conditions or in
classification of samples.

The clear advantage of the chemometric approach is that it is not required to identify
unknown components in complex spectra, which in any case is a hard task, and
that the differences can be studied without taking opinion on which the chemical
components behind the phenomenon are. Because the approach does not provide
information on the behavior of identified metabolites, it is fundamentally different
from the approach of the new method presented in this thesis. Due to the limited
scope of this thesis, the chemometric approach is not discussed in more detail.

A typical task in a metabolomic study is to find metabolites that have differential
concentration in treatments of an experiment. Naturally this is possible only when
metabolites have been identified from the raw data. There is interest in performing
experiments with more complicated experimental designs than the simple one-way
healthy-sick design. Such designs include multiple ways of treatment and multiple
levels of treatment. For high-dimensional data with small number of samples, proper
analysis of such experiments has not been possible due to lack of suitable statistical
methods.

2.2 Measurement technologies

Spectral analysis forms the basis for all metabolomic studies. Samples are mea-
sured using non-chemical and non-colorimetric methods, such as mass spectrometric
methods or nuclear magnetic resonance spectroscopy. These methods measure the
spectrum of the sample. Spectrum is the relative intensity of the measured sample
representing the chemical analysis. For instance, in mass spectrometry, the intensity
of the sample is presented as function of the particle mass.

To study the measurements efficiently, the spectrum is divided into bins. Each bin
contains the spectral information of a small region of the spectrum - and usually the
close-by peaks. This binned information can then be compared between samples.
Binning is an established approach in metabolomics, as each peak of the spectrum is
considered to correspond to one type of molecule. Thus, the peak height is directly
linked to concentration of the molecule. In the data analysis, each bin is treated as
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one feature of the raw data.

An alternative approach to the chemometric approach is targeted metabolic profil-
ing, where individual components of the spectrum are identified. The spectrum is
assumed to be the sum of the spectra of pure metabolites that the sample includes.
The identification requires use of spectral databases of known molecules to which
the measured spectrum is compared. This approach is practiced in the methods
that are presented in this thesis.

After collecting a sample from a biological tissue, the sample is stored frozen to avoid
molecular degradation. Homogenization of the frozen sample usually takes place
mechanically by glass beads and aims at leveling off differences of concentrations
in different parts of the sample [8]. Proteins are precipitated chemically from the
sample, usually by methanol.

After preparation of the sample, different types of metabolite molecules are sepa-
rated to make it possible to measure their concentrations. Some of the most widely
used separation technologies within the metabolomics field are gas and liquid chro-
matography (GC and LC, respectively).

Chromatographic methods separate different types of molecules, or compounds,
based on their characteristics, such as polarity or hydrophobicity. The sample,
or analyte, is introduced into a column. The column contains a mobile and a sta-
tionary phase. The analyte’s motion through the column along the mobile phase is
slowed by specific chemical or physical interactions with the stationary phase. Each
compound traverses through the column in a specific time, which is dependent on
properties of the analyte. Retention time (RT) is the time it takes for the compound
to appear from the column after injection of the analyte. The appearance of the
compound produces a peak in the measured intensity spectrum. The retention time
is later used in identifying the compound.

Gas, or gas-liquid, chromatography differs from liquid chromatography such that
the moving phase is gas instead of liquid, and the stationary phase is liquid instead
of solid. GC is good for separating compounds that can be vaporized without
decomposition.

All compounds cannot be resolved by chromatography alone, because several differ-
ent compounds may have equal retention times. For identification of the compounds,
it is required to measure also other properties. Typically the weight of the compound
is measured with mass spectrometry (MS). In mass spectrometry, each compound is
ionized, and the mass-to-charge ratio (m/z) of the ion is measured by simultaneously
introducing it to electric and magnetic fields. The ionization is usually carried out
with electrospray ionization technique.

The mass spectrometer is directly linked to the output of the chromatographic de-
vice to enable the measurement of the retention time and the mass-to-charge ratio
consecutively. This setting leads to data, where each compound has a position on the
mZ/RT plane. To identify the corresponding compounds, the mZ/RT coordinates
are then compared to literature values of known compounds.
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Nuclear magnetic resonance (NMR) spectroscopy is a detection method that does
not rely on prior separation of the analytes. NMR is usually based on radiation
absorption and emission of hydrogen atoms in a strong magnetic field (1H NMR).
Carbon-13 NMR (13C NMR), a widely used NMR technique, is not commonly used in
the metabolomics field [9]. The resonance frequency of a hydrogen atom is dependent
on the molecule that it is bound to, which is why intensity peaks in the NMR
spectrum correspond to molecules and their concentrations.

The combination of chromatography and mass spectrometry is usually preferred
because of the huge advantage in terms of sensitivity over the NMR spectroscopy.
One strength of the NMR is that the technique is potentially non-invasive, leading
to many medical applications of the NMR effect to detect molecules in vivo [10].
This feature, however, is not of use when measuring internal tissues.

Differential profiling is an approach, where measurements from different populations
of samples are compared to find differences in the observed profile. The approach
requires a broad coverage of measured compounds, which can be fulfilled with LC-
MS or GC-MS techniques. The use of these techniques is currently predominant in
the metabolomics field. LC-MS was also used for producing the DIPP data that
is analyzed in this thesis. Still, to be able to compare compound concentrations
between individuals, it is necessary to perform pre-processing on the raw data.

2.3 Data pre-processing methods

The data obtained from the LC-MS or GC-MS equipment is noisy. It is convenient
to prepare the data with pre-processing before the final statistical analysis. The
conventional pre-processing steps are:

1. spectral filtering, which aims at reducing the complexity of spectra and re-
moving the noise

2. peak detection, which finds the peaks corresponding to the compounds or
fragments thereof

3. alignment, which aims at matching the corresponding peaks across multiple
sample runs

4. normalization, which is the final step to reduce systematic error by adjusting
the intensities within each sample run

The measurement data of the experiments in this thesis were prepared for further
analysis using MZmine [11], which is a stand-alone all-in-one software platform for
performing the above listed pre-processing steps of raw metabolic profile data.

MZmine performs filtering of spectral peaks in both the RT and m/z directions to
remove peaks with the weakest intensities. The mZ/RT plane is sliced into bins
that are considered as one-dimensional spectra. Peaks in neighboring slices are then



10

joined if they have similar m/z values. These peaks then form one peak in the RT
direction.

Peaks from the same compound in different samples usually match closely in mass-to-
charge values, but there can be variation in retention times between the measurement
runs. Alignment step is used for matching peaks between multiple sample runs.
Alignment usually leads to missing values if a certain peak is not found in every
sample.

The usual causes for not finding the peak are the low concentration of the corre-
sponding molecule and noise in the measuring process. Noise not only affects the
intensity of the peak but also its position in the mZ/RT plane, which causes difficul-
ties for the peak detection algorithm. MZmine provides a way of searching missing
peaks from the raw data.

The last step, normalization, is used to reduce the systematic error in the data.
Normalization can be performed using a linear method or by calculating a normal-
ization based on standard compound intensities. Standard compounds are molecules
that are added to the sample with known concentrations prior to the measurements.
Each peak can then be normalized either relative to the standard compound closest
to the peak, or by using a weighted contribution of all standard compounds.

Software used in pre-processing may have different algorithms but the principal op-
erations are common for all programs. Parameters for peak width, shape, intensity,
resolution, etc., have to be set for the peak-picking algorithm to find the metabolites
using predefined tolerances for mass and retention time shifts. [12]

2.4 Common data-analysis methods

This sub-section provides a brief overview of the methods currently used in meta-
bolomics. Technical details of the methods are discussed in Sections 3, 4 and 5.

Statistical data analysis methods are applied to the pre-processed data set, which is
a full matrix of measurement values. The rows correspond to samples and columns
correspond to metabolites, or features, as called in machine learning literature.

A common approach in present-day metabolomics is one-way analysis, where the
effect of a single covariate is studied. One of the most simple, and still, most widely
used method in bioinformatics is the Student’s t-test [13], which decides whether a
difference between two groups of samples is statistically significant. The t-test has
numerous modifications to multivariate case [14], where the data consists of multiple
features, treated separately and combined. The data in bioinformatics is practically
always multivariate.

Analysis of variance (ANOVA) [13] is the most traditional method for analyzing
multi-way experiments. Originally, ANOVA is a univariate method but there is a
generalization of the method to the multivariate case, called multivariate ANOVA or
MANOVA [15]. ANOVA is widely used in bioinformatics but it does not provide re-
liable results when applied to multivariate data such as in metabolomics. MANOVA



11

is not at all applicable for small sample-size data.

A successful approach to high-dimensional data analysis is dimensionality reduction,
where multiple variables are combined as few hybrid variables. The relevant varia-
tion of the original variables is hoped to be transferred to the hybrid variables while
the noise is averaged out. Further analysis is carried out on the lower-dimensional
hybrid variables.

Principal component analysis (PCA) [16] is a common method used in dimensional-
ity reduction. PCA performs a linear projection on the data, such that the variance
of the projection is maximal. In several approaches, PCA is used as a dimension-
ality reduction method to feed lower-dimensional data to another method, such as
MANOVA [17]. The PCA projection is not guaranteed to be at all relevant on the
experimental setting and, thus, it is not likely that relevant biomarkers are found.

Anova simultaneous component analysis (ASCA) [18] is a recently proposed method
for analyzing small sample-size multi-way data. ASCA performs a PCA-type projec-
tion on the data. From the projection, ANOVA-type treatment effects are estimated.

Partial least squares (PLS) regression is a widely used method in classification and
prediction. It is related to PCA but, unlike PCA, it is supervised, meaning that also
target values are used in finding the optimal projection. It is particularly suited when
there is high multicollinearity among features, which is common in metabolomics.

Partial least squares discriminant analysis (PLSDA) [19] is a variant of PLS regres-
sion specialized in classification of samples. In the method, known class labels are
used as target values in the learning. The problem of PLS-based methods is that
they are prone to overfitting, which means that they give unreliable results.

Clustering is a usual approach in any multivariate analysis, where the task is to find
groups of similar samples or features. There are numerous clustering methods and
one of the most widely-used methods is hierarchical clustering. It is a traditional
clustering method also in bioinformatics. The result of the method is nothing more
than a tree-like grouping of features. Even though information on similarity of the
features is obtained, any further analysis needs to be done by using other methods.

There is still great need for interpretable and reliable statistical methods in the field
of metabolomics. The progress of statistical machine learning methods leads to a
possibility of extracting more knowledge from the noisy biological experiments.

2.5 The biological experiment of this thesis

In this thesis, data from targeted profiling experiment is analyzed. The spectral
peaks are identified and a group of relevant lipids are selected for further analysis.
After peak detection and other pre-processing, the data is in the form of a full
matrix, where there are tens to hundreds of features (or metabolites, i.e. rows) and
some tens of samples (or patients, i.e. columns).

The originates from a screening performed for over 100,000 newborn infants in Fin-
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land [1]. The infants were screened for a known genetic risk of acquiring type 1
diabetes. Over 8,000 children with genetic risk continued in the follow-up surveil-
lance, where concentrations of four antibodies related to diabetes were measured
during a long time interval. During the first two years of their life, the children were
monitored roughly once in every three months, and after that, once or twice a year.
117 of the 8,000 children were picked at random into a more detailed study, where
their metabolic profiles were measured from blood serum. In this profile study, there
were both individuals who acquired diabetes and individuals who stayed healthy.

Diabetes is a condition in which the body does not produce enough, or properly
respond to, insulin. Insulin is a hormone produced in the pancreas. It enables cells
to absorb glucose in order to turn it into energy. Type 1 diabetes is an autoimmune
disease that results in destruction of insulin-producing β-cells of the pancreas.

The presence of anti-islet antibodies, in particular GADA, are useful in identifying
the disease and also in distinguishing type 1 diabetes from type 2 diabetes [20].
Nowadays type 1 diabetes is sub-categorized into type 1A and type 1B diabetes, of
which the first one can be identified based on antibody levels. About 90 % of white
children will have at least one of the anti-islet antibodies at disease diagnosis.

The samples were analyzed with ultra performance liquid chromatography coupled
to mass spectrometry [1]. Software platform MZmine was used for pre-processing
the raw data. A total of 117 individuals were included in the study, of which 50
acquired the disease and 67 remained healthy. From each individual, on average 10
measurement time points were obtained. In total, 53 lipids were identified in all
these 1,196 samples. Later, the number of individuals in the data set were reduced
to roughly 50 by removing individuals whose time series was not complete [21].

In an earlier analysis performed on the same data [1], metabolic changes were found
already before the emergence of islet autoantibodies. Also intra-individual develop-
ment has been studied using the data [21]. A hidden Markov model was used to
align the developmental trajectories of individuals of one gender, which led to lower
within-group variance than the age-based alignment.

Because of the number of samples being smaller than the number of features, tradi-
tional statistical methods break down due to the non-invertible covariance matrix.
To identify the key components in the feature space, dimensionality reduction is
required. A Bayesian two-way model was developed for the data because the tradi-
tional methods presented in the previous sub-section do not provide reliable results
for collinear data with small number of samples compared to the number of features.
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3 Univariate statistical methods

Relevant traditional methods used in analyzing univariate data are presented in this
section. Being univariate means that there is a only single feature in the data set.
Then, one sample is not a vector of values but a single scalar value. In metabolomics,
this means that the data are analyzed one metabolite at a time, leaving all inter-
metabolite correlations without attention.

Student’s t-test is the most traditional way of comparing statistical difference of two
values or means of two populations. Analysis of variance (ANOVA) extends the
test to several populations of values. The presented univariate methods can also be
applied to multivariate data sets but then the results are more likely to be incorrect
because the methods are not designed for such use. Multivariate methods will be
discussed in the next section.

3.1 p-value

Statistical hypothesis testing is an approach for determining whether an aspect of
experimental data is statistically significant. The decisions are made using null
hypothesis tests, which determine the probability of the observations assuming the
null hypothesis is true. The null hypothesis formally describes some aspect of the
statistical behaviour of a set of data. This description is treated as valid unless the
actual behaviour of the data contradicts this assumption. The testing is performed
by calculating a specific test statistic from the observed values and by comparing
it to the cumulative density function (CDF ) of the distribution the test statistic is
assumed to follow.

p-value of the test is the value of the cumulative density function at the point of
the test statistic value. The decision over the validity of the null hypothesis is then
based on the p-value of the test statistic which tells how probable it is to obtain
a test statistic value more extreme than the one that was calculated. If the value
is too extreme, the decision is that the test statistic does not follow the assumed
distribution and, thus, the null hypothesis is rejected.

In statistical significance testing, p-value of either 0.05 or 0.01 is often considered
as a critical limit. If the p-value of observations is lower than this limit, the null
hypothesis is rejected.

3.2 Student’s t-test

The traditional way of comparing the mean of a normally distributed population
either to a value specified in a null hypothesis, or to the mean of another normally
distributed population, is Student’s t-test. The former is based on the fact that the
test statistic T calculated from n-sample mean xn, standard deviation sn, and null
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hypothesis mean µ0,

T =
xn − µ0

sn/
√
n
∼ t(n− 1), (1)

follows the Student’s t-distribution with n − 1 degrees of freedom, if the null hy-
pothesis holds. This quantity T is called the test statistic. In the equation, both
sample mean and sample standard deviation are estimated from the data.

The Student’s t-distribution is lower-peaked and longer-tailed than the normal dis-
tribution. Thus, a variable that is t-distributed has more uncertainty than a nor-
mally distributed variable. This arises from the fact that in addition to the mean,
also the standard deviation is estimated from the data.

3.3 Analysis of variance

Analysis of variance (ANOVA) extends the test of equal means to the case of more
than two populations. When the division is based on one factor, a one-way analysis
is applied, whereas when there are more factors, a multi-way analysis is applied.

The new method presented in this thesis includes a module similar to the traditional
multi-way ANOVA. However, the new method is more informative, as it not only
provides one p-value for each population but also provides a distribution estimate
for the effect. The distribution estimate is useful in assessing the uncertainty of the
estimate.

3.3.1 One-way ANOVA

In the one-way analysis of variance, one factor divides the sample into k populations.
One-way ANOVA then separates the grand mean and population-specific effects.
The statistical model of one-way ANOVA [13] is parametrized as

yki = µi + εki, (2)

where yki is the observation k belonging to population i, µi is the population-specific
mean, and εki the residual term of the observation ki, that is, the part of the
observation that is not explained by the linear model. The same can be expressed
more intuitively as

yki = µ+ τi + εki, (3)

where µ the grand mean of the data, τi the population i-specific effect, or deviation
from the grand mean, and εki the same residual term as previously. The effects are
restricted to sum over all samples to zero:

I∑
i=1

niτi = 0, (4)



15

where ni is the number of samples in population i and I is the total number of pop-
ulations. The residual term is assumed to be independent and identically normally
distributed between samples:

εki ∼ N
(
0, σ2

)
, (5)

where σ2 is the residual variance.

The null hypothesis H0 in ANOVA is that all population-specific means µi are equal:

H0 : µ1 = µ2 = ... = µI = µ. (6)

The statistical testing of populations is performed by decomposing the variance of
the sample into variances between and within populations. Traditionally, the calcu-
lations have been done by using square sums because it requires less computation.
The decomposition is simply

SST = SSG+ SSE, (7)

where SST , SSG and SSE correspond to square sums of total, population-specific
and sample-specific variation, respectively.

The residual square sum that corresponds to the sample-specific variance is defined
as

SSE =
I∑
i=1

ni∑
k=1

(yki − yi)
2 , (8)

where yi is the mean of the population i. The total square sum, corresponding to
the total variance, is defined as

SST =
I∑
i=1

ni∑
k=1

(yki − y)2 . (9)

The null hypothesis is tested by using the test statistic

F =
N − I
I − 1

· SST − SSE
SSE

. (10)

If the null hypothesis holds, the test statistic follows F -distribution,

F ∼ F (I − 1, N − I), (11)

with I − 1 and N − I degrees of freedom. The p-value of the test statistic can then
be compared to critical limits of the F -distribution.

If the null hypothesis is rejected, it is evident that at least two of the population
means differ from each other in a statistically significant way. The ANOVA itself
does not tell which the differing populations are, but this can be found out using
pair-wise t-tests.
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3.3.2 Multi-Way ANOVA

The one-way ANOVA generalizes into a multi-way case, where the data is decom-
posed into populations with respect to more than one factor.

In a two-way case, there are two factors, A and B, and the statistical model can be
parametrized as

ykij = µ+ αi + βj + (αβ)ij + εkij, (12)

where µ again is the grand mean, αi is the population i-specific A-effect, βj the
population j-specific B-effect, (αβ)ij the interaction effect AB of the populations i
and j, and εkij the residual term of observation k. Additionally, there is a constraint
that all effects sum to zero over all populations:

I∑
i=1

αi =
J∑
j=1

βj =
I∑
i=1

(αβ)ij =
J∑
j=1

(αβ)ij = 0. (13)

The two-way ANOVA tests three things: whether there is an effect of treatment A,
of treatment B, or of the interaction AB. The null hypotheses are formulated as:

HAB : No interaction effect
HA : No effect of treatment A
HB : No effect of treatment B.

For statistical testing, the following square sums need to be calculated: the total
square sum

SST =
I∑
i=1

J∑
j=1

K∑
k=1

(ykij − y···)
2 , (14)

the square sum of treatment A

SSA = JK
I∑
i=1

(y·i· − y···)
2 , (15)

the square sum of treatment B

SSB = IK

J∑
j=1

(
y··j − y···

)2
, (16)

and the square sum of the interaction of treatments A and B

SSAB = K

I∑
i=1

J∑
j=1

(
y·ij − y·i· − y··j + y···

)2
. (17)

The ANOVA decomposition then becomes

SST = SSA+ SSB + SSAB + SSE. (18)
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The existence of the interaction effect can be tested by calculating the test statistic

FAB =
IJ(K − 1)

(I − 1)(J − 1)
· SSAB
SSE

∼ F ((I − 1) (J − 1) , IJ (K − 1)) , (19)

which follows F -distribution with (I − 1)(J − 1) and IJ(K − 1) degrees of freedom,
in the case that the null hypothesis HAB holds. Single-treatment effects are tested
with test statistics

FA =
IJ (K − 1)

I − 1
· SSA
SSE

∼ F ((I − 1) , IJ (K − 1)) (20)

for treatment A and

FB =
IJ (K − 1)

J − 1
· SSB
SSE

∼ F ((J − 1) , IJ (K − 1)) (21)

for treatment B, and also they follow F -distribution if the respective null hypothe-
ses HA and HB hold. These three statistics can be interpreted as comparisons of
variances within and between populations.

The least squares estimate of the two-way ANOVA model is obtained by minimizing
the square sum

SS =
I∑
i=1

J∑
j=1

K∑
k=1

(
ykij − µ− αi − βj − (αβ)ij

)2

, (22)

which leads to estimates

µ̂ = y···
α̂i = y·i· − y, i = 1, . . . I (23)

β̂j = y··j − y, j = 1, . . . J

(̂αβ)ij = y·ij − y·i· − y··j + y, i = 1, . . . , I, j = 1, . . . , J.

However, these values are only point estimates. The strength and significance of an
effect is evaluated from the p-value of the corresponding F -test result. With small
sample-size, the estimates are not reliable.

3.4 Multiple testing problem

As ANOVA and the t-test are univariate methods, similar testing needs to be per-
formed separately for each variable of a higher-dimensional data matrix. However,
there is a complication in such multiple testing because ANOVA tests are indepen-
dent of each other, leading to an increase in the false positive discovery rate. The
more tests are performed in parallel, the more likely it is that at least one of the
test results is incorrect.

There are several simple by-passes for attempting to overcome this multiple testing
problem, of which two most common techniques are presented here.
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3.4.1 Bonferroni correction

Bonferroni correction attempts to keep the significance level of the test setting con-
stant regardless of the number of individual tests being performed. This is simply
done by dividing the original critical limit p-value by the number of individual tests.
For instance, original critical p-value of 0.05 with 10 parallel tests would lead to a
corrected p-value of 0.005.

In practice, the Bonferroni correction has been proven to be too conservative, mean-
ing that the new critical p-value is too low and, thus, a null hypothesis is rejected
too rarely.

3.4.2 False discovery rate

A more sophisticated way of dealing with false positives is a method called false
discovery rate (FDR) [14]. The first step of the procedure is to compute the ordinary
p-values of the tests but not to reject the corresponding null hypotheses yet. The
number of p-values smaller than the critical value p∗ is m. Then, these m p-values
are sorted in an ascending order

p(1) ≤ p(2) ≤ ... ≤ p(m) (24)

and the last p-value i = k that fulfils the inequality

p(i) ≤
i

m
q∗ (25)

is sought, when q∗ is the chosen false discovery rate. In the last step, all null
hypotheses H(i) for which i = 1, . . . , k are rejected, leading to a multiple test result
with false discovery rate of q∗.

False discovery rate controls the expected proportion of incorrectly rejected null
hypotheses. It is less conservative than the Bonferroni correction. This means that
the null hypothesis is decided to be valid less often in the case, where the null
hypothesis should be discarded.
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4 Classical statistical multivariate methods

There are numerous multivariate methods that take into account the multivariate
property of the data. Many of the widely used methods are devised to deal with large
data matrices. Such methods help the statistician in finding relevant information
from the data.

In the field of metabolomics, as in bioinformatics in general, multivariate methods
are required, as the number of features in the data is very high. The new method
presented in this thesis has similarities to several methods presented in this section.
Reduced Bayesian factor analysis forms the dimensionality reduction module of the
method. The entire method is based on normality assumption of the data and
conditional normal distributions are calculated during the iterative steps of the
algorithm. The properties of conditional normal distribution are presented in this
section.

In this section, relevant multivariate methods are presented and their connection
to the new Bayesian method is explained. In sub-section 5, competing methods
developed for small sample-size data are presented.

4.1 Clustering

Clustering means unsupervised grouping of patterns into clusters. The patterns to
be grouped usually are either observations or features. When clustering observa-
tions, the goal is to find groups of similar observations. The main application area
of clustering methods is to find these groups when no class information is avail-
able beforehand, whereas supervised methods are used when the class labels of the
observations are known. Clustering is a considerably harder task than classification.

There are various ways of performing clustering. The two most commonly used
methods are k -means clustering and hierarchical clustering. In k -means clustering,
the data is divided into k clusters. The cluster centers and cluster assignments
are updated via an alternating iterative process. Hierarchical clustering yields a
dendrogram, that is a tree, representing the nested groupings of observations and
similarity levels at which groupings change.

In addition to selecting the clustering method, the choice of metric plays a critical
role. The result of the clustering is very strongly dependent on how the distances
between data points are measured. The two most common choice for the measures
of the distance between two d-dimensional data points xi and xj are the Euclidean
distance, or more generally, the Minkowski metric

dp(xi,xj) =

(
d∑

k=1

|xi,k − xj,k|p
)1/p

(26)

= ‖xi − xj‖p,
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where p decides the norm to be used. When p = 2 the metric becomes Euclidean
distance.

Another widely used distance metric is the squared Mahalanobis distance

dM(xi,xj) = (xi − xj)
TΣ−1(xi − xj), (27)

where xi and xj are the observed vectors and Σ−1 is the sample covariance or the
known covariance matrix of the data generating process [22]. The Mahalanobis dis-
tance is also present in the density function of the multivariate normal distribution.

Clustering methods can also be used for finding similarly behaving features. When
clustering features, clustering can be used to assist dimensionality reduction: similar
features are grouped. These groupings can then be used in, for instance, reducing
the number of statistical tests to be performed.

4.2 Multivariate normality assumption

It is a common assumption in statistics that the data is normally distributed, and
this holds also for data with more than one features. The parameters of the normal
distribution are its mean vector µ and covariance matrix Σ. In statistical literature,
the fact that a random variable X follows normal distribution with mean µ and
covariance Σ is expressed as

X ∼ N (µ,Σ) . (28)

Here, as with many methods that are based on the normality assumption, Σ is
assumed to be a positive definite symmetric matrix. To make the computation of
the inverse matrix Σ−1 possible, the matrix Σ is required to be of full rank, meaning
that all the eigenvalues of the matrix are greater than zero. When Σ is estimated
from data, the requirement sets a lower limit on the number of observations: there
has to be at least as many observations as there are features in the data (n ≥ p).

The probability density function (PDF) of the normal distribution

p(x|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(29)

defines the shape of the distribution. It integrates to one over all space and an
integration over a given domain gives the probability of an observation falling into
that domain.

When a multi-dimensional variable

X =
(
X(1),X(2)

)
(30)

is partly observed such that

X(1) = (X1, X2, . . . , Xq) (31)



21

is a q-dimensional unobserved vector and

X(2) = (Xq+1, Xq+2, . . . , Xp) (32)

is an p− q-dimensional observed vector, and the mean vector µ is split into two in
a similar manner, the conditional distribution of the unobserved part becomes

X(1)|
(
X(2) = x(2)

)
∼ N

(
µ(1) + Σ12Σ

−1
22

(
x(2) − µ(2)

)
,Σ11 −Σ12Σ

−1
22 Σ21

)
, (33)

where the dependency of the unobserved part on the observed part is defined by the
covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (34)

where due to the symmetry of the covariance matrix, equality

Σ12 = ΣT
21 (35)

holds.

The properties of normal distribution are utilized in many methods. Next, several
multivariate methods that assume the normality of the data, are presented.

4.3 Principal component analysis

Principal component analysis (PCA) [16] is a well-established method that is used,
for instance, in the fields of exploratory data analysis, dimensionality reduction and
information visualization. PCA is usually defined as the orthogonal projection of
the data onto a lower-dimensional linear space, known as the principal subspace,
such that the variance of the projected data is maximized.

The optimal projection directions are the eigenvectors of the covariance matrix S
or correlation matrix R of the data. The covariance matrix S is estimated from the
data as

S =
1

N

N∑
n=1

(xn − x)(xn − x)T , (36)

where xn is nth sample of the data set and x is the vector of feature means. The
correlation matrix R is estimated one element i, j at a time as

ρij =
1

N

N∑
n=1

(xni − xi)
σi

(xnj − xj)
σj

, (37)

where xni is the scalar value of the feature i in sample n, xi is the scalar mean of
the feature i over all samples, and σi is the standard deviation of the feature i. In
both estimates, the summation goes through all N samples.

The ith eigenvector ui and the corresponding eigenvalue λi fulfil the eigenvector
equation

Sui = λiui (38)
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A p× p-dimensional square matrix has p eigenvalues of which, in the case of covari-
ance or correlation matrix, all are non-negative. The magnitude of an eigenvalue
describes the amount

σ2
i = λi (39)

of variance that is explained by the direction of the corresponding eigenvector, or
component.

The eigenvectors are commonly called as the PCA coefficients. The value uij in the
eigenvector ui is the weight of the original variable j in the ith projection direction.
The sign of the weight determines the direction to which the PCA projection is
influenced by the original variable. The absolute value of the weight determines the
importance of the original variable in the projection variable.

The projections, or PCA scores, y
(r)
j , of the data vectors xj on the first r components

are obtained through linear projection

y
(r)
j = UT

r xj, (40)

where Ur is a p × r-dimensional matrix with the first r scaled eigenvectors as its
columns. The width of the projection matrix depends on the number of eigenvectors
to be used in the projection.

There is a PCA solution when there are less samples than variables (n < p) [16]. In
such case, the remaining p−n eigenvalues are zero because the covariance matrix is
not of full rank. Even though PCA is not based on a statistical model, there exists
a probabilistic interpretation of the model.

Probabilisic PCA [16] is a latent variable model. In a latent variable model, the
observations are assumed to be generated by latent variables, which are unobserved.
In probabilistic PCA, the conditional distribution of the observed variable x given
the latent variable z is defined as

p(x|z) = N
(
x|UT

r z + µ, σ2I
)
. (41)

The scalar σ2 is governing the variance of the conditional distribution. The marginal
distribution of observations is

p(x) = N
(
x|µ,UT

r Ur + σ2I
)
. (42)

PCA is one of the most widely-used multivariate methods. It has similarities to
several other multivariate methods with a latent variable interpretation, such as
factor analysis.

4.4 Factor analysis

Factor analysis is a dimensionality reduction method that has many similarities to
PCA. It is used for finding a small number of unobserved components called factors
that describe high-dimensional data well.
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Factor analysis is a linear-normal latent variable model. It is closely related to
the probabilistic version of PCA. In factor analysis, a latent variable z is normally
distributed with zero mean and unit variance:

p(z) = N (0, I) . (43)

The distribution of the observed variable x is conditioned on the value of the latent
variable z and the distribution is again normal,

p(x|z) = N (x|Wz + µ,Ψ) , (44)

in which the mean of x is a general linear function of z governed by the p×m projec-
tion matrix W and the p-dimensional vector µ. The projection matrix contains the
factor coefficients. Covariance matrix Ψ is a m × m-dimensional positive-definite
diagonal matrix, where m is the number of latent components in use.

From a generative point of view, the p-dimensional observed variable x is defined by
a linear transformation of the m-dimensional latent variable z plus additive normally
distributed noise:

x = Wz + µ+ ε, (45)

where
ε ∼ N (0,Ψ). (46)

When integrating the latent variable z out, the marginal distribution of observed
variable x becomes

p(x) = N
(
x|µ,WWT + Ψ

)
. (47)

In factor analysis, there is a rotational ambiguity in the projections W. Usually this
problem is overcome by using the varimax rotation, which maximizes the sum of
the variances of the factor-wise squared coefficients. It has a tendency of producing
high coefficient values for few variables and low coefficient values for the rest of the
variables, leading to enhanced interpretability.

The definition of factor analysis differs from that of probabilistic PCA only in that
the conditional distribution of the observed variable x given the latent variable z
is taken to have a diagonal rather than isotropic covariance. In probabilistic PCA,
the covariance matrix is a scaled identity matrix σ2I, whereas in factor analysis it is
a positive definite diagonal matrix Ψ. Because of a covariance matrix with higher
number of degrees of freedom, factor analysis is not applicable when there are less
samples than variables (n < p), while PCA is still solvable in such case.

4.5 MANOVA

MANOVA, or multivariate analysis of variance, is a multivariate statistical test
of population effects analogous to the univariate ANOVA [15]. As shown in Sub-
section 3.4, also ANOVA can be extended to the multivariate case through multiple
testing but it is not reliable when the features, or dependent variables, are correlated.
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The test decides whether the two population means in multi-dimensional feature
space are significantly different.

In the case of two-population setting, the MANOVA reduces to Hotelling’s T-square
test, which is related to linear discriminant analysis (LDA). The Hotelling’s T-square
statistic follows Hotelling’s T 2 distribution, which is a non-central F -distribution.
The statistic is defined as

t2 =
nxny
nx + ny

(x− y)TS−1(x− y) ∼ T 2(p, nx + ny − 2), (48)

where nx and ny are the numbers of samples in the two populations, x and y are
the respective population mean estimates, and S is the pooled covariance matrix
estimate

S =

∑nx

i=1(xi − x)(xi − x)T +
∑ny

j=1(yj − y)(yj − y)T

nx + ny − 2
. (49)

The one-way MANOVA is a generalization of Hotelling’s T-square test to a case of
more than two populations. To separate k populations from each other, k− 1 linear
discriminants are required. Test statistic Wilk’s λ determines, whether the whole
set of discriminants significantly separates out the populations.

MANOVA is not suitable for analysis of data with less samples than variables, as
then the sample covariance matrix is not invertible. Even with more samples, the
results may not be trustworthy, because low population-specific sample-sizes may
still lead to incorrect results.

MANOVA reveals whether some of the population means are significantly different
but it does not provide information on which populations are the differing ones.
Also, the test does not reveal from which of the features in the data the differences
arise. To find out the differentially behaving features, further ANOVA tests are
required to be performed on individual features.

The previously discussed ANOVA and MANOVA methods work for balanced ex-
perimental settings. Often, the experiment is somehow unbalanced, and this may
happen in three ways [23]. Firstly, either the numbers of observations for the dif-
ferent treatment combinations may be unequal. Secondly, some of the treatment
combinations may be missing altogether. Thirdly, in multivariate data, some of
the experimental units may have been measured for only a subset of the response
variables.

Unbalanced ANOVA methods have been proposed for these three cases of unbal-
anced design. The results, though, are highly dependent on the procedure that has
been used. For univariate case, Bartlett’s ANCOVA method attempts to deal with
missing values. Also EM algorithm-based iterative methods have been developed for
imputing missing values. Analysis of a set of balanced data using standard methods
leads to correct estimates of the parameters but biased tests of significance.



25

5 The small sample-size problem

The straightforward multivariate generalization of ANOVA, MANOVA, is unfortu-
nately useless when n < p, since the sample covariance matrix becomes singular. A
further technical complication is that (M)ANOVA does not directly reveal the loca-
tion or direction of the effect (up or down), and these have to be deduced by other
methods. There are three common ways for tackling the small sample size problem:
dimensionality reduction, regularization of the covariance matrix, and clustering of
similarly behaving variables.

5.1 Dimensionality reduction

Dimensionality reduction methods are generally divided into two major approaches:
feature selection and feature extraction. In the feature selection approach a subset
of the original features are chosen to represent the data set and further analysis is
carried out using only the selected features. In the feature extraction approach, the
original features are transformed into hybrid features that are a combination of the
original features. Projections, such as PCA and factor analysis, are typical examples
of the feature extraction approach. Also the methods presented in sub-section utilize
feature extraction.

The earliest attempts at performing ANOVA-like analysis with dimensionality re-
duction on multivariate datasets employ PCA as a dimensionality reduction method
and perform ANOVA on the projected data [24]. The choice of number of compo-
nents to use in the projection has been left for the user to decide. Analyzing the
variances of several component scores still retains the multiple testing problem, even
though the reduction in the number of tests might be considerable. Another fact to
be criticized is that PCA performed on the pooled data does not necessarily find the
directions of most variability that are related to the treatments. Still, these studies
have built a foundation on more recent methods, like ASCA that is presented later
in the section.

Multiple testing problem can be avoided by using MANOVA instead of ANOVA.
Still, with datasets with large number of features, dimensionality reduction is re-
quired. The recently developed 50-50 F -test is one of the methods combining
MANOVA and PCA [17]. The central idea of the 50-50 F -test is that the p-value
of a test does not change under a linear transformation. The method divides the
projection directions into three groups: first, the ones that represent important
relationships to the treatments, second, the ones that do not represent these re-
lationships, and third, the ones that are buffer directions between the former two
groups. The division is based on the variance of the directions: the first group con-
tains the directions of most variation and the second group the least. The difference
between the ANOVA square sums of the group of most variation and the group of
least variation is compared with an F -test.

The 50-50 F -test has turned out to be more reliable than MANOVA when there is
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high collinearity between groups of variables. In addition, the method also works in
the n < p case where MANOVA fails to give any result. Still, this method does not
reveal which of the metabolites differ between populations, so additional analysis
following the test is required. Another weakness in the method is that PCA does not
necessarily find projections relevant to the experimental design and the biological
question.

Partial least-squares (PLS) is a commonly used method for regression and classifica-
tion and can deal with collinear n < p datasets [25]. However, PLS can overfit badly,
and component scores found in a supervised manner are not necessarily reliable for
interpretation [19].

Overfitting of PLS can to some extent be avoided with proper cross-validation. The
same applies for most other methods too. The problem in many PLS experiments
has been the mixing up of training and test sets. This leads to over-optimistic
estimates in performance of the method.

For studying multivariate n < p metabolomic datasets with a two-way experimental
setup, a method called ANOVA-simultaneous component analysis or ASCA [18] has
been proposed. The method performs dimensionality reduction with simultaneous
component analysis (SCA), which is a PCA-like method useful in analyzing the
simultaneous underlying variation in several related datasets. The data is split
into populations according to the treatment covariates, and each treatment adds a
specific projection corresponding to the effect of the treatment.

When PCA is used as a dimensionality reduction method, the choice of number of the
PCA components has to be made in a heuristic way. Again, not even the strongest
components necessarily provide biologically relevant directions. This drawback ap-
plies also to ASCA.

When the experimental design is balanced, that is, the number of samples in each
population is equal, SCA procedure reduces to ordinary PCA. In ASCA, the ANOVA
effects are solved independently of each other. Each effect is estimated from a
separate simultaneous component projection. While this is a working solution, it
involves major simplifications.

The example analysis presented in [18] does not include all of the two-way ANOVA
terms. There is no technical limitation of including all the terms into the model but
it is uncertain whether weak effects are found then. If the number of samples is low
compared to the number of features, this simplification is justifiable for the sake of
identifiability [26].

Because it is based on PCA, ASCA does not reduce the dimensionality by hard
clustering but by assigning varying loadings on variables. Even though in ideal case
the loadings matrix might be fairly sparse, in general the interpretability might not
be so good.

A sparse Bayesian ANOVA model has been proposed for the n < p case [27]. A
linear four-way ANOVA model was applied to each gene, using a shared point-
mass mixture prior to allow only a small fraction of effects to be non-zero. The
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sparsity helps in controlling against false discoveries in multiple testing, and also in
interpreting the results.

5.2 Covariance regularization

Regularization of the covariance matrix is another way to deal with n < p. The
covariance matrix has to be made non-singular to use traditional statistical multi-
variate methods, such as Factor Analysis, MANOVA, Linear Discriminant Analysis,
or Canonical Correlation Analysis (CCA). The simplest approach is to use a diag-
onal correlation matrix, which can be interpreted as assuming the variables to be
(conditionally) independent. Lots of less drastic regularization methods have been
proposed for shrinking the singular sample covariance matrix towards a positive
definite matrix, usually a diagonal matrix; for instance [28, 29]. A usual proce-
dure for restricting the projection matrix for Bayesian PCA [30] and FA [31] is by
using an Automatic Relevance Determination prior (ARD). Recently sparsity has
been imposed in Bayesian PCA and CCA [32], resulting in additional advantages in
interpretability.

Bayesian sparse factor regression models [33], developed for gene expression data,
are suitable for n� p regression tasks. Sparsity is enforced by a heavy point-mass
mixture prior allowing only a small fraction of regression coefficients to be non-zero.
The method is useful in finding only the variables (genes) most strongly related to
the external covariate and to infer relationships between the variables via common
latent factors. The sparsity also helps in interpreting the components. The model
was used for binary regression, corresponding to a one-way experimental setup.

5.3 Linear mixed models and clustering

It is common to assume that metabolites (as well as mRNAs) form strongly corre-
lated groups, and then to study group-wise differential expression. Studying genes
or metabolites one at a time results in a high risk of false positives when n < p, and
the risk can be reduced by studying groups. This has been done on known groups of
genes [34]; other usual approaches include clustering variables according to p-values
or choosing only variables with a small enough p-value prior to doing multivariate
analyses.

Several methods have been proposed for clustering gene-expression profiles with Lin-
ear Mixed Models, usually with a time-dependent experimental design [35, 36]. In
a particularly interesting study [35], a model-based clustering algorithm was set up
by assigning each cluster a subject and cluster-specific random effect common to
genes in the cluster. The effect allows modelling correlations and clustering corre-
lated genes, and the clustering solution was computed as the maximum likelihood
estimate of the linear model additionally utilizing one-way covariate information as
fixed effects. The primary interest of this method was clustering rather than the
interpretation of the fixed effects, but it gives inspiration for us to progress to ana-
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lyzing 2-way effects in a model regularized by assuming a cluster structure for the
metabolites.

The current methods are not perfect for small sample-size data. Most methods do
not estimate the uncertainty of the results, which is a major drawback in the data
analysis of small sample-size data sets. Many dimensionality reduction methods fall
short in the interpretability of the results as the hybrid features are a combination
of several original features.
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6 Bayesian approach

Methods that follow Bayesian data analysis paradigm have been developed for mak-
ing inference from data using probabilistic models. The essential characteristic of
Bayesian methods is their explicit use of probability for quantifying uncertainty in
inferences.

The main benefits of Bayesian analysis are the abilities of estimating the uncertainty
of the model, of explicitly incorporating prior knowledge into the model, and of
being able to cope with datasets of small sample-size. Uncertainty of the model is
presented explicitly through posterior distributions of individual variables and the
joint posterior distribution of the model.

The Bayesian approach is suitable for analysis of small sample-size data because
the approach provides a framework for estimating the uncertainty of the model.
This is useful in controlling over-fitting of the model. Also the use of strong prior
information is advantageous because the prior information can be used to limit the
flexibility of the model.

In this section, the principles of Bayesian modelling are explained. Many Bayesian
models utilize the normality assumption of the data. Bayesian treatment of the
mean parameter of the normal distribution is demonstrated in Section 6.2. Also
the concepts of hierarchical model, mixture model and sampling are explained in
Section 6.

6.1 Bayesian modelling

Uncertainty is taken into account in Bayesian modelling such that, instead of a
single model, the result of the modelling task is a distribution of possible models.
Model family is a set of models that are of similar form. The members of a model
family differ from each other by the values of the parameters of the model. Bayesian
inference estimates a probability for each member of the model family given the
observed data.

A Bayesian model consists of observed variables and unobserved parameters. For
each of the model parameters, a prior probability distribution is assigned. The prior
probability represents the expected distribution of the parametes before any obser-
vations of the random variables of the model have been made. Prior distributions are
used by the modeller in order to incorporate prior knowledge, on the phenomenon
that is being modelled, into the model. These priors affect the eventual result of the
analysis and, thus, special attention will have to be paid on the choice of the priors.

As in general probabilistic modelling, one can calculate the probability, or likelihood,
p (x | θ) of the observed data x given the values of the model parameters θ. Then,
instead of finding the maximum likelihood estimate of the parameters, in Bayesian
analysis one turns the likelihood function into a posterior probability function, which
is a conditional distribution of parameters given the observed data. This is done by
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using the Bayes’ rule,

p(θ | x) =
p(x | θ)p(θ)

p(x)
, (50)

on the likelihood function p(x | θ) and the prior probability p(θ). The marginal
likelihood of the data, p(x), is usually hard to calculate but usually it is not needed
because it remains constant over the analysis.

Using the Bayes’ rule, the probability of observations given the model parameters
can be expressed as a probability of model parameters given the observations. If the
modeller is interested in obtaining a point estimate of the parameters, the so-called
maximum a posteriori (MAP) estimate can be calculated. The MAP estimate is the
mode of the probability function of parameters given the observations, p(θ | x). The
MAP estimate gives the parameter values with the highest posterior probability for
the model when certain observations have been made.

Conjugate prior is a type prior that is usually preferred due to the ease of compu-
tation of the posterior probability. In Bayesian analysis, the posterior distribution
of a variable is calculated as a product of the likelihood and the prior divided by
a constant normalization term. Prior p(θ) is conjugate to the likelihood function
p(x | θ) if their product is a distribution of the same family as the likelihood func-
tion. Usually the evidence term can be left out because it is a normalization term
that is not dependent on the parameter values.

6.2 Bayesian multivariate normal distribution

Numerous statistical methods make an assumption of normality of the model vari-
ables. In Bayesian analysis, the posterior distribution of the model parameters is
calculated. For the multivariate normal distribution, equations of the posterior dis-
tribution of the mean parameter are presented in this sub-section.

In the case of multivariate normal distribution with known covariance matrix Σ,
the common conjugate prior for the mean parameter is normal distribution µ ∼
N (µ0,Λ0). The posterior distribution of the mean parameter µ is then

p(µ|x,Σ) ∝ exp

(
−1

2

[
(µ− µ0)

TΛ−1
0 (µ− µ0) +

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

])
(51)

which can be completed to a quadratic form,

p(µ|x,Σ) ∝ exp

(
−1

2
(µ− µn)TΛ−1

n (µ− µn)

)
= N (µ|µn,Λn) (52)

where the mean and covariance parameters µn and Λn are

µn = (Λ−1
0 + nΣ−1)−1(Λ−1

0 µ0 + nΣ−1x) (53)
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(a) A model of three groups (b) A model of k
groups and ni ob-
servations in group
i

Figure 2: Plate diagrams of hierarchical models of groups of observations. In the
models, each group i has a specific parameter µi. The group-specific parameters
have a shared hyperparameter m. Multiple instances of a variable are encoded by a
plate, where the number of instances is shown at the down-right corner of the plate.

and
Λ−1
n = Λ−1

0 + nΣ−1. (54)

The inverse of the covariance matrix is called the precision. This distribution is a
weighted average of the data and the prior mean, with weights given by the data
and prior precision matrices, nΣ−1 and Λ−1

0 , respectively. The posterior precision
is the sum of the prior and data precisions. [37]

6.3 Hierarchical models

Many statistical applications involve multiple parameters that can be regarded as
related or connected. This implies that the joint probability model for these param-
eters should reflect the dependence among them.

It is natural to model many problems hierarchically, with observable outcomes mod-
elled conditionally on certain parameters, which themselves are given a probabilistic
specification in terms of further parameters, known as hyperparameters. Nonhierar-
chical models are usually inappropriate for hierarchical data: with few parameters,
they generally cannot fit large datasets accurately, whereas with too many parame-
ters, they tend to overfit.

In a typical hierarchical model, multiple observations arise indirectly from a shared
latent factor. For instance, when measuring the same feature from several individu-
als, each individual may have a personal expected value for the observation. These
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individual-specific expected values then may come from one distribution, the prior
distribution of the expected values. The expected value of the individual-specific
expected values is then called a hyperparameter.

A typical example of a hierarchical model is a set of grouped observations, with a
group-specific mean parameter. Each observation xij is part of one group i and,
thus, follows the group-specific mean µi. The group-specific means then arise from
a shared hyperparameter m.

In Figure 2(a), a graphical model of the simple model of three observation groups
is shown. Group-specific means µ1, µ2 and µ3 are generated by the hyperparameter
m. The plates indicate that there are several, in fact n1, n2 and n3, observations
x in groups 1, 2 and 3, respectively. Figure 2(b) represents a generalization of the
three-group model into a k-group model

If there is no other information than the observations, no ordering or grouping
of the individual-specific parameters can be made. Then, these parameters are
assumed to be symmetric in their prior distribution, that is, they are independent
and identically distributed and share a common hyperparameter. The symmetry
is represented probabilistically by exchangeability of the parameters in their joint
distribution.

The symmetry assumption can, though, be broken if additional information on the
phenomenon is available. For instance, if it is known that some of the individuals
have been exposed to a treatment, the exchangeability between the treated and
untreated individuals is lost, unless this information is somehow included into the
model.

The unobserved hyperparameter φ affects observations x only through the unob-
served parameters θ, which is why the joint posterior distribution of this hierarchical
model becomes

p(φ, θ|x) ∝ p(φ, θ)p(x|φ, θ)
= p(φ, θ)p(x|θ)
= p(φ)p(θ|φ)p(x|θ), (55)

where p(φ) is the marginal probability of the hyperparameter, p(θ|φ) is the condi-
tional probability of the parameter θ given the hyperparameter φ, and p(x|θ) is the
likelihood of the observations x.

6.4 Clustering with Gaussian mixture model

Mixture distributions arise in practical problems when the measurements of a ran-
dom variable are made in several unknown conditions. Often, it is a better idea
to model the data with a mixture of multiple simple unimodal distributions than
with a single multimodal distribution. Mixture modelling is a good approach to a
problem where it is reasonable to expect that the populations of observations or
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sampled parameters consist of several sub-populations, each of which is relatively
simple to model separately.

As well as k-means clustering, the mixture model has a pre-selected number of
centroids, on each of which a statistical distribution is then centered. Normal distri-
bution is a common choice as the unimodal distribution. The marginal distribution
of an observation x is a sum of these k distributions, and instead of a hard cluster-
ing of k-means clustering, each point in the data space has a continuous probability
of belonging to any of the k clusters, depending on the width and distance of the
distributions.

When setting up and computing a mixture model, an unobserved binary indicator
variable z is introduced. This indicator variable specifies the mixture component
from which the corresponding observation is drawn. Each mixture component k is
assigned the prior probability

p(zk = 1) = πk (56)

that sums to one over all components.

When the mixture component that an observation arises from is known, the indicator
variable z becomes fixed, so that only the kth value corresponding to the known
component k is one in the vector, while other values of the vector are zero. The
conditional probability of the observation given the known mixture component k
then simply becomes

p(x|zk = 1) = N (x|µk,Σk), (57)

where µk and Σk are the mean and covariance of the mixture component k, respec-
tively. In practice, the closer an observation is to the given component centroid, the
higher conditional probability the observation gains.

As each observation x is assumed to be drawn from one of the components, the
marginal distribution of the observation is calculated from the joint distribution of
the observation and the indicator variable z by summing over all possible states of
the indicator variable:

p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

πkN (x|µk,Σk) (58)

Using the Bayes’ rule the probability of a mixture component given the data can be
calculated as

p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj,Σj)

(59)

In clustering, each observation can then be assigned to the component j that has the
highest probability given the observation, p(zj = 1|x). The cluster assignments can
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Figure 3: An example clustering with mixtures of Gaussians. The original three
classes are encoded into colors of the data points, whereas the found classes are
encoded into shapes of the points. The original 67 % contours of the distributions
are shown with dashed lines and the found contours with solid lines.

be updated iteratively in turn with updating the centroid positions. This method is
a version of the expectation-maximization (EM) algorithm [38], which finds a local
optimum for the mixture component positions.

An example is presented in Figure 3. The example consists of data points on a
two-dimensional plane. Each point has been drawn from one of three bivariate
normal distributions. When a mixture of Gaussians algorithm with three centroids
is applied to the problem, most of the observations are classified correctly. The
shapes of the distributions resemble the original distributions but are not equal to
them, as the sample size is finite.

Gaussian mixture model is usually used to cluster samples. In the new model pre-
sented in this thesis, it is used as a part of a hierarchical model to cluster features.
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6.5 Inference

For most probabilistic models of practical interest, exact inference is intractable,
meaning that the joint distribution of the model is not computable in a closed form.
This leads to a need of approximation methods. There are two widely-used ways for
approximating the joint distribution. The first approach is based on deterministic
inference algorithm-based techniques, and the second approach utilizes numerical
sampling-based stochastic techniques.

The inference algorithms make use of simplified deterministic approximations of
the underlying real distribution. The result is quick to compute once good ap-
proximating distributions have been found. Methods such as variational Bayes and
expectation propagation fall into this category.

The other category includes methods that approximate the joint distribution p(z)
by taking samples from simpler conditional distributions. The sampling methods
and especially Gibbs sampling are presented in the next sub-sections.

6.5.1 Sampling methods

The general idea behind sampling methods is to obtain a set of parameters z(l) drawn
independently from the distribution p(z). Sampling then allows the expectation

E[f ] =

∫
f(z)p(z)dz (60)

to be approximated by a finite sum

f̂ =
1

L

L∑
l=1

f(z(l)). (61)

For graphical models with directed graph structure, the joint distribution is straight-
forward to approximate with an ancestral sampling approach, where the condi-
tional distribution of an unobserved variable is dependent on the variables within
its Markov blanket. The blanket includes the parents and the children of the vari-
able, and the co-parents of the children. The joint distribution is then a product of
all the conditional distributions in the model.

Markov chain Monte Carlo (MCMC) is the most common family of methods used
in sampling. Markov chain is a series of random variables, where the value of a
new member of the chain only depends on the current value, and not on the former
values. This conditional independence is called the Markov property.

The Metropolis algorithm is a method for jumping from a set of variable values
to another. The set of values at one instance is called the state of the algorithm.
The acceptance of the new state depends on the probability of the old and new
state. A jump to more probable state is accepted with probability one, whereas the
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probability of jumping to a less probable state is a quotient of the probabilities of the
new and old state. Generally, the jump to a new state is accepted with probability

A(z∗, z(τ)) = min

(
1,

p̃ (z∗)

p̃ (z(τ))

)
, (62)

where z∗ is the new candidate state and z(τ) is the current state.

The Metropolis-Hastings algorithm is a generalization of the Metropolis algorithm
to the case where the proposal distribution is no longer a symmetric function of its
arguments. Then, the probability of jumping from a state to another is different
from the probability of performing the jump into the opposite direction between the
same states.

Gibbs sampling is a special case of the Metropolis-Hastings algorithm. It is used
to obtain approximate inference in the new method presented in this thesis. In the
next sub-section, Gibbs sampling is explained in more detail.

6.5.2 Gibbs sampling

Gibbs sampling is a simple MCMC algorithm. It uses the fact that in many cases it
is straightforward to approximate the joint distribution step-by-step through con-
ditional distributions, even though the joint distribution itself is not directly com-
putable in closed form.

In Gibbs sampling, a new value is drawn for one variable at a time from a conditional
distribution, where all the other variables of the model are given the current value
of the state. In practice, many of the given variables drop out of the conditional
distribution, as they are outside the Markov blanket of the conditioned variable.
Gibbs sampling is especially useful when the marginal distributions of neighboring
variables are conjugate to each other, leading to conditional distributions of similar
form as the marginal distributions.

The Gibbs sampling procedure for M variables is:

1. Initialize {zi : i = 1, . . . ,M}
2. For τ = 1, . . . , T :

- Sample z
(τ+1)
1 ∼ p(z1|z(τ)

2 , z
(τ)
3 , . . . , z

(τ)
M )

- Sample z
(τ+1)
2 ∼ p(z2|z(τ+1)

1 , z
(τ)
3 , . . . , z

(τ)
M )

...

- Sample z
(τ+1)
j ∼ p(zj|z(τ+1)

1 , . . . , z
(τ+1)
j−1 , z

(τ)
j+1, . . . , z

(τ)
M )

...

- Sample z
(τ+1)
M ∼ p(zM |z(τ+1)

1 , z
(τ+1)
2 , . . . , z

(τ+1)
M−1 ) (63)

In the algorithm, z(τ) represents the previous state of the Markov chain and z(τ+1) is
the new state that is sampled on iteration round τ . The Gibbs sampling is known to



37

converge to the joint distribution of the model. Because only one variable is updated
at a time, the convergence is slow, however.

When one iteration round is complete, one new sample with all updated variables
has been obtained. Gibbs sampling differs from the standard Metropolis-Hastings
algorithm in the sense that one variable is updated at a time, and that the update is
accepted in any case. Because of this property, there is strong correlation between
successive samples, which is called auto-correlation of the chain.

The issue of auto-correlation can be overcome by thinning the chain. Then, only
every nth sample is included into the final distribution estimate. The integer n is
selected so that there are enough samples between the two samples that are to be
collected to fade out the auto-correlation.

Also because of auto-correlation, the beginning part of the chain is highly dependent
on the initial values of the sampled variables. Burn-in is a procedure, where the
initial part of the chain is discarded because they do not represent the underlying
joint distribution as the chain has not converged yet. The burn-in phase is not
shown in the algorithm above.

The convergence of a Markov chain to the underlying joint distribution can be
guarded with several techniques. One way is to run several parallel Markov chains
and compare the within and between variances of them, as is done when computing
the potential scale reduction factor (PSRF) [39]. It is widely used but also has its
drawbacks: running parallel chains is computationally costly and inefficient [40].

When the estimated model includes several components or clusters, label switching
problems arise. In label switching, the components mutually switch places. The
phenomenon is normal because a good sampler algorithm traverses through all pos-
sible states. Label switching causes problems in inference because the posterior
distributions of the components become mixed and then do not correspond to a
single component, as is assumed. This is a major problem of sampling methods and
only partly heuristic solutions are available to overcome it.

The label switching problem arises also when analyzing parallel Markov chains.
However, aligning components of parallel Markov chains is not as difficult task as
that of detecting label switching within one Markov chain.

The most important downside of Gibbs sampling is the amount of computation
required for obtaining a reliable estimate of the joint distribution. In case of a
complex hierarchical model, the estimation of the joint distribution may require
even tens of thousands of Gibbs samples. The longer the sampling is continued and
the more parallel chains are used, the better the estimate asymptotically is.

In the new method presented in this thesis, Gibbs sampling is being used. As it is a
complex hierarchical model, the joint distribution is not computable in closed form.
Variational approximation would lead to faster computation but its implementation
is more complex than that of the Gibbs sampler algorithm.
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Figure 4: Plate diagram of the two-way clustering factor analysis model.

7 The new method

In this section, a new model is formulated for two-way analysis. It is a combination
of two-way analysis and factor analysis models, where the ANOVA-type two-way
effect terms are assigned as hyperparameters of the latent factors. To deal with
the small sample size, the projection matrix is formed as a sparse clustering matrix
containing only one non-zero element for each feature. This is particularly reasonable
under the assumption that metabolomics data contains strongly correlated groups
of variables. The projection matrix is now non-singular even in the n � p cases.
The joint posterior distribution is evaluated with Gibbs sampling procedure. The
new method was published in the journal Data Mining and Knowledge Discovery
[41].

In effect the model shown in Figure 4 consists of a factor analyzer and an ANOVA-
type two-way structure. In the factor analyzer, the loadings assume cluster mem-
berships multiplied with scales. The population-specific priors assume a two-way
structure.

7.1 Modelling metabolomic datasets

Metabolomic data has certain properties that are important for the model to take
into account. Even after this customization, the resulting model still is a reasonably
general multi-way factor analysis model.
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Due to the existing biochemical pathways where metabolites are converted to one
another by chemical reactions, metabolomics data contains correlations caused by
tiny fluctuations in metabolic concentrations being transmitted through the path-
way. Groups of metabolites are strongly correlated even over biological replicates
having the same experimental treatment, a feature not apparent in for instance gene
expression data where the correlations mainly result from responses of the genes to
the external perturbations [6]. Another peculiar feature of metabolomics data is
that mean concentrations and scales of different metabolites vary by orders of mag-
nitude; they can be modelled by metabolite-specific means and scales of, say, a
healthy control group.

Factor analysis models where latent factor(s) fluctuating around zero are assumed
to generate correlated fluctuations around the variable-specific means, fit well the
above assumptions. To solve the n < p limitation of factor analysis and to simplify
the interpretation of the results, each variable is assumed to be generated by exactly
one factor. The factor analysis task can now be interpreted to include model-based
clustering of features as a subtask. Biologically the task is related to finding sub-
parts of linear pathways, which is a current research trend in bioinformatics [42].

The effects of covariates, such as disease, are assumed to be visible in the same
factors that describe the activity of parts of the biochemical network. These effects
appear as up- or down-regulations of the factors. The healthy control biological
replicates are assumed to fix the “coordinate basis” of the problem, from which the
up- and down-regulations deviate the means of factor values.

Multi-way modelling in high-dimensional metabolomics data, with grouping assump-
tions made to regularize the problem, is a new approach for generative modelling
of measurement data. Sparse latent factor models [33], being regression-type ap-
proaches, can only be used to discover variation of the data that is explained by
external covariates. This is reasonable for gene expression data also considering
that it has been claimed [6] that for gene expression data, correlations between vari-
ables arise mainly due to responses to external variation. However, in metabolomics,
fluctuations due to biochemical pathways themselves are another important source
of variation that can be useful for instance in finding biological pathways not re-
sponding to external covariates. This motivates to construct a model for the whole
dataset with hierarchical generative modelling.

The clustering methods based on linear mixed models [35, 36] have so far not been
used for multi-way experimental setups, and because their main goal is clustering
they have not considered estimation of statistical significance of the effects.

As PCA in general, ASCA, the only currently existing method addressing the multi-
way generative n < p metabolomics data, can only be considered as an exploratory
visualization of PCA scores of one effect at a time. It does not estimate the statistical
significance of the effects, although an approach based on permutation tests was later
proposed [43].

In summary, a method combining central aspects needed to model metabolomic
datasets in a single, hierarchical generative model, is introduced. The two-way
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experimental setup of the research problem is included as population-specific priors
on the latent variables. As a projection matrix, a scaled clustering matrix enabling
n < p cases is used. It allows an easy interpretation of the clusters related to
the different latent factors. Inference on the statistical significance of the effects
of external covariates is done by studying the confidence intervals of the posterior
distribution. The method is additionally capable of finding clusters of correlated
metabolites that are not related to external covariates, but can be interpreted as
sub-parts of biochemical pathways. The method generalizes directly to a general
multi-way analysis, but for simplicity of presentation the model is introduced in the
two-way case.

7.2 Dimensionality reduction

Factor analysis (FA) model [44] for n exchangeable replicates of the control group
is

p(xj|V,xlatj ,µ,Ψ) = N (xj|µ+ Vxlatj ,Ψ), (64)

where the latent variables xlatj are normally distributed:

xlatj ∼ N (0, I). (65)

Here xj is a p-dimensional observation vector, j = 1, . . . , n, and V is the projection
matrix that is assumed to generate the data vector xj from the latent variable xlatj .
The Vxlatj models such common variance of the data around the feature means
µ that can be explained by factors common to all or many features, effectively
estimated from the sample covariance matrix of the dataset. The sample covariance
becomes decomposed into Σ̂ = VVT + Ψ, where Ψ is a diagonal residual variance
matrix with diagonal elements σ2

i modelling the feature-specific noise not explained
by the latent factors. The elements of the latent variable vector xlatj are known
as factor scores. Following the discussion on unidentifiability problems in [44], the
covariance matrix of xlat is set to be the identity matrix.

At this point, the covariates are not yet assumed to induce any special effects, and
when n < p, V cannot be estimated due to the singularity of the sample covariance
matrix.

Now, the model is extended in two complementary directions. First, V is restricted
to be a non-singular sparse clustering matrix, suitable for data containing highly
correlated groups of variables. Secondly, the model is extended to include a two-
way experimental setup in the latent variable space.

The data are assumed to contain strongly correlated groups of metabolites, each of
which is governed by one latent variable. The projection matrix V is a positive-
valued clustering matrix where each row has one non-zero element corresponding to
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the cluster assignment of the variable:

V =



γ1 0 0
0 0 γ2
...

...
...

0 γj 0
0 γj+1 0
...

...
...


. (66)

The positive-valued clustering matrix leads to clusters with positively correlated
features. Including negative correlations by not limiting the matrix would be possible
but is not reasonable considering the metabolic pathway structure.

The location of the non-zero value on row i is encoded by indicator vi. It follows a
categorical distribution, that is, multinomial distribution with a single observation,
with an uninformative prior distribution πi that does not depend on the size of
the cluster. However, πi could be used to encode prior information on the known
grouping of variables.

The variation of each feature within a cluster is assumed to be modeled by the same
latent variable, but the scales may differ. The scales γi are assigned heavy empirical
priors γ0

i that keep them close to the values of the control group, to make the γi
and the population prior effects identifiable. The distribution of γi is parametrized
as a scaled inv-χ2 distribution with a degrees-of-freedom weighted sum of empirical
prior and data scale, as done in Gelman [37].

The feature-specific residual variances σ2
i , that are the diagonal elements of Ψ, follow

a scaled inv-χ2 with an uninformative prior.

In summary, the covariance matrix is regularized by assuming that the main correla-
tions are positive correlations between features belonging to the same cluster. This
correlation is mediated through a common latent variable, which is a reasonable
assumption for metabolomics data.

7.3 Two-way analysis

For two-way analysis it is assumed that the samples have been classified into two
sets of classes, a = 0, . . . , A and b = 0, . . . , B. A traditional two-way (M)ANOVA
model would be

xj|class(j)=(a,b) = µ+αa + βb + (αβ)ab + εj, (67)

where “class(j)” denotes the class labels of sample j, µ is the grand mean over all
samples, αa and βb are the main effects of the two directions and (αβ)ab are the
interaction effects for a = 0, . . . A and b = 0, . . . B.

It is assumed that the ANOVA-type effects act on the latent variable space, which
makes sense both in terms of the interpretation of the latent variables as activities of
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metabolic pathway parts, and in making it possible to estimate the model for small
sample sizes. In the K-dimensional latent variable space the (M)ANOVA model
becomes

xlatj |class(j)=(a,b) = µK +αa + βb + (αβ)ab + εKj , (68)

where “class(j)” denotes the class labels of sample j, and K denotes lower dimen-
sionality.

The ANOVA effects are set as population priors to the latent variables, which in
turn are given Gaussian priors

αa,βb, (αβ)ab ∼ N (0, I). (69)

To simplify the interpretation of the effects, the model now deviates from the stan-
dard ANOVA convention. A similar choice has been done successfully in other
ANOVA studies [27], and it does not significantly sacrifice generality. The param-
eter vector µ describing feature-specific means is set to the mean of one class, the
control group, instead of the grand mean. One group now becomes the baseline to
which other classes are compared by adding main and interaction effects. The terms
α0, β0, (αβ)00, (αβ)a0 and (αβ)0b therefore become zero. The difference between
the classes is now modelled directly with xlat and hierarchically by the main effects
αa, βb and (αβ)ab.

As a simple example, consider 2× 2 ANOVA analysis. The classes are now (a, b) =
(0, 0), (1, 0), (0, 1), (1, 1). The ANOVA terms for samples belonging to different
classes are

xlatj |(a,b)=(0,0) ∼ N (0, I),

xlatj |(a,b)=(1,0) ∼ N (α1, I),

xlatj |(a,b)=(0,1) ∼ N (β1, I), and

xlatj |(a,b)=(1,1) ∼ N (α1 + β1 + (αβ)11, I). (70)

There is no effect estimated for the control class (a, b) = (0, 0). The terms α1 and
β1 now directly model the difference of the samples in the two directions compared
to the control group, and the interaction term (αβ)11 models the interactions of
the two directions. In standard ANOVA, four main effects and four interaction
effects would have to be estimated and compared. The inference on the statistical
significance of the ANOVA effects now reduces to inferring whether the posterior
distribution of these effects is above (up-regulation) or below (down-regulation) zero
with, say 95 % probability. Each component of the terms, representing different
clusters, is estimated individually. It is worth noting that having only one class
would reduce the problem to factor analysis.
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The hierarchical model is summarized as

α0 = 0,β0 = 0, (αβ)a0 = 0, (αβ)0b = 0, (αβ)00 = 0

αa,βb, (αβ)ab ∼ N (0, I)

xlatj |class(j)=(a,b) ∼ N(αa + βb + (αβ)ab, I)

xj ∼ N (µ+ Vxlatj ,Ψ). (71)

7.4 Empirical prior

To fix the means of the control group as the baseline of the ANOVA-type analysis,
strong empirical priors are used for the grand mean µ and the scale parameter γi.
The γ0

i is the standard deviation of the control group, and n0 controls the strength
of the prior. The total number of samples in the data set, n0 = n, is used as the
prior strength. The µ is the mean vector calculated over the control group. For
simplicity and following the results of [45], µ is subtracted from the whole data and
is not sampled, corresponding to the centering discussed in section 7.3.

7.5 Gibbs sampling

In this sub-section, the Gibbs sampling equations for the new model are presented.
Thus, even though it is not stated explicitly, the following equations are conditional
distributions of the model variables. In the equations, samples are indexed by j =
1, . . . , n, features by i = 1, . . . p, and clusters by k = 1, . . . , K.

Conditional distribution of the latent variable xlat is normal,

xlatj ∼ N
(
µ̂latj , Σ̂

lat
)
, (72)

with mean
µ̂latj = Σ̂

lat (
VTΨ−1xj +αa + βb + (αβ)ab

)
(73)

and covariance
Σ̂
lat

=
(
VTΨ−1V + I

)−1
. (74)

The ANOVA effects are sampled as

αa ∼ N

(
1

na + 1

∑
j∈a

(
xlatj − βbj − (αβ)abj

)
,

1

na + 1
I

)
, (75)

βb ∼ N

(
1

nb + 1

∑
j∈b

(
xlatj −αaj

− (αβ)ajb

)
,

1

nb + 1
I

)
, (76)

(αβ)ab ∼ N

(
1

nab + 1

∑
j∈ab

(
xlatj −αaj

− βbj
)
,

1

nab + 1
I

)
, (77)
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where na, nb and nab denote the number of samples belonging to group a, b, and
both a and b, respectively. In practice, the influence of all other effects is subtracted
from the latent variable when the effect in question is being sampled.

Finally, each feature i is assigned to one cluster using multinomial distribution with
the probability of cluster k being

p (vi = k) =
πkΠjp

(
xji|µi + γix

lat
jk , σi

)
ΣkπkΠjp

(
xji|µi + γixlatjk , σi

) . (78)

The residual variance and the scale parameter are feature-specific variables. They
are sampled each element separately from inv-χ2 distributions

σ2
i ∼ Inv-χ2

(
n,Σj (xij − µi − γizjk)2) , (79)

and

γ2
i ∼ Inv-χ2

(
n+ n0,

nγ̂2
i + n0γ

0
i
2

n+ n0

)
, (80)

where

γ̂i =
Σj

(
xjix

lat
jk

)
Σj

(
xlatjk
)2 . (81)

7.6 Model selection using predictive likelihood

The model complexity depends on the number of clusters in the dimensionality
reduction part. The optimal number of clusters can be found with a cross-validation
scheme by comparing the predictive likelihoods of different models on test data.

In cross-validation scheme, the complete data is split into training and validation
parts. The training part of the data is used for learning the model, which in this
case means performing the sampling of unobserved variables in a Bayesian way. The
learned model is then used for computing the likelihood of the validation data. The
estimate for the new data likelihood is obtained by calculating the likelihood using
the hidden variable values of one posterior sample at a time.

As sampling gives an approximation on the distribution of unobserved variables of
the model given the observations, computing predictive likelihood gives an approx-
imation on the likelihood of a new observation x̃ given the previous observations
x:

p(x̃|x) =

∫
p(x̃, θ|x)dθ

=

∫
p(x̃|θ, x)p(θ|x)dθ

=

∫
p(x̃|θ)p(θ|x)dθ. (82)
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This integral of predictive likelihood is approximated by computing the product of
the posterior and predictive probabilities for every set of unobserved variable values
θ. The estimate of the expectation value of the predictive likelihood is then simply
the mean of the new data likelihood given one posterior sample:

p(x̃|x) ≈ 1

L

L∑
l=1

p(x̃|θ(l)). (83)

In addition to the estimate of the expectation value, the Bayesian approach also
enables the estimation of the distribution of the predictive likelihood value. This
means that the approach gives an estimate on any quantile of the distribution,
leading to a possibility of showing interpretable and credible confidence intervals.

A 5-fold cross-validation scheme was used, meaning that the cross-validation was
repeated five times with different divisions of data into training and validation sets.
The distribution of the predictive likelihood value can be estimated over all these
repeats. Then, a model complexity that has highest predictive likelihood can then
be selected for use in further analysis of new, independent, data.

7.7 Inference from posterior distributions

The posterior distribution of each model parameter is approximated by the set
of posterior samples obtained via the sampling scheme. Inference bases on these
posterior distributions. The interesting parameters are the clustering matrix V and
the ANOVA effects, which in the case of a two-way analysis are, α, β and (αβ).
Additionally, the metabolite-specific parameters scale γ, mean µ and residual σ may
provide interesting information for the modeller.

Together, the clustering matrix and the ANOVA effects show which metabolites act
in a similar way over the treatments. The set of posterior samples of the clustering
matrix V contains the information on which metabolites are clustered together at
each sampling step. The clustering information is more interpretable, when the
cluster to which the metabolite most often belongs is calculated. This is called the
mode of the clustering. Usually the mode is rather stable in the sense that in most
of the posterior samples, the metabolite is assigned to its mode cluster. Thus, the
mode clustering is a fairly good binary representation of whether two metabolites
are behaving in a similar fashion or not.

Each ANOVA effect is an estimate on the difference between the corresponding
treatment and its control group with all other effects averaged out. When the mode
of the clustering is stable, the connection between the metabolites of a cluster and
the corresponding effects is strong. Then, it is evident that especially the metabolites
of the cluster mode are responsible for producing the ANOVA effects of that cluster.

It is obvious that many, or even most, of the measured metabolites are not affected
by the treatments of the experiment. Thus, it is reasonable that clusters containing
such metabolites have treatment effects around zero. Zero, which is the baseline,
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is usually covered by the posterior distribution of an effect. For clusters containing
metabolites affected by the treatment, the posterior distribution of the corresponding
effect is outside zero.

The inspection of a posterior distribution is analogous to hypothesis testing in classi-
cal statistics, where the p-value of a test statistic is computed. Now, in the Bayesian
analysis, one finds out, whether the baseline value zero is part of the inspected dis-
tribution. Also now a p-value can be computed for the hypothesis that zero is within
the distribution and this p-value can be compared to a critical limit, e.g. 0.05, to
decide whether the effect is significant.

The metabolite-specific scale parameter γi is a univariate variable. While the clus-
tering matrix V decides which metabolites act in a similar fashion and the treatment
effects model common up- and down-regulations, γi decides the magnitude of the
variation of an individual metabolite within the cluster in the direction of the es-
timated effect. Thus, the metabolites within one cluster are expected to have a
similar pattern over the treatments but the extent, or amplitude, of the pattern is
accounted for by the scale parameter.

The metabolite-specific mean parameter µ is used to explain the baseline concen-
trations of different metabolites. When this is modelled by a particular parameter,
it does not bias other parameters, such as the ANOVA effects. The baseline con-
centrations as such are not of the primary interest in two-way analysis. Another
way of dealing with the baseline problem is to normalize the data by removing the
feature-specific mean before the actual analysis. This way, though, is more prone to
error when dealing with small sample size data sets.

Like the scale and mean parameters, the residual parameter σ is a vector with a
scalar value corresponding to each metabolite. The posterior distribution of the
residual parameter is critical because it is a measure of how well the data fits into
the model. If the data suits the model well, the value of the residual is around one.
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Figure 5: The correct number of clusters K = 4 is found for generated data in model
complexity selection. Average predictive likelihood of left-out data is shown as a
function of number of clusters. Increasing the number of clusters after K = 4 does
not increase the likelihood.

8 Experiments

In this section, the new method is applied to data sets. First, performance of the
method is demonstrated with simulated data both as a function of sample size and
as a function of noise level. Then, the method is used to analyze metabolomic
data from a diabetes study both in a two-level two-way setting and in a multi-level
two-way time-series setting.

8.1 Performance as function of sample size

In this experiment with simulated data, it is demonstrated how well the method
finds up-regulation effects as a function of the number of samples. The data is
generated with the following parameters: There are four classes within a 2-way
experimental setup as in Eqn (70). There are K = 4 clusters in which the following
effects are generated: α1 = (+2, 0, 0, 0), β1 = (0,+2, 0, 0) (αβ)11 = (0, 0,+2, 0).
Dimensionality of the dataset is p = 200. The optimal number of clusters is chosen
by predictive likelihood, recovering the correct number of clusters K = 4 (Fig. 5).

The sample size now varies from n = 20 to n = 1000, such that the four classes
have an equal number of samples (e.g., n = 20 means 5 samples in each class). The
noise parameters are set to σi = 1, scale parameters to γi = 1, and mean parameters
to µi = 0 for i = 1, . . . , p. The prior n0 is fixed to n0 = 20. In each run, 1000
Gibbs samples are collected after 1000 burn-in iterations. For each sample size, 10
independent datasets with the same parameters are generated and Gibbs sampling
repeated for each.

The posterior intervals and means of the pooled posterior distributions of the effects
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Figure 6: The method finds the generated effects αcluster1 = +2, βcluster2 = +2,
(αβ)cluster3=+2. In the other clusters, no effects are found. The 95% posterior
intervals of the main and interaction effects are plotted for each cluster.

are plotted for each found cluster in Figure 6. In the experiment, the model is
intentionally computed with a slightly misplaced number of clusters to demonstrate
effects of minor misspecification, having K = 5 clusters instead of the optimal
K = 4.

The results show that the model finds the generated effect in each cluster and does
not find false-positive effects in clusters where none were generated (although there
is a fair measure of uncertainty in the estimates for small sample sizes). Uncertainty
of the effects, that is, the width of the posterior interval, diminishes as the number
of samples grows, as expected. Correct clustering is found from the posterior of V
each time.

In metabolomics experiments, usually 20 to 60 samples are available. These sample-
sizes are on the borderline. At larger sample-sizes, the posterior distribution of the
generated effects are completely above the baseline of zero. At smaller sample-sizes,
all generated effects are estimated to have overlap with the baseline and, thus, are
not considered as significant effects.
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Figure 7: The method finds the generated effects αcluster1 = +2, βcluster2 = +2,
(αβ)cluster3=+2 at reasonable but not at extremely high noise levels. In the other
clusters, no effects are found. The 95% posterior intervals of the main and interaction
effects are plotted for each cluster.

8.2 Performance as function of noise level

The study in Section 8.1 evaluated the performance of the method as a function of
the sample size. In this section, the model performance is estimated as a function of
the data noise level. Again, K = 4 clusters were generated with one effect in each of
the first three clusters: α1 = (+2, 0, 0, 0), β1 = (0,+2, 0, 0) (αβ)11 = (0, 0,+2, 0).
Dimensionality of the data set was p = 150 and sample size n = 40.

For each learning, a new data set was generated. During the experiment, the noise
level of the data was gradually increased from σi = 0.12 to σi = 10 for all dimensions
i = 1, . . . , p simultaneously. Again, scale parameters were set to unity γi = 1 and
mean parameters to zero µi = 0. The posterior intervals and means of the pooled
posterior distributions of the effects are plotted for each cluster in Figure 7.

The results show that the generated effects are found very clearly when the noise
level is low. It is particularly attractive that no false positive effects are found.
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When the noise level increases, the found effect simply fades away. The increase in
the noise level does not affect the estimated uncertainty of the effect estimate, which
can be seen in the unchanged width of the confidence intervals. This behaviour is
somewhat unintuitive in the sense that the increased uncertainty in the data should
also come across to the uncertainty in the estimates of the unobserved variables.
However, the upper end of the noise scale is extremely high and it is unlikely that
any other method could find the generated effects of this size from a noisy data set
with as few samples. The problem that is encountered at the high noise level is
likely due to the strong priors on the effects. The hidden ANOVA variables α, β
and (αβ) are given a N (0, I) normal prior.

8.3 Lipidomic diabetes data set

Data from the DIPP diabetes follow-up study was analyzed using the new model.
The origin of the data is described in more detail in Section 2.5.

In the first analysis below, one time point from the data set is selected for a two-
way analysis to find the illness- and gender-related effects in the data. The second
analysis contains more data, as six time points are included. Also this analysis is
a two-way setting but now the time direction has six levels. The other direction,
again, is the health status.

8.3.1 Cross-sectional study

The two-way experimental setup of a single time point (avg. time 750) in subjects
who later progress to type 1 diabetes [1] was studied. The classes are healthy
female (18 samples, subjects who have not progressed to diabetes, chosen as the
control group), healthy male (17), diabetic female (11 who have later progressed to
diabetes), diabetic male (8). The data contains 53 lipids as features. Following the
notation of the example of equation (70), the disease effect is estimated with the
parameter α1 for each cluster, β1 models the gender-effect and (αβ)11 models the
interaction of these two effects.

The optimal number of clusters was found to be K = 6. According to the results
shown in Figure 8, there is a positive, statistically significant gender effect found
for clusters 1 and 4, signifying that males have a higher concentration for 18 and 4
lipids, respectively. A negative disease effect is found for cluster 3, signifying that
diabetic patients have a lower concentration for 5 lipids. It is worth mentioning that
even though the other effects are not statistically significant, clusters of strongly
correlated lipids are still found.

8.3.2 Time-development study

Finally, the performance of the model for a simple time-series analysis of the human
diabetes is demonstrated. The time indices are treated as independent values of the
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Figure 8: The method finds statistically significant effects for the human dia-
betes cross-sectional healthy-diseased, male-female comparison. Effects are found
for αcluster3, βcluster1 and βcluster4. The figure shows posterior intervals of the main
and interaction effects for each cluster. In addition, average correlation coefficients
between lipids within each cluster are given.
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Figure 9: Statistically significant time-varying behavior is found for each cluster in
the human diabetes data (above). Time-disease interaction effects are found as well
for clusters 3, 4 and 5 (below). Posterior intervals of the main effect (time) and
interaction effects (time, disease state) are plotted.
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covariate; later the model will be extended by taking the time order into account,
for instance by assuming a hidden Markov Model structure [21, 46].

In the diabetes data, lipidomic profiles of healthy human patients and patients
developing into type 1 diabetes had been measured at variable intervals. The mea-
surements were aligned to six time-points. The two-way setup now contains time
effects and a healthy-diseased categorization. Now it is assumed that there is no
static disease effect, but instead disease effects change in time. Therefore, only time
effects α1,...,5 and time-disease interaction effects (αβ)(0,...,5)1 are estimated. The
latter now indicate, for each time point, the deviation caused by the disease from
the normal time-development.

The optimal number of clusters was found to be K = 5. The results shown in
Figure 9 reveal clear time-dependent behavior, estimated by the α, that is distinct
for all clusters. Statistically significant interactions of time and disease (αβ) are
found at timepoint 0 for clusters 4 and 5 (disease up-regulation), at timepoint 4 for
cluster 3 (disease down-regulation) and at timepoint 5 for clusters 2 and 3 (disease
down-regulation).

Further analysis of the results focusing on the metabolites grouped into affected
clusters could provide interesting biological knowledge. In the experiment, metabo-
lites from same functional group were clustered together. Many of the clusters
show strong temporal shift in the concentrations. Further biological analysis of the
interesting findings, however, is outside of the limited scope of this thesis.
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9 Discussion

In this thesis, a new Bayesian method for analyzing data with a two-way experi-
mental design was presented. The method has been designed to work with high-
dimensional and small sample-size data. It is especially suited for metabolomic data,
where metabolite concentrations are highly correlated.

The method is used for finding differences between populations of data samples. The
samples are divided into populations according to covariates, which in bioinformatics
describe, for instance, whether the sample is healthy or diseased.

The method performs dimensionality reduction by clustering features and finds
ANOVA-type effects for these clusters. The method provides a complete Bayesian
treatment for the data and gives posterior distributions of all model parameters as
output and, thus, enables the assessment of uncertainty of the model.

The method performs well on normally distributed simulated data with a moderate
noise level. Population effects are found already when the sample-size is small and
no false positive effects are found. At extremely small sample-sizes, the level of
uncertainty in the estimates is high but the estimates are correct. Identifiability
of an effect is mostly dependent on the number of samples in the corresponding
population.

The method presented in this thesis is a two-way model but it can without compli-
cations be extended to the multi-way case, where the number of covariates is greater
than two. The estimation of a multi-way model requires more samples as the data
set is divided into more populations than in the two-way case. Thus, the effects
of multiple covariates and multiple covariate levels are not found as easily as the
two-way effects.

Dimensionality reduction in the model does perform extremely well. For simulated
data, the features are clustered exactly in correct clusters. For actual bioinformatics
data, validation is not as straightforward. However, in many cases metabolites
from previously known functional groups are grouped into the same cluster and
no questionable results are found. The results both from simulated and biological
experiments are promising and further development work of the model is planned.

The current version of the method does not take temporal correlations into ac-
count. From the time series experiment presented in Section 8.3.2, it is evident that
the metabolite concentrations change during development of the individual. As an
extension to the model, the linear time-development could be taken into account,
leading to an improvement in the performance of the method.

In addition to small sample-size, a common problem in bioinformatics is the level
of noise in the data. For instance, the difference between healthy and diseased
samples is often smaller than the difference between repeats of measurements from
one individual at several time instances. This sets limits on the identifiability of the
covariate effects.

The presented model is a linear model. There are also non-linear approaches to
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various problems in bioinformatics, which is reasonable because many biological
processes are not linear by their nature.

Inference in the new Bayesian model is achieved by Gibbs sampling, which provides
a reliable estimate on the joint distribution of the model. A common problem of
sampling methods is that they are slow to run and there is a possibility of the model
ending up in a local optimum if the sampler is not given time to converge. On long
runs of the sampler algorithm, label switching becomes a major problem. With in-
creasing data sets, computational cost of the sampling algorithm grows significantly.
Even though the problems of local optimum, label switching and computational cost
are important, they were not studied in detail in the diploma work and, thus, were
not discussed in detail in the thesis.

The presented Bayesian model is a successful novel multi-way modelling approach
to overcome the problems of small sample-size and high noise level. The model
was presented in European Conference on Machine Learning in 2009 and was also
published in a special issue of the journal Data Mining and Knowledge Discovery
[41].
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