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Answer Set Programming (ASP)

◮ Term coined by Vladimir Lifschitz

◮ An approach to modeling and solving knowledge intensive

search problems with defaults, exceptions, constraints, . . . :

planning, configuration, model checking, network

management, linguistics, combinatorics, . . .

◮ Solving a problem in ASP:

Encode the problem as a logic program such that

solutions to the problem are given by stable models

(answer sets) of the program.

Problem

−→ ENCODING

Data

−→ ENCODING

Program

−→
ASP

solver

Models

−→
(Solutions)
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Example: Hamiltonian cycles

A Hamiltonian cycle: a closed path that visits all vertices of the

graph exactly once.
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ASP—cont’d

◮ ASP solvers need to handle two challenging tasks:

complex data and search

◮ Current systems employ a two level architecture with two

steps:

◮ Grounding step handles complex data:
◮ Given program P with variables, generate a set of ground

instances of the rules preserving stable models.
◮ LP and DDB techniques employed

◮ Model search for ground programs

+ ASP = KR + DDB + search
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Integrating ASP and SMT

◮ Solvers for the propositional satisfiability problem (SAT)

are used widely as platforms for solving the model search

problem.

◮ Interesting extensions of SAT studied recently:

Satisfiability Modulo Theories (SMT)

◮ Efficient SMT solvers for expressive theories (integers,

reals, uninterpreted function with equality, bit vectors,

arrays, . . . ) are becoming available

( !!"#$$%%%&'(!)*("&*+,$)

◮ Is it possible to integrate ASP and SMT to exploit the

strengths of both approaches?
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Integrating ASP and SMT

◮ Interesting previous work on combining ASP and CSP

techniques based on using an ASP and CSP solver

together, for example,

(El-Khatib, Pontelli, & Son, 2004; Baselice, Bonatti, &

Gelfond 2005; Mellarkod & Gelfond 2007; Mellarkod,

Gelfond & Zhang 2008)

◮ Here we study how ASP and SMT solver technology could
be integrated.

◮ We show how ground LPs with the stable model semantics

can be embedded succinctly to a simple extension of SAT

called difference logic supported by most SMT solvers.
◮ Based on the embedding we demonstrate how to extend an

ASP language with expressive constraints in such a way

that an efficient implementation of the language can be

obtained using off-the-shelf SMT solver technology.
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Outline

◮ Stable models and propositional satisfiability

◮ Stable models and linear constraints

◮ Satisfiability Modulo Theories

◮ Translating LPs to SMT

◮ Integrating ASP and SMT
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Preliminaries

◮ For propositional (ground) normal rules r of the form

a ← b1, . . . , bm, not c1, . . . , not cn.

where H(r) = a, B(r) = {b1, . . . , bm, not c1, . . . , not cn},
B+(r) = {b1, . . . , bm}, B−(r) = {c1, . . . , cn} the stable

model semantics is defined as follows:

◮ A set of atoms M is a stable model of a program P iff M is

the unique minimal set of atoms satisfying the reduct PM ,

i.e., M = LM(PM) where

PM = {H(r) ← B+(r) | r ∈ P, B−(r) ∩M = ∅}.

◮ For a set of rules with variables stable models are defined

to be those of the Herbrand instantiation of the rules.
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Stable Models and SAT

◮ LPs with stable models are closely related to SAT through

program completion.

Example. P :
a ← b, not c

a ← not b, d

Completion CC(P) :
(a ↔ ((b ∧ ¬c) ∨ (¬b ∧ d)))∧
¬b ∧ ¬c ∧ ¬d

◮ Supported models of a program and models of its

completion coincide (Marek & Subrahmanian 1992)

◮ For tight programs (no positive recursion) supported and

stable models coincide (Fages 1994).

◮ SAT solvers provide an interesting platform for

implementing ASP solvers.
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Stable Models and SAT

◮ However, translating general (non-tight) LPs to SAT is
challenging

◮ Modular translation not possible (I.N. 1999)
◮ Without new atoms exponential blow-up (Lifschitz &

Razborov 2006)

◮ There are one pass translations:
◮ Polynomial size (Ben-Eliyahu & Dechter 1994;

Lin & Zhao 2003)
◮ O(‖P‖ × log |At(P)|) size (Janhunen 2004)

◮ Also incremental translations have been developed

extending the completion dynamically with loop formulas

(Lin & Zhao 2002)

+ ASSAT and CMODELS ASP solvers
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Stable Models and SAT

◮ Question: what needs to be added to SAT to allow a

compact linear size translation of LPs to SAT?

◮ A possibility: stable models can be characterized using

orderings (Elkan 1990; Fages 1994).

◮ Such an ordering can be captured with a restricted set of

linear constraints on integers using level rankings (I.N.

AMAI 2008)

◮ A suitable simple extension of propositional logic with such

restricted linear constraints called difference logic is

supported by most SMT solvers.
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Stable Models and Linear Constraints

◮ A level ranking of a model M for a program P is a function

lr : M → N such that for each a ∈ M, there is a rule r with

H(r) = a, M |= B(r) and for every b ∈ B+(r),
lr(a)− 1 ≥ lr(b) (or equivalently, lr(a) > lr(b)).

◮ Example. Consider a program P

p1 ← .

p2 ← p1.

p3 ← p1. p3 ← p4.

p4 ← p2. p4 ← p3.

Function lr1(pi) = i is

a level ranking of M =
{p1, p2, p3, p4}

Theorem (I.N, AMAI 2008)

Let M be a supported model of a finite normal program P. Then

M is a stable model of P iff there is a level ranking of M for P.
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Unique Rankings

◮ Stable models do not have unique level rankings.

◮ Example. For the program P

p1 ← .

p2 ← p1.

p3 ← p1. p3 ← p4.

p4 ← p2. p4 ← p3.

M = {p1, p2, p3, p4}
has another level ranking

lr2(p1) = 1,

lr2(p2) = lr2(p3) = 2,

lr2(p4) = 3.

◮ Level rankings can be made unique by adding two
conditions:

◮ unique lowest ranking level
◮ no gaps

+ strong level rankings. (I.N., AMAI2008)

LaSh 2010

14/34

Unique Rankings—cont’d
◮ A function lr : M → N is a strong level ranking of M for P

iff for each a ∈ M the following conditions hold:
1. There is a rule r ∈ PM such that H(r) = a and for every

b ∈ B+(r), lr(a)− 1 ≥ lr(b).
2. If there is a rule r ∈ PM such that H(r) = a and

B+(r) = ∅, then lr(a) = 1.

3. For every rule r ∈ PM such that H(r) = a there is

b ∈ B+(r) with lr(b) + 1 ≥ lr(a) (or equivalently

lr(b) ≥ lr(a)− 1).

where PM = {r ∈ P | M |= B(r)}.
◮ For the program P

p1 ← . p2 ← p1.

p3 ← p1. p3 ← p4.

p4 ← p2. p4 ← p3.

and M = {p1, p2, p3, p4},
lr1(pi) = i is not a strong level

ranking because of p3 ← p1.

But lr2(p1) = 1,

lr2(p2) = lr2(p3) = 2,

lr2(p4) = 3 is.
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Strong Rankings

(I.N., AMAI 2008):

◮ Every stable model has a strong level ranking.

◮ If there is a strong level ranking of M for P, then the

ranking is a unique strong one.

◮ Strong level rankings are closely related to level
numberings of rules and atoms used in (Janhunen 2004):

◮ Every strong level ranking can be uniquely extended to

rules to give a level numbering as defined in (Janhunen

2004).
◮ Every level numbering as defined in (Janhunen 2004) when

restricted to atoms is a strong level ranking.
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Satisfiability Modulo Theories

◮ Satisfiability Modulo Theories (SMT) problem:

a first-order theory T is given and the problem is to

determine whether a formula F is T -satisfiable (whether

T ∧ F is satisfiable in the usual first-order sense).

◮ Some restrictions are typically assumed:
◮ F is a ground (quantifier-free) formula that can contain free

constants not in the signature of T but all other predicate

and function symbols are in the signature of T .
◮ T -satisfiability of a conjunction of such ground literals

is decidable.
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Example: EUF Logic
◮ Equality with Uninterpreted Functions

◮ The theory T consists of the axioms of reflexivity,

symmetry, transitivity of ’=’ and for all function symbols f

the monotonicity axiom

f (x1, . . . , xn) = f (y1, . . . , yn), if xi = yi for all i = 1, . . . , n

◮ The formula F could look like

¬p ∨ (b 6= c) ∨ (f (b) 6= c) ∨ (g(f (c)) 6= a) ∨ (a = g(b))

where p is a new free predicate constant (i.e. atomic

proposition) and a, b, c are free function constants but

f , g are function symbols in the signature of T .

◮ T -satisfiability of conjunctions of such ground literals is

decidable by, e.g., congruence closure techniques. For

example, (b = c) ∧ (f (b) = c) ∧ g(f (c)) = a) ∧ (a 6= g(b))
is not T -satisfiable.
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Example: Difference Logic
◮ T is the theory of integers
◮ F is limited to contain only linear difference constraints of

the form

xi + k ≥ xj (or equivalently xj − xi ≤ k )

where k is an arbitrary integer constant and xi , xj ∈ X are

free constants (which can be seen as integer valued

variables).
◮ Difference logic = propositional logic + linear

difference constraint
◮ For example,

(x1 + 2 ≥ x2) ↔ (p1 → ¬(x2 − 3 ≥ x1))

is a formula in difference logic where 2, 3 are integer

constants, x1, x2 free function constants, and p1 a free

predicate constant.
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Difference Logic—cont’d

◮ A simplied semantics is given by a valuation τ consisting of

a pair of functions τP : P → {⊥,⊤} and τX : X → Z where

all other symbols (integer constants, +,≥) are interpreted

in the standard way.

◮ A valuation is extended to all formulas by applying the

usual rules and by defining

τ(xi + k ≥ xj) = ⊤ iff τX (xi) + k ≥ τX (xj)

◮ For example, given a valuation τ where
τX (x1) = 1, τX (x2) = 2, τP(p1) = ⊥,

◮ τ(x1 + 2 ≥ x2) = ⊤ as (τX (x1) + 2 =)1 + 2 ≥ 2(= τX (x2)),
◮ τ((x1 + 2 ≥ x2) ↔ (p1 → ¬(x2 − 3 ≥ x1))) = ⊤
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Difference Logic—cont’d

◮ Checking whether a set of linear constraints of the form

xi + k ≥ xj is satisfiable can be decided in polynomial time.

by reduction to finding a negative cycle in a weighted graph

constructed from the constraints.

◮ Difference logic contains classical propositional logic as a

special case.

◮ Deciding satisfiability in difference logic is NP-complete.

◮ Good theory propagation and explanation properties:

+ efficient implementations in the DPLL(T) framework.

(Nieuwenhuis, Oliveras & Tinelli, JACM 2006)
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Translating LPs to Difference Logic

◮ The characterization of stable models using level rankings

◮ Let M be a supported model of a finite normal program P.

Then M is a stable model of P iff there is a level ranking of

M for P.

suggests a mapping Tdiff(P) of a logic program P to
difference logic consisting of two parts:

◮ completion CC(P) of P and
◮ ranking constraints R(P).

◮ The completion CC(P):
for an atom a having k ≥ 1 rules in P, add the formula

a ↔ bd1
a ∨ · · · ∨ bdk

a

and for each such rule a formula

bd i
a ↔ b1 ∧ · · · ∧ bm ∧ ¬c1 ∧ · · · ∧ ¬cn

LaSh 2010

22/34

Ranking Constraints

◮ R(P): contains for each atom a which has k ≥ 1 rules in P,

a formula in difference logic

a →
k∨

i=1

(bd i
a ∧ (xa − 1 ≥ xb1

) ∧ · · · ∧ (xa − 1 ≥ xbm
))

where xa, xbi
are free function constants denoting the

rankings of atoms a, bi .

Example.

P:

p ← q, not r .

q ← p, not r .

CC(P):
¬r

p ↔ bd1
p

bd1
p ↔ q ∧ ¬r

q ↔ bd1
q

bd1
q ↔ p ∧ ¬r

R(P):
p → (bd1

p ∧ (xp − 1 ≥ xq))

q → (bd1
q ∧ (xq − 1 ≥ xp)).
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Valuations Capture Stable Models

Theorem (I.N., AMAI 2008)

◮ If a set of atoms M is a stable model of a finite normal

program P, then there is a satisfying valuation τ of Tdiff(P)
such that M = {a ∈ At(P) | τ(a) = ⊤}.

◮ If there is a satisfying valuation τ of Tdiff(P), then

M = {a ∈ At(P) | τ(a) = ⊤} is a stable model of P.

+ A solver for difference logic can be used for computing

stable models.
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Example.

P:

p ← q, not r .

q ← p, not r .

CC(P):
¬r

p ↔ bd1
p

bd1
p ↔ q ∧ ¬r

q ↔ bd1
q

bd1
q ↔ p ∧ ¬r

R(P):
p → (bd1

p ∧ (xp − 1 ≥ xq))

q → (bd1
q ∧ (xq − 1 ≥ xp)).

◮ Tdiff(P) has a satisfying valuation τ where

τ(p) = τ(q) = ⊥. Hence, P has a stable model {}.

◮ Note that there is no satisfying valuation τ where

τ(p) = τ(q) = ⊤ because then also

τ(xp − 1 ≥ xq) = τ(xq − 1 ≥ xp) = ⊤
should hold which is impossible.
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Observations

◮ The translation is compact (of linear size).

◮ It uses a limited subset of difference logic:
◮ Level rankings can be captured with constraints of the form

xi − 1 ≥ xj

◮ Strong level rankings can be translated to difference logic

using additionally constraints of the form xi + 1 ≥ xj and

xi ≥ xj .

◮ The translation can be made even more compact and the

number of required linear constraints can be reduced

dramatically in typical cases by exploiting strongly

connected components given by the positive

dependency graph of the program (I.N., AMAI 2008).

LaSh 2010

26/34

Experiments

◮ A translator from ground programs to difference logic

which supports a number of variants of the translation

available (Janhunen & I.N. & Sevalnev, LPNMR 2009).

 !!"#$$%%%&!'(& )!&*+$,-*!%./0$1"23+**$

◮ Any state-of-the-art SMT solver supporting difference logic

can be used without modification as the backend solver.

◮ A number of variants also submitted to the ASP

Competition 2009.

+ The performance obtained by current (2009) SMT

solvers (Z3, BARCELOGIC, YICES) surprisingly close to the

best native ASP solvers (clasp).
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Integrating ASP and SMT

◮ Here we demonstrate one straightforward approach to

integration where ASP rules are extended with constraints

supported by SMT solvers.

◮ First we consider the ground case with rules r of the form

a ← b1, . . . , bm, not c1, . . . , not cn, t1, . . . , tl .

where Bt(r) = {t1, . . . , tl} is a set of ground theory literals

(which can contain free constants).

◮ For defining the stable model semantics the theory atoms

must be interpreted in a consistent way with the theory T .

◮ “Classical” interpretation for theory atoms.
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Integrating ASP and SMT

◮ An interpretation of a program P is a pair (M, I) where M is

a set of atoms and I is a set of ground theory atoms such

that T ∧ I ∧ Ī is consistent where

Ī = {¬t | t is theory atom in P but t 6∈ I}.

◮ Now an interpretation (M, I) of a program P is a stable

model P iff

(i) (M, I) |= P and

(ii) M = LM(P(M,I)) where

P(M,I) = {H(r) ← B+(r) | r ∈ P, B−(r) ∩M = ∅, I |= Bt(r)}.
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Example

◮ Consider the case where we use the theory of integers and

allow linear constraints as theory atoms.

◮ Program P:

← not s.

s ← x > z.

p ← x ≤ y .

p ← q.

q ← p, y ≤ z.

M1 = ({s}, {x > z}) is a stable
model of P:

◮ (x > z) ∧ ¬(x ≤ y) ∧ ¬(y ≤ z) is

T -consistent

◮ M1 |= P and

◮ {s} = LM(PM1) where

PM1 = {s ← . p ← q.}.

◮ M2 = ({s, p, q}, {x > z, x ≤ y , y ≤ z}) is not a stable

model because (x > z) ∧ (x ≤ y) ∧ (y ≤ z) is not

T -consistent.

◮ M3 = ({s, p, q}, {x > z, y ≤ z}) is not a stable model as

{s, p, q} 6= LM(PM3) with PM3 = {s ← . p ← q. q ← p.}
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Embedding to SMT

◮ Assume that we are given an SMT solver supporting a

logic containing difference logic.

◮ Consider now a class of rules where ground theory literals

supported by the solver are allowed.

◮ For this class of rules it is straightforward to develop a

translation to the logic supported by the solver.

◮ In fact we can use the translation described above with the

following extension in the completion:

◮ For a rule r of the form

a ← b1, . . . , bm, not c1, . . . , not cn, t1, . . . , tl .

the formula capturing the satisfaction of the body is now

bd i
a ↔ b1 ∧ · · · ∧ bm ∧ ¬c1 ∧ · · · ∧ ¬cn ∧ t1 ∧ · · · ∧ tl
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The non-ground case
◮ The non-ground case is handled in the usual way by

treating a rule with variables as a shorthand for the set of

its Herbrand instantiations.

◮ To support the interaction between the regular and theory

literals, an indexing technique can be introduced:

free constants in the ground theory atoms can be

indexed by Hebrand terms

◮ For example,

← occurs(a, S1), occurs(b, S2), t(S2)− t(S1) > 7

is a shorthand for a set of ground rules

← occurs(a, s1), occurs(b, s2), t(s2)− t(s1) > 7

where s1, s2 range over Herbrand terms and t(s1), t(s2)
are treated as free constants of the background theory.
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The non-ground case

◮ For guaranteeing finite grounding a domain (or range)

restriction can be used for the (index) variables, too:

each variable in a rule occurs in some positive regular

body atom.

◮ With the indexing technique mixed atoms and related

semantical complications are avoided.

◮ For example, it is easy to express typical scheduling

constraints

← next(S1, S0), t(S1) < t(S0)
← goal(S), t(S)− t(0) > 60

← next(S1, S0), occur(goto(john, home), S0),
holds(atloc(john, office), S0), t(S1)− t(S0) < 20

used when mixing planning and scheduling (Mellarkod,

Gelfond & Zhang, AMAI 2008).
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Conclusions

◮ Difference logic allows for a compact translation of rules.

◮ The translation to difference logic opens up the possibility

of using difference logic solvers as a computational

platform for implementing ASP.

◮ The performance obtained by the translation and current

SMT solvers is already surprisingly close to the best

state-of-the-art ASP solvers.

◮ The translation makes it possible to embed rule-based

reasoning directly into SMT systems that support

difference logic.

◮ An interesting approach to integrating ASP and SMT.
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