
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Answer Set Programming
Implementation Techniques and Applications

Ilkka Niemelä

Ilkka.Niemela@tkk.fi, http://www.tcs.hut.fi/~ini/

Laboratory for Theoretical Computer Science

Helsinki University of Technology

NMR 2006, May 30–Jun 1, Lake District area, UK

Answer Set Programming– 1/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Contents

Introduction to Answer Set Programming (ASP)

ASP with logic programs

Implementation techniques

Available systems

Applications

Answer Set Programming– 2/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Answer Set Programming

Term coined by Vladimir Lifschitz

Roots: KR, logic programming, nonmonotonic
reasoning

Based on some formal system with semantics that
assigns a theory a collection of answer sets
(models).

An ASP solver : computes answer sets for a theory

Solving a problem in ASP:
Encode the problem as a theory such that solutions
to the problem are given by answer sets of the
theory.

Answer Set Programming– 3/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP—cont’d

Solving a problem using ASP

Problem

−→
instance

Encoding

Theory

−→
ASP

solver

Models

−→
(Solutions)

Possible formal system Models

Propositional logic Truth assignments
CSP Variable assignments
Logic programs Stable models

Answer Set Programming– 4/45

http://www.tcs.hut.fi/~ini/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. k-coloring problem

Given a graph (V,E) find an assignment of one of k
colors to each vertex such that no two adjacent
vertices share a color.

Encoding 3-coloring using propositional logic
For each vertex v ∈V :
v(1)∨ v(2)∨ v(3)

¬v(1)∨¬v(2)

¬v(1)∨¬v(3)

¬v(2)∨¬v(3)

For each edge (v,u) ∈ E:
¬v(1)∨¬u(1)

¬v(2)∨¬u(2)

¬v(3)∨¬u(3)

3-colorings of a graph (V,E) and models of the
encoding correspond:
vertex v colored with color i iff v(i) true in the model.

Answer Set Programming– 5/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

What is ASP Good for?

Search problems:

Constraint satisfaction

Planning, routing

Computer-aided verification

Security analysis

Product configuration

Combinatorics

Diagnosis

☞ Declarative problem solving

Answer Set Programming– 6/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Towards ASP in Practice

Uniform encoding:
separate problem specification and data

Compact, easily maintainable representation

Integrating KR, DB, and search techniques

Handling dynamic, knowledge intensive applications:
data, frame axioms, exceptions, defaults, closures

Problem

−→ ENCODING

Data

−→ ENCODING

Theory

−→
ASP

solver

Models

−→
(Solutions)

Answer Set Programming– 7/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP Using Logic Programs

Answer Set Programming– 8/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP Using Logic Programs

Logic programming: framework for merging KR, DB,
and search

PROLOG style logic programming systems not
directly suitable for ASP:

search for proofs (not models) and produce
answer substitutions
not entirely declarative

In late 80s new semantical basis for
“negation-as-failure” in LPs based on nonmonotonic
logics: Stable model semantics

Implementations of stable model semantics led to
ASP

Answer Set Programming– 9/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. 3-coloring

Problem : clrd(V,1)← notclrd(V,2),notclrd(V,3),vtx(V)

clrd(V,2)← notclrd(V,1),notclrd(V,3),vtx(V)

clrd(V,3)← notclrd(V,1),notclrd(V,2),vtx(V)

← edge(V,U),clrd(V,C),clrd(U,C)

Data: vtx(v) vtx(u) . . .

edge(v,u) edge(u,w) . . .

☞ 3-colorings and stable models of the encoding corre-

spond: v colored i iff clrd(v, i) in the model.

Answer Set Programming– 10/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LPs with Stable Models Semantics

Consider normal logic program rules

A← B1, . . . ,Bm,notC1, . . . ,notCn

Seen as constraints on an answer set (stable model):
if B1, . . . ,Bm are in the set and
none of C1, . . . ,Cn is included,

then A must be included in the set

A stable model is a set of atoms
(i) which satisfies the rules and
(ii) where each atom is justified by the rules.

Answer Set Programming– 11/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stable Models — cont’d

Program:
b←
f ← b,noteb
eb← p

Stable model:
{b, f}

Another candidate model: {b,eb}
satisfies the rules but is not a proper stable model:
eb is included for no reason.

Justifiability of stable models is captured by the
notion of a reduct of a program

☞ The stable model semantics
[Gelfond/Lifschitz,1988].

Answer Set Programming– 12/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. Stable models

A program can have none , one, or multiple stable
models.

Program:
p1← notq1

q1← not p1

Stable models:
{p1}

{q1}

Program:
p1← notq1

q1← not p1

← not p1

← notq1

Stable models:
None

Answer Set Programming– 13/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Variables

Variables are needed for uniform encodings
Program:
clrd(V,1)← notclrd(V,2),notclrd(V,3),vtx(V)

clrd(V,2)← notclrd(V,1),notclrd(V,3),vtx(V)

clrd(V,3)← notclrd(V,1),notclrd(V,2),vtx(V)

← edge(V,U),clrd(V,C),clrd(U,C)

Data:
vtx(v) vtx(u) . . .

edge(v,u) edge(u,w) . . .

Answer Set Programming– 14/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Variables — cont’d

Semantics: Herbrand models

A rule is seen as a shorthand for the set of its ground
instantiations.

Example.

clrd(V,1)← notclrd(V,2),notclrd(V,3),vtx(V)

is a shorthand for

clrd(v,1)← notclrd(v,2),notclrd(v,3),vtx(v)
clrd(u,1)← notclrd(u,2),notclrd(u,3),vtx(u)

clrd(1,1)← notclrd(1,2),notclrd(1,3),vtx(1)

. . .

Answer Set Programming– 15/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stable Models — cont’d

A stratified program has a unique stable model
(canonical model).

It is linear time to check whether a set of atoms is a
stable model of a ground program.

It is NP-complete to decide whether a ground
program has a stable model.

Normal programs (without function symbols) give a
uniform solution to every NP search problem.

Answer Set Programming– 16/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Extensions to Normal Programs

Classical negation
Can be handled by normal programs (renaming):
p← not¬p corresponds to p← not p′

← p, p′

Encoding of choices
Choice rules: {a}← b,notc
Disjunctive rules: a1∨a2← b,notc

Higher expressivity and complexity (Σp
2)

Special purpose implementations (dlv)
Can be implemented also using an ASP solver
for normal programs as the core engine (GnT)

Answer Set Programming– 17/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Extensions — cont’d
Many extensions implemented using an ASP solver
as the core engine :

preferences
nested logic programs
circumscription, planning, diagnosis, . . .

Aggregates
count
Example: choose 2–4 hard disks
sum
Example: the total capacity of the chosen hard
disks must be at least 20 GB.
Built-in support for aggregates in the search
procedures (Smodels, dlv)

Answer Set Programming– 18/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Extensions — cont’d

Optimization
Example: prefer the cheapest set of hard disks
(Built-in support in Smodels)

Weak constraints with weight and priority levels

:∼ B1, . . . ,Bm,notC1, . . . ,notCn[w : l]

(Built-in support in dlv)

Answer Set Programming– 19/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. Rules in Smodels

Cardinality constraints
2 {hd_1,...,hd_n } 4

Weight constraints
20 [hd_1 =6,...,hd_n = 13]

A.k.a. pseudo-Boolean constraints :

6hd1+ · · ·+13hdn ≥ 20

Optimization
minimize [hd_1 = 100,...,hd_n = 600]

Answer Set Programming– 20/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Generate-and-test programming

Basic methodology:

Generator rules : provide candidate answer sets
(typically encoded using choice constructs)
Tester rules : eliminate non-valid candidates
(typically encoded using integrity constraints)
Optimization statements : Criteria for preferred
answer sets (typically encoded using cost
functions)

Answer Set Programming– 21/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example. k-coloring problem

k-coloring: an assignment of one of k colors to each
vertex such that no two adjacent vertices share a
color.

Input: available colors and a graph
color(1).,...,color(k).
vtx(v).,...
edge(v,u).,...

Answer Set Programming– 22/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

k-coloring — cont’d

An assignment of colors is represented by ground
atoms of the form clrd(v,c) where v is a vertex
and c is an available color.

The basic idea of the encoding:
(i) generator rules produce candidate stable models
(assignments)
(ii) tester rules eliminate candidates which do not
satisfy the coloring condition.

Answer Set Programming– 23/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

k-coloring — cont’d

% Encoding of the k-coloring problem
% Generator: producing candidate stable models
1 {clrd(V,C):color(C)} 1 :- vtx(V).

% Tester: eliminate candidates
% not satisfying the coloring condition.
:- edge(V,U), color(C), clrd(V,C), clrd(U,C).

Given the encoding program (the input facts and the
generator and tester rules):
k-colorings and stable models correspond .

k-coloring: facts clrd(v,c) in the stable model.

Answer Set Programming– 24/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Review assignment

% DATA:

reviewer(r1). ...

paper(p1). ...

classA(r1,p1). ... % Preferred papers

classB(r1,p2). ... % Doable papers

coi(r1,p3). ... % Conflicts of interest

% PROBLEM

% Each paper is assigned 3 reviewers

3 { assigned(P,R):reviewer(R) } 3 :- paper(P).

% No paper assigned to a reviewer with coi

:- assigned(P,R), coi(R,P).

Answer Set Programming– 25/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Review Assignment — cont’d

% No reviewer has an unwanted paper.

:- paper(P), reviewer(R),

assigned(P,R), not classA(R,P), not classB(R,P).

% No reviewer has more than 8 papers

:- 9 { assigned(P,R): paper(P) }, reviewer(R).

% Each reviewer has at least 7 papers

:- { assigned(P,R): paper(P) } 6, reviewer(R).

% No reviewer has more than 2 classB papers

:- 3 { assignedB(P1,R): paper(P1) }, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

% Minimize the number of classB papers

minimize [assignedB(P,R):paper(P):reviewer(R)].

Answer Set Programming– 26/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP vs Other Approaches

SAT, CSP, (M)IP
Similarities: search for models (assignments to
variables) satisfying a set of constraints
Differences: no logical variables, database, DDB
or KR techniques available, search space given
by variable domains

LP, CLP:
Similarities: database and DDB techniques
Differences: Search for proofs (not models),
non-declarative features

Answer Set Programming– 27/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Implementing ASP Solvers

Answer Set Programming– 28/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ASP Solvers

ASP solvers need to handle two challenging tasks
complex data
search

The approach has been to use
logic programming and deductive data base
techniques for the former
SAT/CSP related search techniques for the
latter

In the current systems: separation of concerns

☞ A two level architecture

Answer Set Programming– 29/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Architecture of ASP Solvers

Typically a two level architecture employed

Grounding step handles complex data:
Given program P with variables, generate a set of
ground instances of the rules which preserves
the models.
LP and DDB techniques employed

Model search for ground programs:
Special-purpose search procedures
Translation to SAT

Answer Set Programming– 30/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Search

Two promising approaches to model computing for
ground programs

Special purpose search procedures
exploiting the particular properties of stable model
semantics

Translating the stable model finding problem to a
propositional satisfiability problem
exploiting state of the art SAT solvers

☞ These approaches are closely related
via (Clark’s) program completion

Answer Set Programming– 31/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Program Completion

Program completion comp(P): a simple translation
of a logic program P to a propositional formula.
Example.
P :
a← b,notc
a← notb,d
← a,notd

comp(P) :
a↔ ((b∧¬c)∨ (¬b∧d))

¬b,¬c,¬d
¬(a∧¬d)

Supported models of a logic program and
propositional models of its completion coincide.

For tight programs (no positive recursion)
supported and stable models coincide (Fages).

Answer Set Programming– 32/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Program Completion — cont’d

Stable models for tight programs can be computed
using a SAT solver:

Form the completion and transform that to CNF
(typically with new atoms).
Run a SAT solver on the CNF and translate
results back.

For tight programs: DPLL (CMODELS) on the
translated CNF and ASP solver (smodels) on the
original program are (propagation) equivalent
[Giunchiglia and Maratea, ICLP05]

Answer Set Programming– 33/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Program Completion — cont’d

For non-tight programs (with positive recursion) ASP
solvers have more powerful propagation
techniques.
Example.
p← q
q← p
ASP solver:
unique model: {}

vs

p↔ q
q↔ p
SAT solver:
2 models: {},{p,q}

Positive recursion needed, e.g., for capturing
closures : reachability, transitive closure

tc(X,Y) :- p(X,Y).
tc(X,Z) :- p(X,Y), tc(Y,Z).

Answer Set Programming– 34/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Translations to SAT

Translating non-tight LPs to SAT is challenging
Modular translations not possible (Niemelä, 1999)
Without new atoms exponential blow-up (Lifschitz
and Razborov)
One-to-one correspondence between
propositional models and answer sets non-trivial

Approaches
Extend completion with loop formulas
dynamically (ASSAT, CMODELS)
One pass compilation to SAT
O(‖P‖× log|At(P)|) translation
(Janhunen, ECAI 2004)

Answer Set Programming– 35/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

SAT and ASP

Due to close relationship results carry over

Restarting has been found useful in SAT/CSP
New version 2.31 : smodels -restart

Modern SAT solvers employ conflict driven
learning and backjumping
First ASP attempt (Ward, Schlipf, 2004)

SAT solvers use watched literal data structures to
achieve efficient propagation for large clause sets

ASP solvers have built-in support for aggregates
(cardinality and weight constraints)
Efficient techniques for pseudo-Boolean constraints

Answer Set Programming– 36/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Smodels System

(http://www.tcs.hut.fi/Software/smodels)

program

(variables)
→

lparse

front-end
→

ground

program
→

smodels

search
→

stable

models

Front-end: (deductive) DB techniques for stratified
programs

Special purpose search engine:
array data structures (Dowling-Gallier type)
local computations for large rule sets
linear space requirements
optimization built-in

Answer Set Programming– 37/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Smodels System—cont’d

smodels
latest version 2.31
-restart option
-nolookahead optio
lazy lookahead heuristics
(approximates full lookahead)

lparse
latest version 1.0.17
domain-restricted programs
function symbols and conditional literals
built-in predicates/functions (comparisons,
arithmetic)

Answer Set Programming– 38/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Other ASP Implementations

dlv http://www.dbai.tuwien.ac.at/proj/dlv/

GnT http://www.tcs.hut.fi/Software/gnt/

CMODELS http://www.cs.utexas.edu/users/tag/cmodels.html

ASSAT http://assat.cs.ust.hk/

nomore++ http://www.cs.uni-potsdam.de/nomore/

XASP distributed with XSB v2.6

http://xsb.sourceforge.net

aspps http://www.cs.engr.uky.edu/ai/aspps/

pbmodels http://www.cs.engr.uky.edu/ai/pbmodels/

ccalc http://www.cs.utexas.edu/users/tag/cc/

Answer Set Programming– 39/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Applications

Answer Set Programming– 40/45

http://www.tcs.hut.fi/Software/smodels
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/nomore/
http://xsb.sourceforge.net
http://www.cs.engr.uky.edu/ai/aspps/
http://www.cs.engr.uky.edu/ai/pbmodels/
http://www.cs.utexas.edu/users/tag/cc/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Applications

Planning
USAdvisor project at Texas Tech:
A decision support system for the flight controllers of
space shuttles

Product configuration
–Intelligent software configurator for Debian/Linux
–WeCoTin project (Web Configuration Technology)
–Spin-off (http://www.variantum.com/)

Computer-aided verification
–Partial order methods
–Bounded model checking

Answer Set Programming– 41/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Applications—cont’d

VLSI routing

Planning

Combinatorial problems, network management,
network security, security protocol analysis,
linguistics . . .

C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University
Press, 2003.

Applying ASP
as a stand alone system
as an embedded solver

Answer Set Programming– 42/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conclusions

ASP = KR + DB + search

ASP emerging as a viable KR tool

Efficient implementations under development
(Smodels, aspps, dlv, XASP, CMODELS, ASSAT,
nomore++, . . .)

Expanding functionality and ease of use

Growing range of applications

Answer Set Programming– 43/45

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Topics for Further Research

Intelligent grounding

Model computation without full grounding

Program transformations, optimizations

Model search: learning, restarting, backjumping,
heuristics, local search techniques

Distributed and parallel implementation techniques

Language extensions

Programming methodology

Tool support

Answer Set Programming– 44/45

http://www.variantum.com/

	Contents
	Answer Set Programming
	ASP---cont'd
	Example. k-coloring problem
	What is ASP Good for?
	Towards ASP in Practice
	 {color {blue} ASP Using Logic Programs}
	ASP Using Logic Programs
	Example. 3-coloring
	LPs with Stable Models Semantics
	Stable Models --- cont'd
	Example. Stable models
	Variables
	Variables --- cont'd
	Stable Models --- cont'd
	Extensions to Normal Programs
	Extensions --- cont'd
	Extensions --- cont'd
	Example. Rules in Smodels
	Generate-and-test programming
	Example. k-coloring problem
	k-coloring --- cont'd
	k-coloring --- cont'd
	Example: Review assignment
	Review Assignment --- cont'd
	ASP vs Other Approaches
	 {color {blue} Implementing ASP Solvers}
	ASP Solvers
	Architecture of ASP Solvers
	Model Search
	Program Completion
	Program Completion --- cont'd
	Program Completion --- cont'd
	Translations to SAT
	SAT and ASP
	Smodels System
	Smodels {} System---cont'd
	Other ASP Implementations
	 {color {blue} Applications}
	Applications
	Applications---cont'd
	Conclusions
	Topics for Further Research

