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Inference of differences between samples is 
a fundamental problem in computational 
biology. Molecular measurements of 
biological organisms produce high-
dimensional data but the number of test 
subjects in the experiments is limited. In 
this thesis, computational methods are 
presented for finding differences between 
high-dimensional observations and for 
extensions of this problem. 
 
Since the effects and side-effects of new 
drug treatments are unknown and 
potentially dangerous, model organisms are 
used to study human diseases and their 
treatments. The computational translation 
of the outcome of an experiment from the 
model organism to humans is a problem, 
which is addressed in this thesis. Presented 
data translation methods identify responses 
to experimental treatments that are 
conserved across organisms. 
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Introduction
I Molecular measurements of

biological organisms to study
response to:

I disease
I medical treatment
I environment

I Measurements can be made:
I in vivo: cell extracts from

humans or model organisms
I in vitro: cell lines grown in

laboratory

Hilvo et al.,

Cancer Res.

2011



Molecular activity in biological cell

Watson & Crick, Nature 1953

Joyce & Palsson, Nat. Rev. Mol. Cell Biol. 2006



Machine learning for computational biology

I Molecular measurements:
I Large data sets
I Uncertainty/noise

⇒ Automated and robust data-driven analysis
tools needed

I Bayesian approach to probability:
I Take uncertainty into account
I Describe the generative process of the data

⇒ Integration of multiple measurement
sources

I Incorporate existing knowledge
by specifying:

I the model structure
I priors
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Computational medicine & contributions

I Model organisms for studying effects of:
I genomic mutations
I new medical treatments, potentially dangerous

I Dissertation: statistical modeling of effects in molecular measurement
data with

I high-dimensional, noisy measurements
I multiple measurement types
I multiple organisms

Kaski, MLAB 2013
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P I: Multi-Way Model for “n < p”
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P II–III: Multi-Way Models for Multi-Peak Metabolomics

a) Peak clustering based on shapes
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P IV: Multi-Way Model for Multiple Sources

(1)

 untreated
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data space:
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P V: Cross-Organism Toxicogenomics
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P VI–VII: Cross-Organism Multi-Way Model
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Summary

New machine learning models for:

P I Small sample size, high dimensionality (n < p)

P II–III Incorporating prior information about
the measurement process

P IV–V Multiple data sources with co-occurring samples

P VI–VII Multiple data sources without co-occurring
samples
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