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Group factor analysis (GFA)
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Making generalizations across organisms
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Shared components
> associations between views

> cross-view prediction



GFA with sparsity (1)
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GFA with and without sparsity




GFA with sparsity (2)
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Sparsity — why

Sparsity in the model is encouraged due to

1. High dimensionality of the
gene expression microarray
data sets

2. Strong sparsity of the
pathology data

3. Treatments heterogeneous
by their effects

Sparsity in terms of
variables

Sparsity in terms of
samples



Sparsity — how

Probability density

1. Sparsity in terms of

variables

2. Sparsity in terms of

samples

Value

Spike-and-slab prior* for
factor loadings matrix W

Spike-and-slab prior for
latent variables Z



GFA — model
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GFA with sparsity — model
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Data representation — gene expression

» Treatments that occur in all 3 types of organism:

» 119 compounds
» dosage levels middle & high
» time points 8/9 h & 24 h
» Average differential expression over the replicates of each
treatment
= Treatment = sample for the model

= Matching treatments between the 3 transcriptomic views
Xhuman Xrat and Xrat

in vitro' “Yin vitro in vivo
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Data representation — histopathology of the liver

Grade-weighted count of
each pathological finding
type over the replicates of
a treatment

= Pathology view
¢ : .
Yt .o with matching
treatments to the 3

transcriptomic views
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Results

Our tasks:

1. Predict liver damage of rats in vivo based on cell-level
transcriptomic responses in the 3 types of model organisms

2. Test how well the transcriptomic cell-level responses
generalize to known effects of the compounds on humans



Analysis: model organisms’ generalizability to organ level

Training: Learn associa-
tions between the views

» 3 transcriptomic

: human
VIEWS Xin vitro’

t t
XIr: vitro and X:ﬁ vivo
» Pathology view
t
err:;l vivo
Testing: Predict the patho-
. . ¢
logical findings Y;2%.
> Given one of the
transcriptomic views



Analysis: model organisms’ generalizability to organ level

Training: Learn associa-
tions between the views

» 3 transcriptomic

: human
VIEWS Xin vitro’

rat rat
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» Pathology view
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Testing: Predict the patho-
logical findings Y/

in vivo
» Given one of the
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Sparsity in the target view
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similarity of
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Prediction: drug hepatotoxicity based on gene expression

H rat
» Given X34,

predict Y2
» Same prediction task

using ¢1-regularized

linear regression

Root mean squared error

Performance of
rat in vivo gene expression view
at predicting pathological findings
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Translation over model organisms to humans

» How do the transcriptional changes in model organisms
generalize system-level effects in humans?

» Can the model learn structure relevant to the properties of the
compounds in an unsupervised way?



Translation over model organisms to humans (1)

We quantify the success of translation by the retrieval of similar
compounds

» Ground-truth:
A. Anatomical Therapeutic Chemical (ATC) Classification
System’s labels (level 4)
B. Drug-induced liver injury (DILI) labels

» Model: GFA with sparsity for the transcriptomic views of the
model organisms, Xfuman - xrat . and Xrat .
» Measure: Average precision in the retrieval of similar

compounds in the latent space



Translation over model organisms to humans (2)

We quantify the success of translation by the retrieval of similar compounds

» Ground-truth:

A. Anatomical Therapeutic Chemical (ATC) Classification System’s labels
(level 4)

B. Drug-induced liver injury (DILI) labels

» Model: GFA with sparsity for the transcriptomic views of the model organisms,

human rat rat
Xin vitro’ Xin vitro and Xin vivo

» Measure: Average precision in the retrieval of similar compounds in the latent
space
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Conclusions

GFA reveals associations between the views

v

v

Associations indicate what generalizes between the views

v

Sparsity helps in this decision

v

Latent representation allows us to explore structure in the
data in an unsupervised way
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Discussion

We can
> analyse the similarity of model organisms

> learn what generalizes from the model organisms to humans
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