
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer
Set Programming, and Fixed Points

Ilkka Niemelä

Ilkka.Niemela@tkk.fi, http://www.tcs.hut.fi/~ini/

Laboratory for Theoretical Computer Science

Helsinki University of Technology

Finland

Bounded Model Checking, Answer Set Programming, and Fixed Points – 1/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Contents

Answer set programming

ASP solvers and applications

BMC using ASP

Bounded Model Checking, Answer Set Programming, and Fixed Points – 2/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Answer Set Programming

Term coined by Vladimir Lifschitz

Roots: KR, logic programming, nonmonotonic
reasoning

Based on some formal system with semantics that
assigns a theory a collection of answer sets
(models).

An ASP solver : computes answer sets for a theory

Solving a problem in ASP:
Encode the problem as a theory such that solutions
to the problem are given by answer sets of the
theory.

Bounded Model Checking, Answer Set Programming, and Fixed Points – 3/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP—cont’d

Solving a problem using ASP

Problem

−→
instance

Encoding

Theory

−→
ASP

solver

Models

−→
(Solutions)

Possible formal system Models

Propositional logic Truth assignments
CSP Variable assignments
Logic programs Stable models

Bounded Model Checking, Answer Set Programming, and Fixed Points – 4/51

http://www.tcs.hut.fi/~ini/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. Bounded Model Checking

BMC uses a SAT-based ASP approach:

The behavior of the
system is unfolded up to a
bounded number (n) of
steps (formula S)

Negation of the
requirement R (formula R)

S∧R is satisfiable iff the
system has an execution
(of length at most n)
violating the requirement
R

v1(0) · · · vk(0) —
| |�

�
	

| |

v1(1) · · · vk(1) —
...

v1(n) · · · vk(n) —

S ∧ R

�

�

	

Bounded Model Checking, Answer Set Programming, and Fixed Points – 5/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

What is ASP Good for?

Search problems:

Constraint satisfaction

Planning, routing

Computer-aided verification

Security analysis

Product configuration

Combinatorics

Diagnosis

☞ Declarative problem solving

Bounded Model Checking, Answer Set Programming, and Fixed Points – 6/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Applying ASP

Uniform encoding:
separate problem specification and data

Compact, easily maintainable representation

Integrating KR, DB, and search techniques

Handling dynamic, knowledge intensive applications:
data, frame axioms, exceptions, defaults, closures

Problem

−→ ENCODING

Data

−→ ENCODING

Theory

−→
ASP

solver

Models

−→
(Solutions)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 7/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP Using Logic Programs

Logic programming: framework for merging KR, DB,
and search

PROLOG style logic programming systems not
directly suitable for ASP:

search for proofs (not models) and produce
answer substitutions
not entirely declarative

In late 80s new semantical basis for
“negation-as-failure” in LPs based on nonmonotonic
logics: Stable model semantics

Implementations of stable model semantics led to
ASP

Bounded Model Checking, Answer Set Programming, and Fixed Points – 8/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. 3-coloring

Problem : clrd(V,1)← notclrd(V,2),notclrd(V,3),vtx(V)

clrd(V,2)← notclrd(V,1),notclrd(V,3),vtx(V)

clrd(V,3)← notclrd(V,1),notclrd(V,2),vtx(V)

← edge(V,U),clrd(V,C),clrd(U,C)

Data: vtx(v) vtx(u) . . .

edge(v,u) edge(u,w) . . .

☞ 3-colorings and stable models of the encoding corre-

spond: v colored i iff clrd(v, i) in the model.

Bounded Model Checking, Answer Set Programming, and Fixed Points – 9/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LPs with Stable Models Semantics

Consider normal logic program rules

A← B1, . . . ,Bm,notC1, . . . ,notCn

Seen as constraints on an answer set (stable model):
if B1, . . . ,Bm are in the set and
none of C1, . . . ,Cn is included,

then A must be included in the set

A stable model is a set of atoms
(i) which satisfies the rules and
(ii) where each atom is justified by the rules.

Bounded Model Checking, Answer Set Programming, and Fixed Points – 10/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stable Models — cont’d

Program:
b←
f ← b,noteb
eb← p

Stable model:
{b, f}

Another candidate model: {b,eb}
satisfies the rules but is not a proper stable model:
eb is included for no reason.

Justifiability of stable models is captured by the
notion of a reduct of a program

☞ The stable model semantics
[Gelfond/Lifschitz,1988].

Bounded Model Checking, Answer Set Programming, and Fixed Points – 11/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stable Models — cont’d

Consider the propositional (variable free) case:
P — ground program
S — set of ground atoms

Reduct PS (Gelfond-Lifschitz)
delete each rule having a body literal notC with
C ∈ S
remove all negative body literals from the
remaining rules

PS is a definite program with unique least model
LM(PS)

S is a stable model of P iff S = LM(PS).

Bounded Model Checking, Answer Set Programming, and Fixed Points – 12/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. Stable models

S P PS LM(PS)

{b, f} b← b← {b, f}
f ← b,noteb f ← b
eb← p eb← p

{b,eb} b← b← {b}
f ← b,noteb
eb← p eb← p

The set {b,eb} is not a stable model of P but
{b, f} is the (unique) stable model of P

Bounded Model Checking, Answer Set Programming, and Fixed Points – 13/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. Stable models

A program can have none , one, or multiple stable
models.

Program:
p← notq
q← not p

Stable models:
{p}
{q}

Program:
p← notq
q← not p
← not p
← notq

Stable models:
None

Bounded Model Checking, Answer Set Programming, and Fixed Points – 14/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Variables

Variables are needed for uniform encodings
Program:
clrd(V,1)← notclrd(V,2),notclrd(V,3),vtx(V)

clrd(V,2)← notclrd(V,1),notclrd(V,3),vtx(V)

clrd(V,3)← notclrd(V,1),notclrd(V,2),vtx(V)

← edge(V,U),clrd(V,C),clrd(U,C)

Data:
vtx(v) vtx(u) . . .

edge(v,u) edge(u,w) . . .

Bounded Model Checking, Answer Set Programming, and Fixed Points – 15/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Variables — cont’d

Semantics: Herbrand models

A rule is seen as a shorthand for the set of its ground
instantiations.

Example.

clrd(V,1)← notclrd(V,2),notclrd(V,3),vtx(V)

is a shorthand for

clrd(v,1)← notclrd(v,2),notclrd(v,3),vtx(v)
clrd(u,1)← notclrd(u,2),notclrd(u,3),vtx(u)

clrd(1,1)← notclrd(1,2),notclrd(1,3),vtx(1)

. . .

Bounded Model Checking, Answer Set Programming, and Fixed Points – 16/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stable Models — cont’d

A stratified program has a unique stable model
(canonical model).

It is linear time to check whether a set of atoms is a
stable model of a ground program.

It is NP-complete to decide whether a ground
program has a stable model.

Normal programs (without function symbols) give a
uniform encoding to every NP search problem.

Bounded Model Checking, Answer Set Programming, and Fixed Points – 17/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Extensions

For example in the Smodels system:

Choice rules: { a } :- b, not c.

Cardinality constraints: 2 {hd_1,...,hd_n } 4

Weight constraints:
20 [hd_1 =6,...,hd_n = 13]

A.k.a. pseudo-Boolean constraints :
20≤ 6hd1+ · · ·+13hdn

Optimization
minimize [hd_1 = 100,...,hd_n = 600]

Also disjunctions, preferences, weak constraints, . . .

Bounded Model Checking, Answer Set Programming, and Fixed Points – 18/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Problem Encoding with ASP

Bounded Model Checking, Answer Set Programming, and Fixed Points – 19/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Generate-and-test programming

Basic methodology:

Generator rules : provide candidate answer sets
(typically encoded using choice constructs)
Tester rules : eliminate non-valid candidates
(typically encoded using integrity constraints)
Optimization statements : Criteria for preferred
answer sets (typically encoded using cost
functions)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 20/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. Propositional Satisfiability

Consider formula p1: (a∨¬b)
︸ ︷︷ ︸

p2

∧(¬a↔ b)
︸ ︷︷ ︸

p3

Encoding:

{ a }. { b }. % Choices
:- not p1. % Constraint
p1:- p2, p3. % Conjunction
p2:- a. % Disjunction
p2:- not b. % Disjunction
p3:- not a, b. % Equivalence
p3:- a, not b. % Equivalence

Satisfying truth assignments for p1 and the stable
models of the program correspond

Bounded Model Checking, Answer Set Programming, and Fixed Points – 21/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fixed Points

The stable model semantics captures inherently
minimal fixed points enabling compact encodings
of closures

Example. Reachability from node s.

r(s). % source
r(v) :- r(w). % for each edge (w,v)

The program is linear size and captures
reachability : it has a unique model S s.t. v is
reachable from s iff r(v) ∈ S.

Example. Transitive closure of relation q(X ,Y)

t(X,Y) :- q(X,Y).
t(X,Y) :- q(X,Z), t(Z,Y).

Bounded Model Checking, Answer Set Programming, and Fixed Points – 22/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. Hamiltonian cycles

A Hamiltonian cycle: a closed path that visits all vertices
of the graph exactly once.
% Data
vtx(a). ...
edge(a,b). ...
init_vtx(a0). %for some vertex a0
% Problem encoding
{ hc(X,Y) } :- edge(X,Y).
:- hc(X,Y), hc(X,Z), Y!=Z.
:- hc(Y,X), hc(Z,X), Y!=Z.
:- vtx(X), not r(X).
r(Y) :- hc(X,Y), init_vtx(X).
r(Y) :- hc(X,Y), r(X).

Bounded Model Checking, Answer Set Programming, and Fixed Points – 23/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP vs Other Approaches

SAT, CSP, (M)IP
Similarities: search for models (assignments to
variables) satisfying a set of constraints
Differences: no logical variables, fixed points,
database or DDB techniques available, search
space given by variable domains

LP, CLP:
Similarities: database and DDB techniques
Differences: Search for proofs (not models),
non-declarative features

Bounded Model Checking, Answer Set Programming, and Fixed Points – 24/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP Solvers and Applications

Bounded Model Checking, Answer Set Programming, and Fixed Points – 25/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP Solvers

ASP solvers need to handle two challenging tasks
complex data
search

The approach has been to use
logic programming and deductive data base
techniques for the former
SAT/CSP related search techniques for the
latter

In the current systems: separation of concerns

☞ A two level architecture

Bounded Model Checking, Answer Set Programming, and Fixed Points – 26/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Architecture of ASP Solvers

Typically a two level architecture employed

Grounding step handles complex data:
Given program P with variables, generate a set of
ground instances of the rules which preserves
the models.
LP and DDB techniques employed

Model search for ground programs:
Special-purpose search procedures
Translation to SAT
propositional models and stable models are
closely related via (Clark’s) program completion

Bounded Model Checking, Answer Set Programming, and Fixed Points – 27/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Program Completion

Program completion comp(P): a simple translation
of a logic program P to a propositional formula.
Example.
P :
a← b,notc
a← notb,d
← a,notd

comp(P) :
a↔ ((b∧¬c)∨ (¬b∧d))

¬b,¬c,¬d
¬(a∧¬d)

For tight programs (no positive recursion) stable
models of a logic program and propositional
models of its completion coincide.

Bounded Model Checking, Answer Set Programming, and Fixed Points – 28/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Program Completion — cont’d

For non-tight programs (with positive recursion) there
are differences
p← q
q← p
ASP solver:
unique model: {}

vs

p↔ q
q↔ p
SAT solver:
2 models: {},{p,q}

Approaches to extend SAT solvers
Extend completion with loop formulas
dynamically (ASSAT, CMODELS)
One pass compilation to SAT
O(‖P‖× log|At(P)|) translation
(Janhunen, ECAI 2004)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 29/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

SAT and ASP

Due to close relationship results carry over

Restarting has been found useful in SAT/CSP
Used for example in smodels -restart

Modern SAT solvers employ conflict driven
learning and backjumping
First ASP attempt (Ward, Schlipf, 2004)

SAT solvers use watched literal data structures to
achieve efficient propagation for large clause sets

ASP solvers have built-in support for aggregates
(cardinality and weight constraints)
Efficient techniques for (boolean combinations of)
pseudo-Boolean constraints

Bounded Model Checking, Answer Set Programming, and Fixed Points – 30/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP Implementations

Smodels http://www.tcs.hut.fi/Software/smodels/

dlv http://www.dbai.tuwien.ac.at/proj/dlv/

GnT http://www.tcs.hut.fi/Software/gnt/

CMODELS http://www.cs.utexas.edu/users/tag/cmodels.html

ASSAT http://assat.cs.ust.hk/

nomore++ http://www.cs.uni-potsdam.de/nomore/

XASP distributed with XSB v2.6

http://xsb.sourceforge.net

aspps http://www.cs.engr.uky.edu/ai/aspps/

ccalc http://www.cs.utexas.edu/users/tag/cc/

Bounded Model Checking, Answer Set Programming, and Fixed Points – 31/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Applications

Planning
USAdvisor project at Texas Tech:
A decision support system for the flight controllers of
space shuttles

Product configuration
–Intelligent software configurator for Debian/Linux
–WeCoTin project (Web Configuration Technology)
–Spin-off (http://www.variantum.com/)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 32/51

http://www.tcs.hut.fi/Software/smodels/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/nomore/
http://xsb.sourceforge.net
http://www.cs.engr.uky.edu/ai/aspps/
http://www.cs.utexas.edu/users/tag/cc/
http://www.variantum.com/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Applications—cont’d

VLSI routing, planning, combinatorial problems,
network management, network security, security
protocol analysis, linguistics . . .

WASP Showcase Collection
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University
Press, 2003.

Bounded Model Checking, Answer Set Programming, and Fixed Points – 33/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

BMC Using ASP

Bounded Model Checking, Answer Set Programming, and Fixed Points – 34/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Encoding BMC Problems

BMC problem
INPUT: A system description N (with some initial
conditions C0), a bound n, and a requirement R.
QUESTION: Is there an execution of system N of
length at most n (starting from some initial state
satisfying C0) that violates R.

The encoding of a BMC problem can be divided into
two (orthogonal) tasks

encoding of executions of N of length n
encoding of requirement R

Bounded Model Checking, Answer Set Programming, and Fixed Points – 35/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Encoding BMC problems—cont’d

Given a BMC problem we need to construct two
programs (sets of formulas)

Exe(N,n):
a model of Exe(N,n) corresponds to an
execution of N in n steps (starting from some
initial state satisfying C0).

Req(¬R,n):
a model of Req(¬R,n) corresponding to an
execution of length n satisfies ¬R.

Bounded Model Checking, Answer Set Programming, and Fixed Points – 36/51

http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Encoding BMC problems—cont’d

Soundness:
If Exe(N,n)∪Req(¬R,n) has a model , then there is
an execution of N with at most n steps where R
does not hold .

Completeness:
If there is an execution of N with at most n steps
where R does not hold , then
Exe(N,n)∪Req(¬R,n) has a model .

Bounded Model Checking, Answer Set Programming, and Fixed Points – 37/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Encoding the executions

We assume that executions are encoded such that

each model I of Exe(N,n) corresponds to an
execution of N in n steps with

M0
t0→ M1

t1→ . . .Mn−1
tn−1
→ Mn

where
state variable p holds in state Mi iff p(i) is true in I

Bounded Model Checking, Answer Set Programming, and Fixed Points – 38/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example

Exe(N,n):

t3 t4 t5t1 t2

p1 p2

p3 p4 p5

Free initial marking

{p1(0)}←

{p2(0)}←

{p3(0)}←

{p4(0)}←

{p5(0)}←

Initial conditions

← not p1(0)

← not p2(0)

Preconditions

{t1(i)}← p3(i)

{t2(i)}← p1(i), p2(i)

{t3(i)}← p2(i)

{t4(i)}← p4(i)

{t5(i)}← p2(i)

Interleaving:

← 2 {t1(i), t2(i), t3(i), t4(i), t5(i)}

Effects

p1(i+1)← t1(i)

p2(i+1)← t4(i)

p3(i+1)← t2(i)

p4(i+1)← t2(i)

p4(i+1)← t3(i)

p5(i+1)← t5(i)

Idling only at start:

← idle(i+1),not idle(i)

← idle(n−1)

Frame axioms

p1(i+1)← p1(i),nott2(i)

p2(i+1)← p2(i),nott2(i),

not t3(i),nott5(i)

p3(i+1)← p3(i),nott1(i)

p4(i+1)← p4(i),nott4(i)

p5(i+1)← p5(i)

idle(i)← not t1(i), . . . ,not t5(i)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 39/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Requirements—LTL

LTL: prop. logic + temporal operators (U,F,G,X , . . .)

LTL formula is evaluated over an infinite sequence of
states w = M0,M1,M2, . . .

w |= p Uq iff p holds until q holds in some state in w.
w |= F p iff for some state in w, p holds (>U p)
w |= Gp iff for all states in w, p holds (¬(>U¬p))

Examples:
Safety: ¬(¬reqUack)
Liveness: G(req→ Fack)
Fairness: GFen→ GFex

Bounded Model Checking, Answer Set Programming, and Fixed Points – 40/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Encoding LTL Requirements

For an LTL formula ϕ (negation of the requirement),
Req(ϕ,n) eliminates models not satisfying ϕ.

Req(ϕ,n):
(i) rules capturing the conditions under which a
model corresponds to an execution satisfying ϕ
(ii) rule

← notϕ(0)

to eliminate models not satisfying ϕ in an initial state.

Bounded Model Checking, Answer Set Programming, and Fixed Points – 41/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTL requirements—cont’d

Consider looping bounded executions

Treating non-looping ones is a straightforward
extension

M0 M(i) Mn

M(i) ≡Mn

l(i) nl(i+1)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 42/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTL encoding—cont’d

Guess a loop point: 1{l(0), l(1), . . . , l(n−1)}1
Check it: ← l(i), p(i),not p(n)

← l(i), p(n),not p(i)
Next of the last state: nl(i+1)← l(i)

M0 M(i) Mn

M(i) ≡Mn

l(i) nl(i+1)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 43/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTL encoding

Req(ϕ,n): Formula ϕ is translated recursively
starting from its subformulas

Translation of ϕ = ϕ1Uϕ2 based on the fixed point
characterization ϕ1Uϕ2≡ ϕ2∨ (ϕ1∧X(ϕ1Uϕ2))

ϕ(i)← ϕ2(i)
ϕ(i)← ϕ1(i),ϕ(i+1)

ϕ(n+1)← nl(i),ϕ(i)
Example.

f = p0U (

f1
︷︸︸︷

¬p1∧p2)
︸ ︷︷ ︸

f2

:

f1(i)← not p1(i)
f2(i)← f1(i), p2(i)
f (i)← f2(i)
f (i)← p0(i), f (i+1)

f (n+1)← nl(i), f (i)
Bounded Model Checking, Answer Set Programming, and Fixed Points – 44/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Comparison

SAT based encoding [Biere et al./Cimatti et al.]:
size is at least quadratic in the bound

Logic program encoding
size is linear in the bound, system description,
and LTL formula

Bounded Model Checking, Answer Set Programming, and Fixed Points – 45/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Exploiting Concurrency

Inherent concurrency of an asynchronous system
can be exploited by allowing multiple independent
actions to occur together (step semantics):

Change Exe(N,n) to allow steps.

Req(ϕ,n): For step semantics, allow at most one
visible action in a step by adding:

← 2{t1(i), . . . , tk(i)}

where {t1, . . . , tk} is the set of visible actions ,
i.e., the actions whose firing changes the truth
value of an atom p appearing in the formula ϕ.
(X cannot be used)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 46/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example

Exe(N,n):

t3 t4 t5t1 t2

p1 p2

p3 p4 p5

Free initial marking

{p1(0)}←

{p2(0)}←

{p3(0)}←

{p4(0)}←

{p5(0)}←

Initial conditions

← not p1(0)

← not p2(0)

Preconditions

{t1(i)}← p3(i)

{t2(i)}← p1(i), p2(i)

{t3(i)}← p2(i)

{t4(i)}← p4(i)

{t5(i)}← p2(i)

Conflicts:

← 2 {t2(i), t3(i), t5(i)}

Effects

p1(i+1)← t1(i)

p2(i+1)← t4(i)

p3(i+1)← t2(i)

p4(i+1)← t2(i)

p4(i+1)← t3(i)

p5(i+1)← t5(i)

Idling only at start:

← idle(i+1),not idle(i)

← idle(n−1)

Frame axioms

p1(i+1)← p1(i),nott2(i)

p2(i+1)← p2(i),nott2(i),

not t3(i),nott5(i)

p3(i+1)← p3(i),nott1(i)

p4(i+1)← p4(i),nott4(i)

p5(i+1)← p5(i)

idle(i)← not t1(i), . . . ,not t5(i)

Bounded Model Checking, Answer Set Programming, and Fixed Points – 47/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Experiments

Deadlock checking/LTL checking using a benchmark
set proposed by Corbett [1995]

Experiments using step and interleaving semantics

ASP solver: Smodels 2.26

Comparison with NuSMV 2.1.0
NuSMV/BMC: NuSMV with optimized Biere et al.
translation and zChaff
NuSMV/BDD: NuSMV with tableau-based LTL using
BDDs

[K. Heljanko and I. Niemelä. Bounded LTL Model
Checking with Stable Models. Theory and Practice of
Logic Programming, 3 (4&5): 519–550, 2003.]

Bounded Model Checking, Answer Set Programming, and Fixed Points – 48/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Experiments—cont’d

LTL Model Checking Experiments

ProblemSt n St s Int n Int s Bmc n Bmc s Bdd s States

DP(6) 7 0.2 8 0.5 8 4.3 64.8 728

DP(8) 8 1.5 10 5.7 10 64.0 >1800 6560

DP(10) 9 25.9 12 140.1 12 1257.1 >1800 59048

DP(12) 10 889.4 14 >1800 14 >1800 >1800 531440

For instance for six philosophers:
¬GF(f5.up U (p5.eat∧ (f3.up U (p3.eat∧ (f1.up U p1.eat)))))

http://www.tcs.hut.fi/~kepa/experiments/boundsmodels/

Bounded Model Checking, Answer Set Programming, and Fixed Points – 49/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conclusions

ASP = KR + DB + search

ASP emerging as a viable KR tool

Efficient implementations under development
(Smodels, aspps, dlv, XASP, CMODELS, ASSAT,
nomore++, clasp, . . .)

Logic programming based ASP supports directly
(least) fixed points useful in many applications:
encoding temporal properties, configurations,
planning, . . .

Exploiting concurrency in asynchronous models
computationally advantageous

Bounded Model Checking, Answer Set Programming, and Fixed Points – 50/51

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Further Work

Exploiting concurrency
[T. Jussila, K. Heljanko, and I. Niemelä. BMC via
On-the-Fly Determinization. International Journal on
Software Tools for Technology Transfer, 7(2), 89-101,
2005.]

Linear size encoding in SAT
[Latvala, Biere, Heljanko, Junttila; FMCAD’2004]

Incrementality and Past LTL
[Heljanko et al., CAV’2005]
Implemented in NuSMV 2.4.0

Bounded Model Checking, Answer Set Programming, and Fixed Points – 51/51

http://www.tcs.hut.fi/~kepa/experiments/boundsmodels/

	Contents
	Answer Set Programming
	ASP---cont'd
	Example. Bounded Model Checking
	What is ASP Good for?
	Applying ASP
	ASP Using Logic Programs
	Example. 3-coloring
	LPs with Stable Models Semantics
	Stable Models --- cont'd
	Stable Models --- cont'd
	Example. Stable models
	Example. Stable models
	Variables
	Variables --- cont'd
	Stable Models --- cont'd
	Extensions
	 {color {blue} Problem Encoding with ASP}
	Generate-and-test programming
	Example. Propositional Satisfiability
	Fixed Points
	Example. Hamiltonian cycles
	ASP vs Other Approaches
	 {color {blue} ASP Solvers and Applications}
	ASP Solvers
	Architecture of ASP Solvers
	Program Completion
	Program Completion --- cont'd
	SAT and ASP
	ASP Implementations
	Applications
	Applications---cont'd
	 {color {blue} BMC Using ASP}
	Encoding BMC Problems
	Encoding BMC problems---cont'd
	Encoding BMC problems---cont'd
	Encoding the executions
	Example
	Requirements---LTL
	Encoding LTL Requirements
	LTL requirements---cont'd
	LTL encoding---cont'd
	LTL encoding
	Comparison
	Exploiting Concurrency
	Example
	Experiments
	Experiments---cont'd
	Conclusions
	Further Work

